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Abstract. Overdue treatment and prognostic evaluation lead 
to low survival rates in patients with lung adenocarcinoma 
(LUAD). To date, effective biomarkers for prognosis are still 
required. The aim of the present study was to screen differen-
tially expressed genes (DEGs) as biomarkers for prognostic 
evaluation of LUAD. DEGs in tumor and normal samples 
were identified and analyzed for Kyoto Encyclopedia of Genes 
and Genomes/Gene Ontology functional enrichments. The 
common genes that are up and downregulated were selected 
for prognostic analysis using RNAseq data in The Cancer 
Genome Atlas. Differential expression analysis was performed 
with 164 samples in GSE10072 and GSE7670 datasets. A total 
of 484 DEGs that were present in GSE10072 and GSE7670 
datasets were screened, including secreted phosphopro-
tein 1 (SPP1) that was highly expressed and DEGs ficolin 3, 
advanced glycosylation end‑product specific receptor (AGER), 
transmembrane protein 100 that were lowly expressed in 
tumor tissues. These four key genes were subsequently verified 
using an independent dataset, GSE19804. The gene expression 
model was consistent with GSE10072 and GSE7670 data-
sets. The dysregulation of highly expressed SPP1 and lowly 
expressed AGER significantly reduced the median survival 
time of patients with LUAD. These findings suggest that SPP1 
and AGER are risk factors for LUAD, and these two genes may 
be utilized in the prognostic evaluation of patients with LUAD. 
Additionally, the key genes and functional enrichments may 
provide a reference for investigating the molecular expression 
mechanisms underlying LUAD.

Introduction

Lung adenocarcinoma (LUAD) is one of the three major 
histopathological subtypes along with squamous cell carci-
noma (SqCLC) and large cell carcinoma (1). Currently, LUAD 
has become the most common lung cancer with increasing 
morbidity. This uptrend of incidence may be due to increasing 
smoking rate and air pollution (2). Furthermore, LUAD is 
diagnosed at late stages (stage III and IV), when the cancer 
has spread to nearby tissues and metastasis has occurred (3). 
As well as overdue diagnosis that leads to delayed treatment, 
the failure of prognostic evaluation also contributes to the low 
survival rate of LUAD (4,5). Therefore, there remains to be 
an urgent requirement for effective biomarkers for prognosis, 
where the outcome of patients with LUAD can be evaluated in 
time to provide adjuvant therapy.

Due to cancer largely being a genetic disease, the latest 
approaches to identify genes as biomarkers are based on 
microarray technology. Oncogenomic analysis has the ability 
to generate a wealth of data, which identifies the complex gene 
expression patterns in cancer  (6,7). These gene expression 
patterns, including point mutations, structural variants at the 
DNA level and changes at the epigenetic level, are frequently 
studied to identify the association with the occurrence, devel-
opment or the survival time of patients with cancer (8,9). A 
number of studies have identified specific genes that function 
as diagnostic or prognostic biomarkers for several types of 
cancer, including in LUAD (10‑12). Additionally, gene expres-
sion profiling by microarray technology has been used to 
investigate the molecular mechanisms underlying a number of 
other diseases as well (13).

The reliability of biomarker identification relies on not only 
the analysis methods but also the database (14). The Cancer 
Genome Atlas (TCGA) provides comprehensive data on the 
molecular basis of various types of cancer (15). Significant gene 
patterns observed in one or several independent databases may 
also act in a similar genetic subtype of cancer (16). This may also 
be the case for different types of cancer. However, researchers 
must have the ability to evaluate and determine if this common 
pattern affects clinical phenotypes, including survival by using 
survival or clustering analysis with another independent dataset.

In the present study, the common differentially expressed 
genes (DEGs) were screened, including secreted phospho-
protein 1 (SPP1) with high expression and ficolin 3 (FCN3), 
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advanced glycosylation end‑product specific receptor (AGER; 
RAGE), transmembrane protein 100 (TMEM100) demon-
strating low expression in tumor tissues. These four key genes 
(SPP1, FCN3, AGER and TMEM100) were verified using an 
additional dataset. The gene expression model was consistent 
with the two previous datasets that were analyzed. The dysreg-
ulation of highly expressed SPP1 and lowly expressed AGER 
significantly reduced the median survival time of patients with 
LUAD. These two genes were verified and indicated stable 
significance as risk factors for LUAD. This discovery enables 
these prognostic marker genes to be utilized in the evaluation of 
patients with LUAD. Additionally, the key genes and functional 
enrichments may provide reference to investigate the molecular 
expression mechanism underlying LUAD.

