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Variant‑driven early warning 
via unsupervised machine learning 
analysis of spike protein mutations 
for COVID‑19
Adele de Hoffer1,2,14, Shahram Vatani3,4,14, Corentin Cot5,14, Giacomo Cacciapaglia3,4*, 
Maria Luisa Chiusano6,7, Andrea Cimarelli8, Francesco Conventi9,10, Antonio Giannini11, 
Stefan Hohenegger3,4 & Francesco Sannino2,9,12,13*

Never before such a vast amount of data, including genome sequencing, has been collected for any 
viral pandemic than for the current case of COVID‑19. This offers the possibility to trace the virus 
evolution and to assess the role mutations play in its spread within the population, in real time. To this 
end, we focused on the Spike protein for its central role in mediating viral outbreak and replication 
in host cells. Employing the Levenshtein distance on the Spike protein sequences, we designed a 
machine learning algorithm yielding a temporal clustering of the available dataset. From this, we 
were able to identify and define emerging persistent variants that are in agreement with known 
evidences. Our novel algorithm allowed us to define persistent variants as chains that remain stable 
over time and to highlight emerging variants of epidemiological interest as branching events that 
occur over time. Hence, we determined the relationship and temporal connection between variants 
of interest and the ensuing passage to dominance of the current variants of concern. Remarkably, the 
analysis and the relevant tools introduced in our work serve as an early warning for the emergence 
of new persistent variants once the associated cluster reaches 1% of the time‑binned sequence data. 
We validated our approach and its effectiveness on the onset of the Alpha variant of concern. We 
further predict that the recently identified lineage AY.4.2 (‘Delta plus’) is causing a new emerging 
variant. Comparing our findings with the epidemiological data we demonstrated that each new 
wave is dominated by a new emerging variant, thus confirming the hypothesis of the existence of 
a strong correlation between the birth of variants and the pandemic multi‑wave temporal pattern. 
The above allows us to introduce the epidemiology of variants that we described via the Mutation 
epidemiological Renormalisation Group framework.

It is of primary importance to understand the diffusion of a virus and the establishment of its variants, to fur-
ther understand the infection mechanisms and fight the associated disease, especially in view of an efficient 
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vaccination campaign. This task could not be efficiently approached in past extended pandemics caused by 
infectious diseases, like for instance the “Spanish” Influenza of 1918–19191, mainly due to the paucity of the 
available data. The current COVID-19 crisis is, on the contrary, revolutionising our understanding of pandemics 
because of the efficient collection of a large amount of data (e.g. genome sequencing, epidemiology, etc) in real 
time, which allows for a timely identification of viral variants that successfully radiate throughout the world. 
Among the mutations that characterise SARS-CoV-2 variants, those that can be traced along the spike protein 
(S) sequence are major, although not unique, drivers of viral spread in the human population for the role that 
this protein plays in mediating the virus entrance into target cells as well as for its role in mediating escape from 
antibody responses. For the above reasons, in this work we apply and validate the hypothesis that mutations on 
the SARS coronavirus Spike protein are sufficient to identify the emergence of new variants of epidemiologi-
cal relevance, which can have dominant diffusion within the infected population. In this work, a mutation is a 
single change in the amino acid sequence of the Spike protein (substitution, addition, deletion), while a Spike 
variant, or simply variant, is a unique sequence of amino acids in the Spike protein that appears in clusters. Like 
other coronaviruses, the SARS-CoV-2 has relatively low mutation  rates2, nevertheless the current COVID-19 
pandemic has seen the emergence of several epidemiologically relevant variants. Efficient nucleotide sequencing 
has allowed to track sequence mutations along the genome of SARS-CoV-2, and to identify dangerous  variants3,4 
that appeared to increase the infectivity compared to the initial form that was sequenced from the outbreak in 
Wuhan,  China5 (GenBank: MN908947.3). Since the second half of 2020, variants of concern (VoCs) and of inter-
est (VoIs) have been identified in various regions of the world. For instance, following the naming scheme of 
the  WHO6 (Pango  lineage7,  GISAID8,9): The Alpha VoC (B.1.1.7, GRY), first identified in September 2020 in the 
 UK10,11; the Beta VoC (B.1.351, GH/501Y.V2) first found in South Africa in May  202012; the Gamma VoC (P.1, 
GR/501Y.V3) first detected in Brazil in November  202013, which has been spreading in Manaus notwithstanding 
the high rate of previous infections; the Delta VoC (B.1.617.2, G/478K.V1) identified in India in October 2020; 
and the Epsilon VoI (B.1.427+429, GH/452R.V1) found in California in March  202014. An exhaustive list can 
be found on the WHO website (www. who. int). Considering the Alpha VoC as an example, it has been possible 
to study its infectious power in lab experiments, finding a higher rate of transmission by 67–75%, compared 
to the previous  ones11. The transmission advantage has been confirmed by epidemiological data in the  UK15,16. 
Most analyses of the epidemiological data are done applying the time-honoured compartmental models of the 
SIR  type17–19, appropriately extended by including more  compartments20. The main drawback in this approach 
is the large number of parameters, which need to be fixed by hand or extracted from the data. In this work, we 
bypassed this bottleneck by using a simplified and effective approach based on theoretical physics methods, the 
epidemic Renormalisation Group (eRG)  framework21–23, combined with information directly extracted from 
the Spike protein sequence via a simple Machine Learning approach. This novel method allowed us to analyse, 
at the same time, the variability of the SARS-CoV-2 Spike protein in multiple countries and regions of the world, 
and thus provide a direct comparison of the epidemiological impact of the different Spike variants. A theoretical 
analysis of the variants within the eRG framework is presented in a companion  publication24.

