
Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2012, Article ID 946589, 13 pages
doi:10.1155/2012/946589

Research Article

A Spiking Neural Network Based Cortex-Like Mechanism
and Application to Facial Expression Recognition

Si-Yao Fu, Guo-Sheng Yang, and Xin-Kai Kuai

School of Information and Engineering, The Central University of Nationalities, Beijing 100081, China

Correspondence should be addressed to Si-Yao Fu, siyao.fu@ia.ac.cn

Received 27 April 2012; Accepted 3 July 2012

Academic Editor: Long Cheng

Copyright © 2012 Si-Yao Fu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward,
hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural
network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of
the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs).
By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical
framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition
tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern
recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the
neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms
underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other
people’s facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of
visual cortex-like mechanism.

1. Introduction

Understanding how rapid exposure to visual stimuli (face,
objects) affects categorical decision by cortical neuron net-
works is essential for understanding the relationship between
implicit neural information encoding and explicit behav-
ior analysis. Quantitative psychophysical and physiological
experimental evidences support the theory that the visual
information processing in cortex can be modeled as a hier-
archy of increasingly sophisticated, sparsely coded represent-
ations, along the visual pathway [1], and that the encoding
using pulses, as a basic means of information transfer, is opti-
mal in terms of information transmission. Such a spiking
hierarchy should have the unique ability of decorrelating the
incoming visual signals, removing the redundant inform-
ation, while preserving invariability, in an effort to maximize
the information gain [2]. Therefore, characterizing and mod-
eling the functions along the hierarchy, from early or inter-
mediate stages such as lateral geniculate nucleus (LGN), or
prime visual cortex (V1), are necessary steps for systematic

studies for higher level, more comprehensive tasks such as
object recognition. However, the detailed functional analysis
still remain impractical, due to little quantitative work has
been done to explore modeling the entire visual cortical
system to selectively amplify important features to facilitate
discrimination, neither viewed from computational intelli-
gence point of view nor judged from neuroinformatics angle,
making the idea of comprehensive analysis for cognition an
attractive yet elusive goal.

Traditional approaches have tackled the issue by creating
a computational network resembling the basic visual sys-
tem in which information is processed through hierarchy
model. Pioneering attempts include the Neocognitron by
Fukushima [3], which processes information with rate-based
neural units to deal with transformation invariant features,
followed by the emergence of a bunch of functionally
similar models, such as hierarchical machine proposed by
LeCun and Bengio [4, 5], bottom-up model mechanism by
Ullman et al. [6, 7], or model by Wersing and Körner [8].
This trend was later followed by a noticeable hierarchical
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cognitive model by Poggio in [9], using hierarchical layers
similar to neocognition, and processing units based on soft-
max (MAX-like) operation. The combination makes the
model applicable for the initial simulation of cortex-like
mechanism. This biologically motivated hierarchical method
was further carefully analyzed by Serre et al. on several real-
world datasets in [10, 11], yielding comparable performance
with benchmark algorithms. All together, a conclusion can be
drawn that traditional views describe information coding in
terms of components, such as frequency, intensity and orien-
tation, which are estimated from the visual information. This
perspective focuses more on the properties and response of
the cortical neurosystems rather than its functional purpose.
Therefore, although publications focused on this direction
are large and lively and readers are referred to the following
section to get a detailed survey for this trend, nevertheless,
surprisingly little works attempted to explore the cognition
mechanism using biologically inspired computing units.