Materials and methods

Data source. Gene expression profiling of three individual data-
sets for microarray analysis [GSE19804 (17), GSE10072 (18) 
and GSE7670 (19)] were downloaded from Gene Expression 
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). There were 
120 samples in GSE19804, including 60 LUAD tissues and 
60  normal tissues. GSE10072 consisted of 107 samples 
(49 tumor samples and 58 normal tissues). GSE7670 contained 
54 samples in total (27 tumor tissues and 27 normal lung 
tissues). Datasets GSE10072 and GSE7670 were employed for 
the identification of DEGs on the Affymetrix Gene Chip™ 

Human Genome U133A arrayplatform (Affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA). GSE19804 was 
used to verify the significance of selected DEGs. This verifica-
tion was based on Affymetrix Gene Chip Human Genome U133 
Plus 2.0 (Affymetrix; Thermo Fisher Scientific, Inc.). Finally, 
the prognostic analysis of the selected genes was performed 
with the gene expression data and follow‑ups of patients with 
LUAD by using RNAseq (Illumina HiSeq 2500; Illumina, 
Inc., San Diego CA, USA) in TCGA (https://cancergenome.
nih.gov/).

Quality control. The quality assessment of the Affymetrix 
Gene Chip datasets was performed using the affyPLM package 
in R software (version 3.6; https://www.r‑project.org) (20). In 
the present analysis, the linear modeling procedures were 
applied at a probe‑level. The Relative Log Expression (RLE) 
and Normalized Unscaled Standard Errors (NUSE) were 
generated to test the consistency of the data trends. RLE 
and NUSE were displayed in box plots. Then AffyRNAdeg 
package in R software (version 3.6; https://www.r‑project.org) 
was used to test the degradation of RNA. Finally, datasets 
with consistent trends as well as improved RNA quality were 
selected for the following analysis.

Data preprocessing. To ensure the integrity and compa-
rability of data sets for analysis, the gcrma package 
(version  3.6) (https://www.bioconductor.org/packages/ 
release/bioc/html/gcrma.html) (21) was used to standardize 
and adjust for background intensities in the Aymetrix array 
data, eliminating system errors between gene chips. The 
correlation between gene expression levels of the samples is 
an important indicator to evaluate the reliability of experi-
ments and sample selection. Therefore, the overall correlation 

of the selected samples was analyzed. A correlation chart of 
all the samples was obtained using Pearson's correlation coef-
ficient (22).

Screening of DEGs. The DEGs of the samples between tumor 
and normal samples were identified using the limma package 
in R (http://bioconductor.org/packages/release/bioc/html/limma.
html) (23). The threshold used is as follows: (fold change, logFC) 
log2>1 and P<0.05. Then, the differential expression of these 
genes was visualized in a Venn diagram, ʻVolcano plotsʼ or 
heatmaps were generated using ggplot2 in R (24).

Functional analysis of DEGs. To further understand the 
potential pathways that these DEGs may participate in or 
regulate, functional analysis was performed in The Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID)  (25). All DEGs were firstly annotated using the 
functional annotation tool and then analyzed for enriched 
pathways in Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) terms. For every functional 
item, DAVID calculated the P‑value of the enrichment and 
false discovery rate using Benjamini correction. The threshold 
for significantly enriched pathways was P<0.05.

Verification analysis. The common up‑ and down‑regulated 
genes were selected from the top DEGs in two individual 
datasets (GSE7670 and GSE10072). To evaluate the expres-
sion of these candidate DEGs for the prognosis of patients 
with LUAD, an independent dataset GSE19804 containing 
120 samples (60 tumor tissues and 60 normal tissues) was 
analyzed using Affymetrix Human Genome U133 Plus 2.0.