In the present work, we analysed the protein sequence data for the UK nations downloaded from the GISAID 
 repository8,9. We implemented a simple Machine Learning (ML) algorithm based on the Levenshtein measure 
(LM)25,26 in order to cluster protein sequences based on their distance in terms of number of amino acid sub-
stitutions (i.e. the number of amino acid mutations needed to transform one sequence into the other, or vice-
versa). The clusters have been defined by setting cutoffs on the Ward distance between branches of a proximity 
tree, built by the use of a standard hierarchical clustering algorithm. We applied the clustering algorithm on 
the data binned in temporal units, specifically here identified by months or weeks. Each time unit may include 
more clusters according to the cutoffs set on the Ward distance and, within each cluster, the dominant variant 
is the most frequent in terms of identical sequences over the total number of sequences in the cluster. We then 
developed an algorithm that links clusters appearing in consecutive time units and creates chains of clusters that 
share the same dominant Spike variant. Empirically we determined that chains that persist for longer than three 
time units identify emerging variants. In order to reconstruct the origin of each emerging variant, we associated 
the initial cluster of each chain with a cluster from the previous time unit that maximises the overlap in their 
sequence content. Hence, a branching relation emerges in our procedure. For clarity, in this work we use the 
following definitions for variants and mutations: 

1. A dominant variant in a cluster is the Spike variant that is most frequently appearing in the cluster. Note that 
the chains are created by linking consecutive clusters when they possess the same dominant variant.

2. An emerging variant is defined as an established chain that contains more than three consecutive clusters, 
defined using our linkage algorithm. This criterium is established empirically from the results of the chain 
reconstruction.

It should be noted that some of the emerging variants defined by our procedure can be associated to VoCs 
and VoIs, as defined by the WHO, as they share the same characteristic Spike mutations. Unlike phylogenetic 
analyses plus Bayesian inference  methods27,28, the proposed ML method is unsupervised and does not rely on any 
statistical model (nor any prior) to describe the growth and evolution of a lineage. Furthermore, the algorithm 
is data driven and does not require Monte Carlo simulations for calibration. The time evolution emerges as a 
natural consequence of the hierarchical clustering algorithm procedure, and the emerging variant (defined as 
a stable time-ordered sequence of clusters) is only subsequently compared to VoCs and VoIs defined by WHO, 
which we take as an example. The method is computationally very efficient (a few hours for the entire UK dataset 
on 144 core Intel(R) Xeon(R) Gold 5220 CPU at 2.20GHz CPU with 500 Gb RAM) and allows to quickly identify 
new potentially dangerous variants and to reconstruct relevant spike mutation dynamics within stable chains.

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
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The procedure above has been independently repeated for each geographical region in our study. We vali-
dated our results by showing that our approach identifies the Alpha VoC, independently, in all the distinct UK 
regions we studied. Once the dominant variants were identified, we analysed their temporal spreading within the 
affected population. Given that only a small fraction of the infected individuals have their viral charge sampled 
and sequenced, we estimated the number of people infected by each variant by multiplying the number of posi-
tive tests by the rate of occurrence of each variant in the sequencing data. This rough approximation allows us 
to reliably extract the temporal evolution of each variant in the population. Note that each infected individual 
is, in practice, associated to the variant that is most frequently reappearing in their viral charge, following the 
practice of the sequence reporting. Thus, the data we use track the time development of the dominance of each 
variant at the individual level.

To analyse the time evolution of the individuals infected by each variant, we employed the economical eRG 
 approach21 that allows to organise the pandemic waves according to temporal symmetry principles similar to 
those found in high energy  physics29,30. The approach has been extensively  tested23,31, shown to be equivalent to 
traditional SIR compartmental models with time-dependent  parameters32, and, last but not least, summarised in 
a comprehensive review alongside other  approaches33. The economy of the model rests in the fact that, once the 
overall number of infected individuals is fixed, the diffusion rate of the virus is captured by a single parameter 
γ that measures the speed at which the virus spreads in the population. This value can be extracted by fitting 
the number of new daily infections or the cumulated number of infections. The value of γ contains not only the 
infectivity of the virus variant, but also the effect of pharmaceutical and non-pharmaceutical interventions, as 
well as the response of the population. It has been  established21,32 that a constant γ correctly describes the time-
evolution over the time-scale of a single wave: this is due to the fact that social effects, like the decrease in people’s 
mobility, affect the diffusion of the virus with a delay of a few  weeks34, while vaccinations administered during a 
wave have minor  impact31,35 . This is a special property of the eRG approach, to be contrasted to time-honoured 
compartmental models, of the SIR type, where a time-dependent reproduction number R0(t)32 is necessary to 
capture the correct effects. The effects of non-pharmaceutical interventions have been studied in detail within 
more traditional mathematical  modelling36–39.

A visual summary of the methodology followed by our analysis with its main outcomes is shown in Fig. 1, 
while more details are reported in the Supplementary material.