In contrast, recent evidences from neurobiology have led
researchers to build cortex-like scheme based model with
single spiking neurons act as computation units (most cort-
ical physiologists believe that most neurons in cortex spike),
the so-called spiking neural networks (SNNs). Starting
with the first successful spiking neuron model, Hodgkin-
Huxley’s model [12], several prototypes have subsequently
been proposed, such as integrate-and-fire model (IF model)
[13], one of the simplest yet most effective model describing
the dynamic of the neurons, and its extension, spike response
models (SRMs) [13], liquid state machine (LSM) [13], and
Izhikevich model [14]. As a neurobiological plausible frame-
work, SNNs have been confirmed showing great computa-
tional power, both theoretically and experimentally by sev-
eral noteworthy works. Thorpe et al. proposed a three-lay-
ered, feedforward network (SpikeNet) using a fast IF neurons
[15, 16]. Based on event-driven computation, SpikeNet have
reported successfully tracking and recognizing faces in real
time without increasing computation burden. Wysoski et al.
[17, 18] introduced a spiking neural network framework
with IF model and Hebbian learning rule, which is a
hierarchical structure composed of four feedforward layer of
neurons grouped in two neuronal maps. The whole system
has been successfully testified with VidTimit dataset to recog-
nize individuals using facial information. These solutions try
to address the recognition problem by representing complex
object into simple features concerned with orientation or
spatial frequency, in order to ensure invariance with respect
to scale and transformation. However, due to the correlated
activity and sparse coding principle of the cortical neuron
groups (often omitted in many models), the dynamics of the
network can not be fully reflected by individual and isolated
neurons. Understanding and incorporating the functional
role of high-order correlations among neuron groups are
necessary yet challenging task on which few works have been
focused.

Motivated by the potential of SNN and hierarchy model,
we address this issue in the context of the neural encoding
and neural computing, here we propose a multilayer feed-
forward, hierarchical network consisting of integrate-and-
fire neuron model that can successfully detect, analyze and

recognize object of interest. Decoding orientation, locating
position, reducing correlation and inferring category of
object are conducted by subsequent, increasingly complex
network level. As a proof of principle, we have implemented
a prototype model and focused on testifying its performance
on one unique category of objects—human facial expres-
sions—a visually manifestation of human emotions—as a
paradigm for understanding hierarchical processing in the
ventral pathway. Neurobiological substrate of human emo-
tion such as fear, anger, or disgust has long been an attractive
goal because emotions are less encapsulated than other psy-
chological states. Facial expression, in which human emo-
tions are uniquely embodied and manifest, is one of the most
direct ways that people coordinate, communicate emotions
and other mental, social, and physiological cues. As the
result, they are often considered as the shortcut to reveal the
psychological consequences and mechanisms underlying the
emotional modulation of cognition [19]. Therefore, the pro-
gress of research on facial expressions directly mirrors the
wider advance in emotion analysis.

Generally speaking, applying such hierarchical structure
to facial expression recognition is not a novel idea. Dailey
et al. have already proposed a simple yet delicate prototype
called EMPATH in [20] a decade ago, EMPATH is actually a
biologically plausible neural network model for categorizing
facial expressions. As a standard feedforward network which
consists of three layers, EMPATH performs like Gabor filter
in the first level, then extracted visual information repre-
sentation is delivered to the second layer where dimension
reduction is performed, and PCA is applied for image com-
pression network, finally, the outputs of the decision making
layer (gestalt layer) are categorized into the six basic emo-
tions. The authors demonstrated the model’s potential by
using a simple facial expression dataset, the model has been
applied for further analysis later in [21] with different facial
expression datasets such as JAFFE, yielding satisfactory
results. However, it should be noted that traditional linear
analysis model (such as PCA) proposed for artificial,
Gaussian like stimuli which can be fully described by second
order correlations will suffer from the biased results as
natural image (or faces captured outside under variant illum-
ination or embedded in complex background, such as in the
video security surveillance task) statistics tend to be highly
nonGaussian, which may limit its further applications. Thus,
techniques for capturing these higher order statistics to
form efficient representations of visual information could be
viewed as a natural solution.

Though we share a similar motivation as previous
authors [16, 17], our approach is very different. Our paper
makes two main contributions. First, we develop a novel
framework that biologically mimic the operation scheme
in visual pathway, which emphasizes the sparsity and effi-
ciency of the visual cortex, specifically, the high order
correlation is dealt by TICA. Second, we show how to apply
the system to the practical pattern recognition tasks such as
facial expression recognition. Several facial expression data-
sets are testified using the proposed approach, including
frontal view, nonfrontal view, and illumination variant view.
Though being fully aware that this attempt is a simplistic
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approximation of how the brain’s real neural circuits truly
operate, we still obtain satisfactory results.