Prognostic and statistical analysis. Survival analysis was 
performed by using SPSS version 24 (26,27) to investigate the 
prognostic impact of selected DEGs on patients with LUAD. 
The data are presented as the mean ± standard deviation. 
Significance analysis was performed using Kaplan‑Meier 
analysis with the log‑rank test. Log‑rank (Mantel‑Cox) test 
was used with a significance level of P<0.05. All statistical 
analysis was performed with GraphPad Prism (GraphPad 
Software, Inc., La Jolla, CA, USA). The P‑value of the enrich-
ment and false discovery rate was obtained using Benjamini 
correlation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Data source and quality control. Combining correlation 
analysis of the raw data was performed with linear regression in 
affyPLM. The RLE box plot indicated that the majority of the 
gene expression data from samples in GSE7670 and GSE10072 
were consistent (Fig. 1). More sensitive quality analysis of the 
data was displayed in the NUSE box plot. It was not able that 
threes ample chips (GSM185844, GSM185848, GSM185856, 
GSM185858 and GSM185862) in the dataset GSE7670 had devi-
ations >1.05, and therefore these were removed. Furthermore, 
two heavily deviated chips (GSM254636, GSM254639, 
GSM254670, GSM254671, GSM254677, GSM254678, 
GSM254684, GSM254700, GSM254709 and GSM254712) 
were excluded.
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Data preprocessing. Following quality assessment, all data 
were standardized with gcrma (Fig. 1). Expression density 
curves and box charts illustrated that the expression ranges 
of the 2 datasets were between 0 and 16. The expression 
value of gene data in GSE7670 and GSE10072 datasets were 

concentrated around 4following standardization, indicating a 
similar expression trend.

The standardized and the logarithmically converted data 
were conveyed into cor function in R for Pearson's correla-
tion coefficient. Hierarchial diagram of Pearson's correlation 

Figure 1. Expression density curve of the standardized samples. (A) Expression density curve of gene data in the GSE7670 dataset following standardization. 
(B) Expression density curve of gene data in GSE10072 following standardization. (C) Box plot of gene data in GSE7670 following standardization. (D) Box 
plot of gene data in GSE10072 following standardization.
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coefficient was obtained (Fig. 2). In Fig. 2, the minimum value 
of the correlation coefficient between samples inGSE7670 
was 0.84. The majority of the normal samples were clustered 
together. The tumor samples could not be clustered together 
due to marked differences in expression. The minimum value 
in GSE10072 (0.84) was a little higher compared with the 
value in GSE7670 (0.87).

Screening of DEGs. DEGs were identified using the limma 
package. In the GSE7670dataset, a total of 626 DEGs were 
selected following comparison of 23 LUAD samples and 25 
normal tissues. Following removing the duplicates 510 DEGs 
with annotation remained, including 264 upregulated and 
362 downregulated genes (Fig. 3). Following the comparison 
of 51 lung tumor samples with the 46 normal samples in the 
GSE10072 dataset, 2,361 DEGs (2,340 were annotated) were 
obtained, including 1,030 DEGs that were significantly upregu-
lated and downregulated. Following the removal of duplicates, 
1,855 DEGs with annotation remained. When the DEGs in the 
GSE7670 and GSE10072 datasets were matched, there were 
484 common genes. Of these, 196 genes were upregulated, and 
288 genes were downregulated.

Functional analysis of DEGs. In GO terms, DEGs were 
significantly enriched in 250 items, including 167 items in 

Figure 3. ʻVolcano plotsʼ for identification of differentially expressed genes 
in the GSE7670 dataset. Each point represents a gene from the individual 
geneset. Data points highlighted in blue represent upregulated genes and 
red points indicate downregulated genes. The black dots represent genes 
without significant difference in expression. The log10 ratio of expression 
(normal/tumor) is presented on the y‑axis, and logFC is depicted on the 
x‑axis. logFC, fold change.

Figure 2. Hierarchical diagram of the correlations of gene expression between standardized samples. Hierarchical diagram of standardized gene samples in 
the GSE7670 dataset. Samples were analyzed with Pearson's correlation coefficient. Groups are on the left of the diagram, where red indicates tumor samples 
and blue indicates normal samples.
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biological process (BP) and 40 in molecular function (MF). 
For functions in BP, more DEGs were enriched in nitric oxide 
transport, negative regulation of hepatocyte proliferation, 
caveola assembly and elastic fiber assembly. In MF, the top 
three functions were transforming growth factor β‑activated 
receptor activity, small molecule binding and retinoid binding. 
For functions in cellular component (CC), collagen type I 
trimer, lamellar body and clathrin‑coated endocytic vesicle 
were the top three popular enrichments. The pathway analysis 
of KEGG indicated that ECM‑receptor interaction was highly 
enriched among the eight signaling pathways.