The main goal of this work is to understand the viral dynamics that characterises wave patterns stemming 
from infectious diseases like COVID-19. The eRG approach additionally offers a natural mathematical under-
standing in terms of the dynamical flow of the  system40,41. Importantly, by employing ML analysis to genomic 
data, we discovered that each pandemic wave is driven by a single emerging and persisting variant. The findings 
demonstrate that the variant dynamics is one of the main engines behind the emergence of wave patterns for 
COVID-19. This result can be used as a template for similar infectious diseases. As direct consequence of our 
study we propose a novel evolutionary model for the interpretation of the virus diffusion that is mutation driven.

Figure 1.  Methodology and main outcomes. Schematic representation of the work-flow we follow in this work. 
The figure is read from left to right, with the blue circles summarising the main steps of our investigation, with 
leads to a reconstruction of the temporal dynamics of the diffusion of the variants (dark blue oval). The arrows 
show their logical sequence. Intermediate results are assembled in the vertical box. In the light blue boxes on 
the right, we summarise the two main applications of the results: the early warning tool for the appearance of 
relevant variants and the reconstruction of the variant epidemiological dynamics.
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Results
Spike protein sequences have been extracted from the GISAID repository on a country-specific basis and the 
date-stamp associated to each sequence has been used to obtain a temporal dimension of viral variants appear-
ance. Note that each genome sequence in the GISAID data collection corresponds to the most frequent Spike 
variant occurring in a single infected individual. The pruned dataset (see Supplementary material) has been 
clustered per month to obtain groups of distinct variants. Firstly, we computed the LM between each pair of 
sequences, thus counting by an unweighted approach the minimal number of amino acid substitutions, dele-
tions and insertions needed to transform one sequence into the other, and vice-versa. Secondly, the algorithm 
constructed a tree of proximity by pairing sequences that are the closest to each other into a branch. To combine 
branches that contain more than one sequence, we used Ward’s method, after having checked that other choices 
do not significantly affect the results (more details in the Supplementary material). The tree is completed when 
all sequences are grouped into a single branch. To define the clusters, we considered a cutoff in the distance so 
that branches whose Ward distance is larger than the cutoff are considered as separate clusters. We applied the 
same cutoff to all branches. The clustering procedure is applied to sequencing data binned in time, where the 
duration of each bin depends on the available data per day during the period of interest. The procedure depends 
on two parameters, the cutoff and a threshold in the size of each cluster, which can be tuned by optimising the 
dataset coverage and number of clusters, without any prior knowledge of the variants. Henceforth, emerging 
variants are defined as persisting chains of clusters, sharing the same dominant Spike variant.

As England has the largest available sequencing sample, with 646.697 sequences as of the end of August 2021, 
we mainly focused on this dataset. This minimises statistical and sampling bias errors. After pruning, 461.122 
sequences were retained, out of which we identified 13.887 distinct ones.

Emerging variants as time‑ordered cluster chains. The time evolution and emergence of SARS-
CoV-2 variants can be studied by applying our ML algorithm to the Spike sequence data binned in time, by 
calendar month. Hence, we have divided the sequence dataset for England following the date tag in the GISAID 
repository. For each month, we run the ML algorithm on the pruned data to define clusters, retaining only the 
ones comprising at least 1% of the monthly dataset. The cutoff on the Ward distance rW between branches, as 
well as the 1% threshold above, were chosen to optimise the coverage of the dataset (i.e. we required that the 
defined clusters cover at least 90% of the data) while keeping the number of clusters below 10. The optimisa-
tion analysis, presented in the Supplementary material, showed that the optimal range for the branch cutoff is 
rW ∈ [50, 200] . After this, we compared the clusters in consecutive months to link those with a “strong similar-
ity”, i.e. those that share the same dominant sequence (strong links). More details on this procedure and its 
validation can be found in the Supplementary material. The linkage algorithm we employed allowed to define 
“chains of clusters” that we associate to emerging variants. The results are shown in Fig. 2 for two choices of the 
Ward distance: rW = 100 in the left and rW = 200 in the right plots. For the two choices, we identified 6 and 4 
cluster chains, respectively, that last more than 3 months. In the middle and bottom rows of Fig. 2 we show the 
new monthly infections (per 100k inhabitants) and the frequencies of the cluster chains, which we identify as 
emerging variants in the following. In this respect, the results for rW = 200 in Fig. 2B can be directly compared 
to the VoCs identified by the WHO: Comparing the frequencies of occurrence in Fig. 2D, we see that v2 can be 
associated to the Alpha VoC, while v3 matches the epidemiological data for the Delta VoC. We also checked that 
the dominant Spike variant for the two chains presents the mutations characteristic of the two VoCs: N501Y, 
D614Y and P681H for the Alpha VoC; L452R, T478K, D614G and P681R for the Delta VoC. These results have 
been corroborated by a cluster analysis of the global dataset, without time binning, and by a similar analysis for 
the data of Wales and Scotland, as shown in the Supplementary material.