The initial of the framework and some empirical exper-
imental results have been appeared in the conference papers
[22], here, we make the following modifications.

(1) Carefully reexamine the whole framework and make
a comprehensive, expliciting description.

(2) Presenting several other experimental results.

(3) Listing detailed discussions for the drawbacks and
advantages of the model, and giving out the future
possible improvement directions.

This rest of this paper is organized as follows. Section 2
reviews the fundamental of visual system and current state
of art of such hieratical cortex-like mechanism models.
Section 3 reviews the basics of spiking neuron models, fol-
lowed by the proposal of our framework, the dynamics,
structure, and the learning mechanism which are dis-
cussed in details. Several experimental results are shown in
Section 5. We also provide some discussions and summaries,
Section 6 concludes the final part.

2. Visual System and Cortex Like Model:
Current State of Art

This section manly consists two large parts, we first begin our
story by briefly reviewing the fundamentals of visual system,
then we investigate the current correspondingly proposed
methods and approaches. The pros and cons are discussed in
detail. We particularly discussed the computing units, which
would be used in the latter part.

2.1. Vision System: Basics. From retina to visual cortex, the
neural circuits in our brain that underlie our cognitive
behavior have evolved to be perfectly suited for processing
visual information with remarkable efficiency, capable of
prodigious computation, and marvels of communication
[1]. Many existing approaches in computational neurosci-
ence are based on the physiological observation that cogni-
tive task are performed from simple to complex, through
a hierarchical structure. The commonly accepted standard
model of prime visual cortex briefly reviewed as follows.

(1) Visual processing is a roughly feedforward, from
low to high levels of the hierarchy. Early vision sys-
tem creates representations at successive stages along
the visual pathway, from retina to lateral geniculate
nucleus (LGN) to V1, with a considerate data com-
pression rate without noticeable information loss
[23].

(2) Neurons in V1 can be divided roughly into two clas-
ses, simple and complex, based on the spatial sep-
aration or overlap of their responses to light and
dark stimuli, as well as bars and sinusoidal gratings.
Simple cells have receptive fields (RFs) containing
oriented subregions each responding exclusively to
either light onset/dark offset (ON subregions) or dark
onset/light offset (OFF subregions). Complex cells

respond primarily to oriented edges and gratings,
behaving like simple cells, however, they have a
degree of spatial invariance [17].

(3) Visual cortex is mainly consist of two routes [11,
12, 23, 24]: ventral stream and dorsal stream, the
former is involved in the identification of objects and
mostly found in the posterior/inferior part of the
brain, while the latter is linked to the localization of
objects and mostly found in the posterior/superior
part of the brain.

(4) From a neurocomputing perspective, neurons com-
municate with one another by sending encoded
electrical impulses referred to as action potentials or
spikes. Barlow [2] recognized the importance of info-
rmation theory in this context and hypothesized that
the efficient coding of visual information could serve
as a fundamental constraint on neural processing.
This hypothesis holds that a group of neurons should
encode information as compactly as possible, so as to
utilize the available computing resources most effe-
ctively.

(5) The efficient coding hypothesis decouples naturally
into two separate yet related statements. One regard-
ing the statistics of individual neural responses and
second regarding sparsity of the neural response. The
responses of different neurons to the natural environ-
ment should be statistically independent from each
other, thus, the information carried by each neuron
should not be redundant with that carried by the
others. This is also consistent with a notion that the
visual system strives to decompose a scene into sta-
tistically independent constituents. Successful theo-
retical models include the independent component
analysis (ICA) [25] and sparse coding [9, 26, 27].

2.2. Vision Hierarchy Model: State of the Arts. What has those
aforementioned theoretical components brought to the field
of the emulation of brain-like process for the purpose of
pattern recognition and categorical decision making? The
consequences is the emerging of many models in which
information is processed through several areas resembling
the visual system. Pioneering biologically inspired attempts
include the famous neocognitron, proposed by Fukushima
and Miyake [3], which processes information with rate-based
neural units, and LeCun et al. [4, 5], Ullman et al. [6, 7],
Wesing and Koerner [8], all these models have been proven
later to be qualitatively constrained by the anatomy and
physiology of the visual cortex and may not actually suitable
for practical computer vision systems. Thus, a more com-
prehensive, generic, high-level computational framework is
required such that fast and accurate object recognition can be
accomplished by summarizing and integrating huge amount
of data from different levels of understanding, while keeping
the trade-off between sparsity and discriminativeness, as well
as gaining enough invariance for robust performance.