Verification analysis. The common up and downregulated 
genes were selected from the top five DEGs in two individual 
datasets (GSE7670 and GSE10072), respectively. There 
were one upregulated DEG (SPP1) and three downregulated 
DEGs (FCN3, AGER and TMEM100), which were obtained 
as candidate biomarkers. To evaluate the expression of these 
candidate DEGs for the prognosis of patients with LUAD, an 
independent dataset GSE19804, which contains 120 samples 
(60 tumor tissues and 60 normal tissues), was analyzed on 
Affymetrix Human Genome U133 Plus 2.0.

In the independent validation analysis, the expression 
of genes FCN3, AGER and TMEM100all significantly 
decreased in tumor tissues from patients with LUAD 
compared with normal tissues. By contrast, the expression of 
SPP1was increased in tumor tissues compared with normal 

tissues (Fig.  4). These upand downregulated genes were 
indicated to participate in the development and/or prognosis 
of LUAD.

Prognostic analysis and statistical analysis. To further 
analyze the prognostic impact of the DEGs, survival analysis 
on the expression data of patients with LUAD was performed 
using the TCGA database. There were 543 samples available, 
including 249 males and 294 females (>60 years, n=369; 
≤60, n=174) as listed in Table I. In statistical analysis, the 
lowly expressed genes FCN3 and TMEM100 did not affect 
the survival of the patients in the samples tested (Fig. 5). 
However, the upregulated SPP1 (high expression) and down-
regulated AGER (low expression) significantly affected the 
survival of patients with LUAD. The median survival time 
of patients with downregulated SPP1 was 1,454 days, whilst 
that of patients with upregulated SPP1 expression was 1,258 
days [log‑rank (Mantel‑Cox) test P=0.0463; hazard ratio 
(HR), 1.366; 95% confidence interval (CI), 1.006‑1.865]. The 
median survival time for patients with downregulated AGER 
(1,229 days) was 150 days less compared with patients with 
upregulated AGER (1,379 days). A low expression of AGER 
indicated poor effects on the prognosis of patients with 
LUAD [log‑rank (Mantel‑Cox) test P=0.0238; HR, 1.426; 
95% CI, 1.050‑1.945]. This data indicated that the genes SPP1 
and AGER were risk factors that affect the survival time of 
patients with LUAD.

Figure 4. Expression of four candidate genes in the GSE19804 dataset. Data for LUAD tissue samples are indicated as ʻtumor ,̓ and ʻnormalʼ represents normal 
tissues. ***P<0.001. SPP1, secreted phosphoprotein 1; FCN3, ficolin 3; AGER, advanced glycosylation end‑product specific receptor; TMEM100, transmembrane 
protein 100.
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Discussion

Lung cancer is the most common malignant tumor globally 
with high occurrence and mortality (28‑31). It is indicated 
that lung cancer is not only a genetic disease; it is also 
affected by environmental factors. For example, it was deter-
minedthat~85% of smokers were ata higher risk of lung cancer 
compared with non‑smokers (32). Additionally, the occurrence 
and mortality of lung cancer were also indicated to be associ-
ated with air pollution (33,34).

As one of the main subtypes of lung cancer, LUAD 
presents similar characteristics in occurrence and mortality. 
Although LUAD and SqCLC are types of non‑small cell lung 
cancer, LUAD is more likely to occur in non‑smoking females, 
particularly young females (age 20‑35) (35,36). The rate of 
morbidity of LUAD is lower compared with squamous and 

undifferentiated carcinoma (37‑39). However, the outcomes 
and survival time of LUAD are poor with an overall five‑year 
survival rate of only 15% (40).

Current studies focusing on the identification of biomarkers 
are becoming more frequent. However, present research 
remains insufficient for clinical application. Key genes that are 
associated with the outcomes and prognosis of patients with 
LUAD may have a considerable effect in preventing the delay 
of treatments by predicting survival time (3,36).

In the present study, two independent databases GSE10072 
(containing 58 normal tissues and 49 tumor samples) 
andGSE7670 (containing 27 normal and tumor samples) 
were employed. With these comprehensive 164 samples, the 
DEGs were screened and the expression patterns and func-
tional enrichments of the DEGs were identified. A total of 
484 common DEGs were identified, including SPP1 with a 

Table I. Follow‑ups and candidate common differentially expressed genes of patients with lung adenocarcinoma.

	 SPP1	 FCN3	 AGER	 TMEM100
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Factor	 Total 	 Low	 High	 Low	 High	 Low	 High	 Low	 High

Sex
  Male	 249	 124	 125	 125	 124	 125	 124	 123	 126
  Female	 294	 147	 147	 145	 149	 146	 148	 148	 146
Age, years									       
  >60	 369	 184	 185	 174	 195	 180	 189	 179	 190
  ≤60	 174	   87	   87	   96	   78	   91	   83	   92	   82

SPP1, secreted phosphoprotein 1; FCN3, ficolin 3; AGER, advanced glycosylation end‑product specific receptor; TMEM100, transmembrane 
protein 100.