The chain analysis, however, allowed us to better probe the time evolution and emergence of the persisting 
variants. To do so, for the clusters at the beginning of each chain, we defined a branching link with the cluster in 
the previous month. These connections are shown as grey diagonal links in the top plots of Fig. 2. From the case 
rW = 200 in Fig. 2B, we clearly see that v1, which is responsible for the second wave, branched off from v0 in 
October 2020. Similarly, v2, which corresponds to the Alpha VoC, also branched off from v0 a month later. The 
Delta VoC v3, instead, developed from v1 from February to May 2021, via two intermediate clusters, 20 and 22. 
Finally we see the emergence of a branch, 20–23–26, which died off being dominated by the Delta VoC starting 
with cluster 25. By lowering the cutoff that defines clusters, see Fig. 2A for rW = 100 , one can see how v1 splits in 
two distinct, but closely related, chains, as well as the Delta VoC v3. The Delta VoC is now seen as branching off 
from v1b. The closeness of the clusters splitting from v1 and v3 is confirmed by comparing the dominant Spike 
sequences, showing that v1b differs from v1a only by the mutation L18F, while v3b differs from v3a only by the 
mutation T95I. In particular, cluster 43 emerged in August 2021 and its dominant variant bears the Y145H and 
A222V mutations that identify the AY.4.2 lineage (‘Delta plus’ variant)42, which has been classified by  Pango7 
at the beginning of September. Out of the many new lineages that have been recently isolated, only this one is 
highlighted by our ML analysis. As such, and with the caveat that our analysis includes only data up to August 
2021, the ability of this novel variant to give raise to a stable chain in the near future deserves close attention.

These results firstly show that the phylogenetic relation between variants emerges from our simple ML algo-
rithm applied exclusively to the Spike protein sequence. Furthermore, we see a distinctive pattern relating the 
emergence of a persistent variant and the exponential increase in infections that ignites a new pandemic wave. 
A new wave only emerges when a new variant is generated, which has the virological strength to overcome the 
old ones. This is seen very clearly with v2 (or Alpha VoC) which spins off from v0 closely to v1 and takes over 
by generating a third wave. We also see the emergence of short-lived variants that do not have the power to start 
a new wave and therefore die off without infecting a sizeable number of individuals. All short-lived chains have 
less than two clusters, hence we define a minimum length of three for persisting chains.
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Performance of the ML algorithm as an early warning tool for emerging variants. The results 
for time-ordered chains with monthly clustering (Fig. 2) demonstrate that our ML algorithm is able to efficiently 
identify the emergence of new variants that have strong impact on the epidemiological evolution of the disease. 
Hence, it can be used as an early warning tool for new potentially dangerous variants that may become VoCs. 
To test the performance of this tool, we validated the procedure on the emergence of the Alpha VoC. The first 
Alpha VoC case has been found on the 20th of September, 2020. Following the monthly analysis, we identified 
a cluster dominated by the Alpha VoC in November 2020, at the beginning of chain v2. Once the first cluster is 
identified, one would need to add the data for the following months to confirm its persistence (as the process 
is additive, the cluster definitions in the previous months are not affected). We saw empirically from Fig. 2 that 
persisting chains contain at least three clusters, hence an emerging variant could be defined only 2 months later 
(January 2021 for the Alpha VoC).

To improve the performance of the ML algorithm in terms of prediction, we reanalysed the same data using 
a weekly—rather than monthly-based binning (Table 1). The cutoff on the Ward distance needs to be adjusted 
for the weekly analysis, thus leading to a choice that differs slightly from that of Fig. 2. Using a cutoff rW = 95 
(instead of 100) as well as the 1% threshold, the Alpha VoC chain was identified as branching off in week 44, at 

Figure 2.  Monthly ML analysis and chain variants. The clusters are linked to form chains, which are then 
identified with emerging variants, as shown in the top plots (A,B). In the middle (C,D) and bottom (E,F) 
plots we show the number of monthly infected per 100k inhabitants and percentage of occurrence for each 
emerging variant. The shaded regions represent the relative percentage of the variants present at each time. The 
left plots (A,C and E) correspond to a cutoff in the Ward distance of rW = 200 while the right ones (B,D and 
F) to rW = 100 . Note that the chains v2 and v3 for rW = 200 can be associated to the Alpha and Delta VoC, 
respectively.
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a moment when this variant represented 1.5% of the total weekly sequences, as illustrated by the top diagram in 
Fig. 3A. By week 46 (stable chain of at least three clusters) this analysis would have been able to identify the Alpha 
variant as VoC by the 9th of November. We next analysed the same data by lowering both cutoff and threshold to 
determine whether this could influence the performance of the ML algorithm. Using less stringent parameters 
it is possible to define separate clusters containing the Alpha VoC sequences earlier than week 44 (Fig. 3A lower 
two panels, highlighted by a red arrow). However, in these cases the analysis yields to an increase in the number 
of clusters and chains, which makes it difficult to identify unequivocally new emergent variants. To quantify the 
performance, therefore, we counted how many additional chains appear when an Alpha VoC chain can be isolated 
at each week, as shown in the fifth column of Table 1. For all weeks after 44 included, it suffices to generate one 
new cluster besides the two that contain the dominant Spike variant of v0 and v1, while for week 43 at least two 
new clusters are necessary. The inverse of the number of clusters defined above quantifies a “confidence indicator” 
(C.I.) for the early warning, and it is plotted in Fig. 3B as a function of the Alpha VoC percentage in each week 
dataset. The C.I. can be interpreted as the probability of identification of the correct emerging variant via the 
first cluster. The result shows that probabilities above 50% require the presence of the new variant in at least 1% 
of the sequences. In Fig. 3C, we show the Alpha VoC percentage as function of time in weeks. An early warning 
can be issued as soon as the new variant surpasses 1% of the data, leading to an early warning for the Alpha VoC 
in week 44, i.e. 6 weeks after the first detection. If the chain persists for 3 more weeks, an emerging variant is 
identified in week 47, hence 6 weeks before the official classification as a VoC by WHO. It is possible to reduce 
the time-scale below a week by increasing the sequencing. To obtain a result with statistical uncertainty below 
10%, for instance, a few thousand sequences in each time bin would be required. For the Alpha VoC data, this is 
achieved for weekly binning, as shown in Table 1 (the statistical error is shown as a band in Fig. 3C).