Recently, a cognitive model initialized by Riesenhuber
et al. [9, 10], using hierarchical layers similar to neocogni-
tion, and processing units based on MAX-like operation,
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received sizeable concentration. The core of the model is the
hypothesis that the main function of the ventral stream can
be viewed as a mechanism which has evolved to achieve the
trade-off between selectivity and invariance in IT area for
fast and accurate object of interest recognition tasks, which
is done through a underlying hierarchical structure (from
retina to IT) with increasing invariance to object’s appear-
ances (rotation, scale, location, etc.)1. The model produces
relative position and scale invariant features for object recog-
nition.

The biologically motivated hierarchical method was fur-
ther carefully analyzed by Serre et al. on several real-world
datasets [10], by extracting shape and texture properties. The
analysis encompassed invariance on single-object recogni-
tion and recognition of multiple objects in complex visual
scenes (e.g. leaves, cars, faces, airplanes, motorcycles). The
method presented comparable performance with benchmark
algorithms. There have been a many great publications
focused on this direction. For detailed survey paper we refer
readers to Poggio and Serre’s recent work on models of visual
cortex [28].

2.3. Discussion. Hierarchical representations began to domi-
nate cognitive psychology and the following neuroscience in
the 1960s. However, from the computational point of view,
hierarchical model can be viewed as conceptual tools rather
than computational means. Though sharing the inherent
merit of being logically structured, being lack of computa-
tional units for the communication supports sometimes
weaking the system’s performance. How to combine the logic
structure of the hierarchy with the computation unit in vivo
should be considered with a great attention. This is what
our paper aim for, thus, by incorporating artificial spiking
neuron model (as computing unit) into the hieratical model,
we come up with a novel cognitive framework which can be
applied to some practice pattern recognition problems. The
basic principle for spiking neural networks are presented in
the following section.

3. Spiking Neuron Model

We first begin this section by briefly introducing the principle
of SNN, which utilizes information representation as trains
of spikes, embedded with spatiotemporal characteristics.
Simplified integrate-and-fire neurons are deployed in the
model, which discards the postsynaptic potential (PSP,
stands for the activation level of the neuron) leakage, com-
pared with the standard version. The main advantages of
this neuron model is computationally inexpensive, and it
boosts the importance of the first presynaptic spikes. the
excitation depends on the order of arrival of spikes and the
inactivation of neuron after the output spike (the PSP is
permanently set to the resting potential level). The result is
the implementation of a simplified general decoding scheme
for input latencies [16, 17].

Every single neuron acts as a coincidence detection unit
and the PSP for neuron i at a time t is calculated as

P(i, t) =
∑

modorder ( j)wj,i, (1)

where mod( j) ∈ (0, 1) is the modulation factor, each time
the neuron receives a spike, the efficiency of spike integration
is divided by this factor, with the result that the earliest
spikes have the strongest impact on the activation level (PSP).
Thorpe demonstrated that the spatial-temporal structure of
this first wave of spikes could carry nearly all the information
in the input needed for further recognition, both rapidly and
accurately [15, 29]. Order ( j) is the firing rank of neuron,
wj,i represents the corresponding synaptic weight. According
to [17], an output spike is generated if (and only if)

P(i, t) ≥ Pth(i), (2)

where Pth(i) is the postsynaptic threshold.