Figure 5. Survival analysis of differentially expressed genes. Survival analysis of (A) SPP1, (B) FCN3, (C) AGER and (D) TMEM100. Blue, genes with low 
expression; red, genes with high expression. P<0.05; log‑rank (Mantel‑Cox) test. SPP1, secreted phosphoprotein 1; FCN3, ficolin 3; AGER, advanced glycosyl-
ation end‑product specific receptor; TMEM100, transmembrane protein 100.
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high expression and FCN3, AGER and TMEM100 with a low 
expression in tumor tissues. To confirm this identification, these 
four DEGs were verified in an additional database, GSE19804. 
It was indicated that the expression patterns of these four 
genes in the verification database are in accordance with those 
in GSE10072 and GSE7670. The differences in expression 
patterns were all significant. Furthermore, the dysregulation 
of these candidate genes was associated with the survival rate 
of the patients. The upregulation of SPP1 and downregulation 
of AGER suggested that these were risk factors for LUAD.

SPP1 was reported to promote the survival of cancer cells 
and regulate tumor‑associated angiogenesis and inflamma-
tion (41). Additionally, SPP1 also served an important role in 
the development and metastasis of lung cancer (42) by acti-
vating the nuclear factor‑κB signaling pathway in LUAD (43). 
In the study by Wesselkamper et al (44), it was discovered 
that the expression of SPP1was notably increased in mice with 
acute lung injury.

AGER is a protein that is associated with diabetic angi-
opathy and thymic hyperplasia by functioning in toll‑like 
receptor 4and advanced glycation end product (AGE)‑RAGE 
signaling pathways  (45). Under normal conditions, AGER 
mediates macrophages  (46). However, under pathological 
conditions, the cross‑linking reaction between the AGE and 
extracellular matrix is promoted, resulting in increased thick-
ness and permeability of the endovascular membrane (47). 
It was also identified that the RAGE gene was suppressed in 
tumor tissues (48). The expression and mutation of RAGE 
were discovered to be highly increased in esophageal cancer 
but reduced in lung cancer (49). Additionally, a high expres-
sion of RAGE was indicated as a signal for lung inflammation 
and aggravation of other lung diseases (50). In combination 
with the results in the present study, SPP1 and AGER a close 
association with LUAD.

FCN3 is a member of the FCN/opsonin p35 lectin family. It 
was identified that activating the complement pathway in asso-
ciation with mannan‑binding lectin serine peptidases and small 
MBL‑associated proteins (51). Additionally, in ovarian cancer 
(OC), the differential expression of FCN3 has been discovered 
predominantly in serum molecules (52). In addition, FCN3 was 
also identified in a previous study inSqCLC (53). Although the 
differentially expressed TMEM100 has not been identified in 
lung cancer, the overexpression of TMEM100 inhibited the inva-
sion, migration and proliferation of lung cancer cells (54). As the 
expression of TMEM100 is notably decreased in tumor tissues 
compared with normal tissues, it could be indicated that it was 
reliable as a prognostic biomarker for patients with LUAD. In 
survival analysis, SPP1, FCN3, AGER and TMEM100 worked 
well to cluster the patient samples in an independent database. 
These up and downregulated genes were indicated to participate 
in the development and or prognosis of LUAD.

In conclusion, among the 484 common DEGs, a high 
expression of SPP1 and a low expression of FCN3, AGER 
and TMEM100 were identified in tumor tissues from patients 
with LUAD. The four key genes (SPP1, FCN3, AGER and 
TMEM100) were verified using an independent dataset 
GSE19804. The present study indicated that these two genes 
(SPP1 and AGER) were risk factors for LUAD. Additionally, 
these four genes were able to cluster the patient samples in 
survival analysis, thereby indicating that these gene candidates 

may serve as prognostic markers to evaluate the prognosis of 
patients with LUAD. However, in order to investigate the exact 
functions and the mechanisms that underly LUAD, further 
research on functional analysis is required. Furthermore, 
a validation of the associations of the identified DEGs with 
LUAD is required in future studies. The application of these 
four candidate genes in clinical treatment and survival evalua-
tion may be promising.
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