To test if these conclusions are general, we performed the same weekly analysis at the onset of the Delta 
variant, which started spreading in the UK in May 2021. For this time period, the number of weekly sequences 
available on GISAID amounts to a few thousands, hence offering a situation similar to that of the Alpha VoC 
onset. This allows for a fair comparison between the two analyses. We found that, in both cases, the VoC can be 
uniquely identified by setting the rW cutoff around 100 and a threshold of 1%, confirming that the parameters 
of the clustering algorithm do not depend on the specificities of the variant. We also computed the percentage 
of the VoC Spike variant in the time bin where we obtain a C.I. of 0.5, i.e. a 50% probability of identifying the 
emerging variant: the result is 1.0± 0.5 % for Alpha and 3.0± 0.5 % for Delta, where the error is statistical. The 
larger value for Delta is due to higher transmissibility of this VoC with respect to the Alpha (see Supplementary 
material for more details). Henceforth, we can conclude that a reliable identification of a new emerging variant 
can be obtained if such variant reaches a few % of the time-binned sequences, where larger fractions are needed 
for rapidly increasing variants.

At the moment of submission of this work, there is an increasing coverage in the media about the possible 
concerns due to the raise of a new variant in the UK (AY.4.2 Pango lineage). Our monthly analysis already iden-
tified this lineage as a dominant Spike variant in cluster 43 (Fig. 2), branching off from the main Delta chain in 
August 2021 (date at which data acquisition was stopped for the purposes of this work). To determine whether 

Table 1.  Early warning for the Alpha VoC. Results of the ML analysis applied to weekly binned data after the 
first detection of the Alpha VoC in England. The columns contain the 2020 calendar week number, with the 
initial date (Monday), the total number of sequences in the dataset for each week and the percentage of Alpha 
VoC sequences identified a posteriori in the data. The fifth column contains the minimal number of clusters in 
the ML output that allows to isolate the Alpha VoC cases. When this indicator is equal to 1, an early warning 
can be issued (week 44). After 3 weeks of the cluster persisting, we identify it with an emerging variant (week 
47). This date can be compared to the WHO classification decision (29 Dec., week 53).

Cal. week Date (Mon) Total seq. % of Alpha VoC No. of clusters

38 14 Sept. 1948 0.05 – First detection

39 21 Sept. 3394 0.06 –

40 28 Sept. 2203 0.09 5

41 5 Oct. 3891 0.1 5

42 12 Oct. 4598 0.07 5

43 19 Oct. 5921 0.4 2

44 26 Oct. 4557 1.5 1 First warning (weekly)

45 2 Nov. 7589 3 1

46 9 Nov. 7200 7 1

47 16 Nov. 4669 12 1 Emerging persistent variant (weekly)

48 23 Nov. 2343 12 1

49 30Nov. 1971 21 1 First warning (monthly)

50 7 Dec. 6382 38 1

51 14 Dec. 8059 50 1

52 21 Dec. 4864 53 1

53 28 Dec. 7766 65 1 WHO classification as VoC
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this novel variant could be considered of concern, we carried out our ML analysis with a weekly binning. Despite 
the fact that this analysis was carried out with a suboptimal rw = 100 (due to the urgency of the situation analyses 
to determine the optimal rw are ongoing), our weekly analysis clearly indicates that AY.4.2 Pango lineage has 
formed a stable chain of 3 clusters by the19th of September, 2021. This analysis thus indicates that this variant 
is truly establishing in the UK as a variant of concern.

Features of Spike mutation dynamics within stable chains. This method allows for a temporal anal-
ysis of the accumulation of viral Spike variants at different resolution, according to the chosen rw . The rw = 100 
analysis, for example, highlights how the Alpha variant (v2 stable chain comprised between clusters 14 and 37) 
arouse from cluster 7 (v0 stable chain of clusters 1–25) through an ephemeral intermediate cluster (cluster 12). 
The mapping of mutations that appeared in both dominant and subdominant variants in each cluster over time 
on the cryo-EM trimeric structure of the Spike  protein43 is of interest (Fig. 4A,B). In addition to the mutations 
fixed in the dominant Spike variant, mutations in subdominant ones (detected at equal/above 1% of the entire 
pool of sequences in each cluster, and marked by cyan dots in the 3D spike models in Fig. 4C) accumulate with 
increasing frequency along each chain. This is not surprising per se and it likely reflects high viral replication 
rates over time at the population level. While so far mutations that become fixed in the dominant variant appear 
and reach dominance within 1 month, the fixation of the H69/V70 deletion seems to have undergone a transient 
sampling state with the N439K mutation in the RBM. Viruses bearing the N439K Spike mutation have been 
characterised ex vivo and the mutation had been described to allow for antibody-mediated immunity escape 
while not affecting viral  fitness44. Given that this mutation rapidly vanished (non-productive chain 12–18), it 
is clear that such mutation exhibited a defect in viral fitness that cannot be recapitulated with ex vivo studies. 