4. Network Topology

Following the standard model of visual cortex [23], from
the sensory/input layer to the final classification layer, the
overall system consists of three main blocks: (1) the sensory/
receptive layer, which consists of simple cell behavior simu-
lator and complex cell behavior simulator, notice that sen-
sory input and data preprocessing, including feature extrac-
tion part all happens here; all these sublayers consists of both
excitatory and inhibitory neurons; (2) the learning layer,
which consists of only excitatory neurons; (3) the classifica-
tion later, which accumulates all the outputs from the
learning layer, the whole system is illustrated in Figure 1. The
whole system is illustrated in Figure 2. Note that the demo
system has been reported for several conference papers such
as [22], so we only briefly review the structure as follows in
order to maintain the completeness for the section.

4.1. Preprocessing. The preprocessing process of the input
images is divided into three steps: (1) face detection, eyes,
and mouth location, (2) masking, and (3) illumination nor-
malization. The first two steps are to provide normalized face
region for further processing, and to remove irrelevant info-
rmation such as the background and the hair, as well as some
unnecessary accessories of a subject. Illumination normali-
zation is essential, though human visual system can handle
affective sensation in the extremely complex environment
such as illumination variations almost effortlessly, illumi-
nation invariant processing, in general, is generally much
more difficult than the first two steps. We assume the illumi-
nation effect2 is processed along the two pathways separately,
one way is to follow the main ventral route [30], where
illumination effects will be discounted on the retina, usually
viewed as preprocessing part, so as to facilitate the further
processing, the other way is the bypass route where illumi-
nation and shadow information are passed from the retina
directly to the IT area, where it helps to percept the 3D
information of the scene3. In our framework, only the main
route preprocessing is considered. The illumination problem
will be discussed and solved in the experiment section.

4.2. From Retina to V1. The neurons in first layer represent
the On and Off cells of retina, act as edge detector, aimed
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Figure 1: Framework of the entire facial expression recognition system. From the raw input to the final output, with each layer’s illustration
included, which have shown that the combination of selectiveness, determinativeness and invariance is built up gradually across several
stages of facial information processing. The preprocessing part includes the detection of facial regions(eye, mouth, etc.), illumination
normalization, retina level is also responsible for edge detector for enhancing the high contrast of the image. The second level functions
like Gabor filter, which send the output to the perceptual level for extracting features which are robust for selectivity and invariance, then
after being grouped and classified, the category level gives the output results (best view in color) [22].

at enhancing the high-contrast parts of a given image (high-
pass filter), and usually can be implemented using two-
dimensional difference of Gaussians (DoG), where frequency
scales are chosen varying the standard deviation σ of the
Gaussian curve:

∇2G
(
x, y

) = g

(
x2 + y2 − σ2

σ4

)
e−(x2+y2/2σ2). (3)

The neurons in second layer simulate the receptive fields
(RFs) of V1 simple cells and complex cells, which can be
interpreted as Gabor wavelet functions. In particular, the
layer is composed of eight orientation maps for each frequen-
cy scale, each one being selective to different directions (0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 27◦, 315◦) [17]:

ψμ,ν(z) =
∥∥k
(
μ, ν

)∥∥2

σ2
e−‖kμ,ν‖2‖z‖2/2σ2

[
eikμ,νz − e−σ2/2

]
, (4)

where μ, ν define the orientation and scale of the Gabor
kernels, z = (x, y), and we have kμ,ν = kve jψu, where kv =
kmax/ f ′′ and ψu = πu/8. f is the spacing factor between ker-
nels in the frequency domain.

4.3. From V1 to IT. Learning dynamics happens at higher
levels, the high dimensionality of the Gabor features makes
dimension reduction techniques (such as PCA) needed to
acquire a more sparse feature subset. Recent theoretical stud-
ies have shown that receptive fields that resemble cells in V1
can be learned (through biological optimization techniques)
based on several sophisticated learning principles, for exam-
ple, efficiency and sparseness [22, 24, 26] (minimizing the
number of units active for any input), statistical indepen-
dence [31]. ICA could be viewed as a reasonable option for
capturing these statistics to form efficient representations of

natural images, and research have shown that ICA could help
to explain contextual phenomena in cortical neurons, such as
response suppression, contrast gain control, and tuning pro-
perty changes. In our framework, topographic ICA4 is appl-
ied to mimicking such learning mechanism, for the merits
of representing complex neuron behavior and explain the
topography of the complex cells [25, 32].