Figure 3.  Early warning performance. (A) Cluster chains from week 38 to week 47 obtained at different 
working points. The chain containing the Alpha VoC Spike variant is highlighted by the red arrow. (B) 
Confidence indicator for the early warning performance as a function of the percentage of the new variant in 
the time-binned data. (C) Data for the Alpha VoC, indicating the early warning and definition of the emerging 
variant, using our ML on a weekly binning, compared to the time of the WHO classification as VoC.
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However, the N439K mutation may still have served an important role in the emergence of the subsequent 
dominant variant by allowing sufficient time for variants bearing the H69/V70 deletion to combine with more 
advantageous mutations (N501Y, DY144 etc).

In Fig. 5 we also show the pattern of diversification occurring along the Spike protein in terms of single amino 
acid substitutions in the chains reconstructed with the cutoff rW = 100 , i.e. v0, v1a, v1b, v2, v3a and v3b. The 
heatmaps in Fig. 5A associated to each main chain show the position and the number of amino acid changes 
with respect to the previous cluster in the chain (see Supplementary material for more details). The picture shows 
where and how often a change occurs within the chain along time and offers an overview of these dynamics. Our 
time-ordered analysis along each chain allows to distinguish the extent of Spike mutations within stable chains. 
For instance, along v0 one can see higher variability in clusters 6 and 7, corresponding to when v1a/b and v2 
branched off (see Fig. 2), and in the last two clusters before the variant disappeared from the data. Furthermore, 
we observe that v2 has a lower degree of variability compared to the other 5 chains. This could reflect the fact that 
v2 did not lead to new stable chains, while the other ones did, including those associated to the Delta VoC. This 
preliminary overview surely deserves further investigations, while it is here reported to highlight the additional 
level of details that a temporal variant analysis of the Spike protein offers.

As a final remark, our analysis also permits to observe the most conserved or variable regions per chain 
(regions were changes are minor or not occurring and regions with frequent substitutions). Interestingly, the 
comparison among the plots also shows that, although there are main hot spots of mutations that are detectable 
along the spike protein and along all the chains, each chain has a typical pattern of substitution. Considered 
altogether (see Fig. 5B), this analysis can allow us to identify regions of the Spike protein that also provide hints 
for more efficient targeting in monitoring or pharmaceutical interventions.

Epidemiological data and MeRG. The results of our ML analysis firmly suggest that there is a strong 
relation between the genesis of a new emerging variant and the onset of a new wave, with exponential increase 
in the number of infections, in the epidemiological data. In a companion  article24 we developed a framework 
that can be used to describe the evolution of each variant. The model is based on the eRG approach by including 
mutations (MeRG).

The MeRG framework models the time evolution of the cumulated number of infected by each variant in 
terms of a logistic function (sigmoid), solution of the eRG equation, and given by:

Figure 4.  Temporal analysis of mutations arising in the Spike protein during the genesis of the Alpha VoC. (A) 
Schematic representation of the SARS-CoV-2 Spike protein (S): N terminal domain (NTD); receptor binding 
domain and motif (RBD and RBM, respectively); fusion peptide (FP); heptad repeat 1 and 2 (HR1 and HR2, 
respectively); transmembrane domain (TM) and cytoplasmic tail (CT). (B) Top and side view of the trimeric 
Spike protein in its closed  conformation43 (PDB: 6ZGI). For simplicity, the colour codes of the different domains 
are provided for a single chain of the trimer. (C) Accumulation of the different mutations in the different clusters 
leading to the establishment of the Alpha VoC: domains colour codes as in (A) for a single S; yellow indicates 
mutations fixed in the dominant variant and cyan indicates mutations appearing in subdominant ones. In 
cluster 14 ( rW = 100 ), the original position of the N439K mutation that was lost to the profit of the near N501Y 
mutation is marked in black.
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where Ic is the cumulative number of infected, γ is the infection rate (in inverse days) and A is the total affected 
individuals after the wave (per 100.000 inhabitants). These two parameters control the size and duration of the 
wave. The parameter t0 controls the timing of the wave, and is of no concern in this study. We recall that the 
parameter γ encodes the effective diffusion speed of the variant, including not only its intrinsic viral power but 
also the effect of pharmaceutical measures (like vaccinations) and social distancing measures. Nevertheless, it is 
possible to compare the value of these parameters between different variants. If the diffusion occurs under similar 
social conditions, this represents a measure of the ability of the new variant to spread and infect new individuals.

Hence, we used the logistic function above to fit the epidemiological data, after distributing the new daily 
infected to each variant proportionally to the variant frequency observed in the sequencing data. This procedure 
yields a reliable estimate of the diffusion of each variant. For this purpose, we used the full dataset from GISAID 
for the whole UK, using the VoC classification embedded in the GISAID data. As shown before, this classifica-
tion is equivalent to the result of our ML approach. The result is shown in the top row of Fig. 6, where we show 
the number of sequences (left plot), the new number of infections per variant and the result of the MeRG fit 
(middle) and the frequency of the VoCs (right). Note that the total numbers are plotted in blue, while the VoCs 

(1)Ic(t) = A
e
γ (t−t0)

1+ eγ (t−t0)
,

Figure 5.  Patterns of spike protein diversification of the emerging variants. Heatmaps indicate for each cluster 
in a chain (A) the location and number of amino acid substitutions counted per all variants in a cluster when 
compared to the previous cluster and normalised accordingly (see Supplementary material). Subdominant 
variants in each cluster are retained if their frequency is above 1% in the cluster. (B) recapitulates the sum of all 
the values from all chains in A, while (C) shows the S protein structure for reference.
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in colours. We considered the epidemiological data from the most recent waves, which developed between 
September 2020 and February 2021. The green curve in the middle plot shows that, after the first peak at the 
beginning of November, a second smaller peak developed. We describe the two with two independent sigmoids. 
The second sigmoid is subtracted from the data when fitting for the Alpha VoC data. The parameters from the fit 
are reported in Table 2. As the social conditions during this period did not change substantially, it is meaningful 
to compare the γ parameters for the Alpha and Delta VoC with the other ones (in green). We observed a marked 
increase in the transmissibility, by 49% for Alpha, which is compatible with laboratory tests. Interestingly, the 
frequency percentage for the VoCs, shown in the left plot, can also be fitted very accurately with a logistic func-
tion in Eq. (1) as long as only one VoC dominates. The results are also reported in Table 2. The fit parameter γ% 
is a measure of how more infectious is the new VoC with respect to the previously dominant one. This plot also 
shows very effectively the switch between the two variants, occurring in May 2021.

We repeated the same analysis for South Africa, California and India, which show very good fits notwithstand-
ing the more limited sequencing statistics available on GISAID. This is clearly shown in the left plots, where we 
report the statistical uncertainly at 65% confidence level, due to the available sequencing. The results, shown in 
Fig. 6 and Table 2, demonstrate that the MeRG framework provides an excellent modelling of the data.

Figure 6.  MeRG model for epidemiological data of variants. Results of the MeRG fitting of the number of 
infected associated to each relevant variant. Each row corresponds to a geographical region. In the left column 
we show the total number of sequencing available on GISAID (in colour the ones associated to the relevant 
VoC or VoI); the middle column shows the number of new daily infected (per 100.000 inhabitants); the right 
column shows the percentage of each VoC or VoI in the sequencing data. All plots show daily rates, with data 
smoothened over a period of 7 days. In the middle plots, the data are shown by dots, where blue corresponds 
to the total and the colours show the number of infected associated to each variant. The solid lines show the 
result of the fits to the MeRG model (note that only for the UK we fit the “standard variant”—in green-with two 
logistic functions). In the left plots, the error derives from the expected statistical variation on the number of 
daily sequences (after smoothening). For all the plots, the classification in variants derived from the GISAID 
data.
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Discussion
We presented a ML algorithm that allows to identify, classify and track epidemiologically relevant variants of 
SARS-CoV-2. It is based on the Levenshtein distance of the Spike protein sequences and is unbiased in the sense 
that it requires no prior knowledge of any of the variants’ properties. For each time bin, the algorithm first pro-
duces an independent clustering of the Spike protein sequences. It then links clusters in subsequent bins with a 
common dominant Spike variant, thereby creating chains of clusters depicting temporal waves of variants. The 
results for England empirically showed that the a chain persisting at leat 3 consecutive clusters is a strong indica-
tion for an increased viral fitness of its dominant variant. This criterion allowed to identify emerging variants that 
pose a significant epidemiological threat. We validated the method with both monthly and weekly time binning.

We applied the algorithm to the sequencing data from England, which offers the largest dataset on the GISAID 
open-source genome repository. Among the emerging variants, the officially recognised VoCs (Alpha and Delta) 
were clearly identified and isolated. Similar results for Wales and Scotland (despite a more limited number of 
available sequences) confirmed the effectiveness of the algorithm, while comparison of our approach (that uses 
data of the Spike protein sequences only) to other informed methods based on the complete genome validated 
the algorithm. Furthermore, the temporal organisation of clusters into chains served as a tool not only to moni-
tor the genetic evolution of the Spike protein but also to help shed light on its mechanisms. On the one hand, 
from the temporal chain analysis branching relations arouse from which we can reconstruct the evolutionary 
diversification that leads to the establishing of emergent variants. On the other hand, within a single chain, the 
analysis of mutations of subdominant Spike variants permitted to distinguish regions of the sequence with a high 
frequency of mutations from those in which no amino acid substitutions take place over time.

Using the relative percentage of each variant in the sequencing dataset to estimate the number of individuals 
infected by each variant, we correlated our temporal chain analysis with epidemiological data. We discovered 
that each new wave of the COVID-19 pandemic in England (and similarly in Scotland and Wales) was driven 
and dominated by a new emerging variant. This observation corroborates the hypothesis that there exists a strong 
and direct causal relation between the emergence of a new variant and the onset of a new epidemic wave. We 
modelled the cumulative number of infected individuals by use of the MeRG framework that we proposed in a 
companion  manuscript24. We also used epidemiological data from the whole UK, California, India and South 
Africa to confirm the validity of the model.