The scheme of TICA model is illustrated in the frame-
work of the overall system (see Figure 2), which can be
viewed as an generative model with two levels. The classic
ICA model is employed in the first level as the feature
extractor for simple cells in V1, and in the second level
(complex cells), a 2D topographic structure is defined to des-
cribe the correlations among the components in a small
neighborhood. This can be accomplished by a neighborhood
function h(i, j), which expresses the proximity between the
ith and jth components. A simple illustrative example can
be defined as

h
(
i, j
) =

{
1,

(∣∣d(i)− d( j)∣∣ ≤ m
)

0, others.
(5)

The constant m defines here the width of the neighbor-
hood, The neighborhood of the component with index i con-
sists of those components whose indices are in the range
i − m, . . . , i + m. If the distance between neuron i and j is
less than a predefined constant m, then these two neurons
are defined as neighbors and thus are nonlinear correlated.
The neighborhood function h(i, j) is thus a matrix of hyper-
parameters. In this paper, we consider it to be known and
fixed. Set Gj(I) as the value of a small neighbor j, we have

Gj(I) =
n∑

i=1

h
(
i, j
)(
wT
i I
)2

, (6)
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where I is the image and wi is the inverse of mixture coef-
ficients matrix.

Using the ML(maximize likelihood) method, we can
obtain the likelihood function as

L(W) = E

⎡
⎣

J∑

j=1

⎛
⎝

n∑

i=1

h
(
i, j
)(
wt
i I
)2

⎞
⎠
⎤
⎦ + Tlg|W|. (7)

Notice that
∑n

i=1 h(i, j)(wt
i I)

2 could be considered as the
energy of a neighborhood, possibly related to the output of a
higher-order neuron as in visual complex cell models.

A simple gradient algorithm can be derived for perform-
ing the maximization of the approximation of likelihood
function. The weight vector wi is updated as

Δwi ∝ Ez
(
wT
i z
)
ri, (8)

where z = Vx = VAS is the data prewhitening process. V =
E(xxT)−1/2 is the whitening matrix. And we have

ri =
n∑

k=1

h(i, k)p

⎛
⎝

n∑

j=1

(
wT
j z
)2

⎞
⎠. (9)

The function p is the derivative of P, here, we define a
exponential distribution P(y) = α

√
Y+β, where α is the scal-

ing constant while β defines the normalization. The ortho-
gonalization and normalization of the weight matrix W can
be accomplished by letting

W ←−
(
WWT

)−1/2
W. (10)

Finally, after the learning is over, the original mixing
matrixA can be computed by inverting the whitening process
as

A = (WV)−1 = V−1W−1. (11)

For details, please refer to [25].

4.4. Learning and Neural Computation Output. Supervised
learning follows in procedure, the model tries to update the
weight connection with output neuron map by modifying
the mean value of the synaptic weight between the neuron
excited i and the preselected neuron j, thus, Δwj,i =
modorder(aj )/N . Note that the neurons in the output maps
share the same synaptic weights. The result is the neurons
in the output map will respond to the average pattern of the
training samples, taking the metric of being robust to the
spatial position of the detected face or facial expression and
computationally convenient, while being insensitive to the
case in which the patterns are known to have high variance,
such as recognizing facial expression of the subject with
variant scale and illumination in the complex scene.

Last layer creates the number of neuronal maps corre-
sponding to the number of pattern class presented to the
network. Neurons are trained to respond selectively to the
presence of a given input (face, facial expression, etc.) at the
center of their receptive field. Following the lateral inhibition

Topographic description

ICA
decompostion

Figure 2: Two level scheme of TICA. The first level is the
classic ICA extraction procedure, From the bottom to the top, the
extracted components are gradually pooled into small neighbor,
with increasing interaction among each other [22].

theory, whenever a neuron for a predefined category spiked,
all the neurons of the other neuronal maps (standing for
other categories) in a zone centered on the neuron’s loca-
tion will receive inhibitory pulses (fitting Gaussian curve the-
oretically), forming a discriminative classifier.