Finally, in view of potential future waves of COVID-19, we tested the viability and performance of our ML 
algorithm as an early warning tool to detect the emergence of a new, epidemiologically dangerous, variant. We 
demonstrated that the Alpha VoC could be established as the dominant variant of an emerging persistent chain 
9 weeks after its first detection in the England data set. This precedes its classification as a VoC by the WHO by 
6 weeks. We showed, more generally, that an early warning for the emergence of a new persistent variant can be 
issued once its associated cluster reaches 1% of the time-binned sequence data. Interestingly, the Spike protein 
was a reliable and sufficient reference to meet a successful goal. Despite being preliminary in light of the need to 
better adjust the clustering cutoff, our analysis of the most recent data in the UK stresses the emergence of the 
Pango lineage AY.4.2 into a stable chain and thus of a true variant of concern. Our analysis indicates that an early 
warning could have been issued as of the 19th of September. Thus, our ML analysis tool and these early warning 
indications could be used by policy makers to implement immediate actions that globally limit the spread of this 
and of other variants that will emerge in the future.

Limitations. This study was performed on the sequencing data from a single region, England. This is justi-
fied by the fact that the sequencing dataset associated to England on the GISAID open-source genome repository 
is by far the largest and most uniform compared to other countries/regions. Biases relative to specific data-taking 
practices un England may induce biases in the analysis. To validate the results, however, we have also analysed 
the data for Wales and Scotland, as presented in the Supplementary material. We chose the other two nations of 

Table 2.  MeRG fit parameters. Parameters from the fit of the VoC/VoI for the UK, South Africa, California 
and India, also shown in Fig. 6. The fit follows the MeRG model, according to which each variant can be fitted 
by an independent logistic function. For the UK, the “standard variant” fit corresponds to the first peak, in 
October–November 2020. The transmissibility increase is computed by comparing the gamma of the VoC 
with that of the standard variant in the same country. For the new variants that have not reached the peak of 
diffusion, it is not possible to extract reliable values for the eRG parameters.

Region

Standard variant Variant of concern Transmissibility VoC percentage

A γ AVoC γVoC VoC/VoI Increase A% γ%

UK
2140 (12) 0.0668 (5) 2530 (10) 0.0994 (7) Alpha 49% 97.3 (3)% 0.076 (1)

– – Delta – 99 (1)% 0.115 (2)

South Africa
1104 (2) 0.0705 (4) 1161 (2) 0.0904 (5) Beta 28% 91.9 (8)% 0.061 (4)

– – Delta – 96 (6)% 0.090 (7)

India
717 (3) 0.0358 (4) 497.8 (8) 0.0858 (3) Alpha 140% – –

908 (5) 0.0747 (6) Delta 109% – –

California
4773 (7) 0.0620 (3) 2250 (5) 0.0758 (5) Epsilon 22% 59.9 (6)% 0.059 (4)

– – Alpha – 61.0 (6)% 0.0610 (2)
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the Great Britain island because they have a very similar epidemiological history compared to England, thus we 
would expect comparable outcomes. As such, by comparing the results we would test the reliability of the ML 
procedure alone. In fact, the results for Wales and Scotland, while less significant with respect to statistics, show 
the same patterns we obtained for England.

As an early warning tool, our ML approach is triggered when a new cluster chain branches off. This procedure 
is sensitive to the working point chosen for the clustering algorithm, and it has a certain chance to produce a false 
positive. However, the extensive use of this tool on future data and on sequences from other countries/regions 
will allow to estimate more reliably the false positive probability.

Conclusions
The results of our ML analysis have profound impact, both scientifically and epidemiologically: They provide 
new insights that are crucial for the development of new strategies to study how SARS-CoV-2 variants emerge 
and to predict the evolutionary pattern as well as the characteristics of future mutations of the Spike protein. We 
provide a tool that allows for an efficient and unbiased identification of emerging variants, for the tracking of 
the evolution and diversification of their Spike proteins and, most importantly, for an early warning system to 
identify epidemiological threats for the population.

The concrete results presented in this work can be viewed as a relevant step in the development of alterna-
tive strategies aimed at understanding the genesis of variants in epidemic or pandemic infectious diseases. The 
temporal dynamics of variants, in fact, allows to study the branching off of new relevant variants, and to track 
the evolutionary pattern of amino acid substitutions in the Spike protein highlighting persistent variants and 
structural trends, in terms of hotspots of mutations and/or of conserved regions. Further studies are necessary 
to fully exploit this information.

Our work furthermore underlines the importance of sufficient genomic data in order to both scientifically 
understand and track the temporal evolution of viral diseases, but also to issue sufficiently early warnings of epi-
demiologically dangerous variants so that decision makers can take efficient preventative measures. Our approach 
can be applied to other viral diseases, like influenza, provided that sufficient sequencing data is available.

Data availability
All raw data used in this work are obtained from open-source repositories: GISAID (https:// www. gisaid. org/) for 
the sequencing; Ourworldindata.org (https:// ourwo rldin data. org/) and the UK Coronavirus Dashboard (https:// 
coron avirus. data. gov. uk/ detai ls/ cases) for the epidemiological data. The Machine Learning code is available at 
https:// github. com/ Adele deHoff er/ ML- Covid.
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