5. Empirical Evaluation

In this section, we evaluate our framework on several data-
sets, for the aim of fair evaluation and overall performance,
we try to evaluate the approach from different aspects, such
as frontal facial expression recognition, and facial expression
recognition under the constraints of illumination variation.
In an effort to make a comparison, we also provide several
other bench systems and test evaluation methods.

5.1. JAFFE Database Experimental Results. The first exper-
iment is the test on the Japanese female facial expression
(JAFFE) dataset [33]. The JAFFE dataset contains 213 images
of seven facial expressions which include six basic facial
expressions and one neutral expression posed by ten Japanese
models. JAFFE is used as the benchmark database for several
methods. Also, for its pure Japanese characteristic, some-
times it is also used for the comparison research for cross-
culture exploration such as Dailey et al’s work in [20, 21].
JAFFE also stands out for the psychological view that woman
tend to percept and display more explicit emotional facial
expressions than man. Therefore, it is reasonable to begin the
experiment evaluation from this database.
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Table 1 summarizes the performance of the proposed
method and other published result of benchmark systems5,
and note that our results are superior to other methods
[34, 35], yielding satisfactory results.

5.2. CUN Frontal Facial Information Database Experimental
Results. The second experiment presented here is the evalu-
ation of the approach on a newly created face database that
the Minzu university of China has designed and constructed,
namely, a large-scale racially diverse face database, the CUN
face database6, which covers different source of variations,
especially in race, facial expression, illumination, back-
grounds, pose, accessory, and so forth Currently, it contains
112,000 images of 1120 individuals (560 males and 560
females) from 56 Chinese “nationalities” or ethnic groups.
The aims of the dataset are listed as follows [36].

(1) To provide the worldwide scholars of face recognition
with exhaustive ground-truth information in a cross-
race face database. While most of the current data-
base mainly consists of Caucasian people, we mainly
focus on the“cross-race effect” during the experi-
ment.

(2) To understand culture specific difference in facial ex-
pression production and interpretation, which have
been long viewed as a crucial interlink between indi-
vidual and social communication.

(3) To provide facial data for a brain-computer interface
(BCI) system project, in which the goal is to col-
lect EEG and facial expression, either voluntary or
controlled, of the subjects excited by the selected
audio-visual stimulus, recorded with a scalp EEG
device, and to analyze and determining nonlinear-
correlation between aroused emotion and its man-
ifestation on facial expression. Figure 3 shows the
configuration of the photographic room, including
lamps, camera system, and so forth, and some typical
images of subjects.

The first experiment we carried out was on a subset
of seven frontal datasets (six typical facial expressions plus
one neutral expression), on which some of the most com-
monly used baseline facial recognition algorithms and our
proposed method were evaluated. 300 subjects, each of which
contains more than 14 frontal facial expression images,
were employed. Note that some subjects share similar facial
expression appearances, but most of them have racially
diverse and variant expression intensity (Figure 4). We used
70% (10/14) of images of each class for training and a vary-
ing fraction of the remaining images for testing. The some
part of experimental results and introduction about the face
databases have been appeared on the conference paper [22,
36] and our approach has achieved promising results com-
parable to the top performances of the state-of-the-art meth-
ods such as [31, 37, 38].

During the experiment, we found that for all the six facial
expressions, the happy expression and the surprise expres-
sion are the easier expressions to be recognized whereas the

Table 1: Classification results for the JAFFE dataset with our
method and comparison with other methods.

Feature Extraction Methods Recognition Rate (%)

PCA + SVM 93.43

ICA + SVM 93.35

LDA + SVM 91.27

2D-LDA + SVM 94.13

Ours 97.35

fear expression is the most difficult expression to be recog-
nized, which is consistent with the psychological results such
as [39]. Another notable fact about the specific category is
that the recognition rate for fear, disgust, and surprise infor-
mation is relatively lower than some other western facial
expression datasets such as Cohn-Kanade AU-Coded Facial
Expression Database [40], on which we have some empirical
experimental results. Once again, the situation could be
accounted by the culture specific explanation that it is rela-
tively easy to analyze for explicit or western stylized negative
facial expressions. Also, some behavior and event-related
potential experimental results [41, 42] support this conclu-
sion for emotional face recognition confusion, that is, eastern
asian people tend to have difficulty differentiae fear and
disgust emotional expression, while western people do not
have that problem. All together, the results indicate the useful
potential of the proposed method for dealing with such kind
of problem. However, our method still showed satisfactory
results on average7.

5.3. Illumination Variation Facial Expression Recognition
Experiment. The second experiment we consider here for the
CUN dataset was the evaluation of the proposed approach on
the facial expression recognition under illumination varia-
tion. While the most current researches are restricted on
the frontal view with normal illumination condition, facial
expression recognition with variant illumination conditions
is a challenging research topic which has recently started
to attract the attention of the research community. How-
ever, few work on this issue have been done in the past
several years because of its technical challenges and the
lack of appropriate databases. We choose CUN illumination
variation subset, 30 subjects with five pose angles (we also
consider the shadow effects caused by pose variation), 3
illuminations and 6 facial expressions are selected randomly
for the generic training and the rest are used for testing. We
consider the following experiment procedures: (1) same illu-
mination, same pose, which represents the traditional fixed
scenario, and (2) different illumination, same pose, in which
the subject’s facial expression should be recognized with the
same pose (say, frontal, thus means 0◦) while the illumina-
tion varies from side to central). Experimental results are
listed in the Table 2 (%, the decimal point is omitted).

From the table we can see that this task is indeed very
challenging for both databases, if the pose and illumination
conditions are both extreme, then almost none of the face
would be visible, let alone the facial expressions. If the
subject’s pose is 0◦, and illumination angle varies from
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Example images of one subject with
variation of emotional situations

Example images of one subject illuminated by
lighting sources from different directions

Photographic room and configurations

C1

C2

C3
C4 C5 C6

C7

C8

C9 Light

Subject

PC PC PC

Example images of one subject captured by nine cameras

Example images of one subject with
different accessories

Example images of one subject with
different backgrounds

Figure 3: Diagram showing the whole configuration of the CUN face database. To capture face images with varying poses, expressions,
accessories, and lighting conditions, a special photographic room with the dimension of 8.0 m length, 8.0 m width and 3.5 m height is set
in our laboratory, and the necessary apparatuses are configured in the room including a multicamera system, a lighting system and control
device, accessories, and various backgrounds. Note that in an effort to simulate the ambient illumination, two photographic sunlamps of
high power covered with a ground glass are used to irradiate to the rough white ceiling, which can obtain more uniform lighting and mimic
the normal outdoor-lighting environment (overhead lighting sources). To generate various directional lighting conditions needed, we set
up a lighting system of 15 fluorescent lamps in the photographic room using multiple lamps and lamps hades, in a semicircle configuration
[22].

Table 2: Recognition accuracy of illumination variant facial expression dataset results (with and without normalization).

Name CUN facial Expression subset

Un-normalized Normalized

Illumination Angle Illumination Angle Ave

Degree 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Pose H/Sa/Su/D/F/A H/Sa/Su/D/F/A H/Sa/Su/D/F/A H/Sa/Su/D/F/A H/Sa/Su/D/F/A H/Sa/Su/D/F/A (%)

0◦ 85/76/79/67/65/82 57/53/55/55/48/63 66/57/58/62/51/59 85/76/79/67/65/82 66/52/65/59/47/66 67/55/61/56/47/62 63/64

30◦ 67/65/61/53/42/57 53/51/50/51/43/55 51/55/58/55/50/48 66/59/60/72/48/62 60/65/59/52/45/56 46/45/40/45/32/42 53/53

45◦ 63/56/52/55/35/51 45/55/47/45/43/50 44/42/42/45/43/40 66/43/50/51/52/55 58/53/57/51/42/55 48/44/39/40/38/43 47/49

60◦ 48/46/44/47/38/45 42/45/45/45/32/41 36/36/33/35/35/39 57/52/45/49/59/61 50/45/44/49/40/51 41/40/36/35/22/32 40/45

90◦ 33/33/33/33/17/33 33/37/31/35/25/33 37/30/31/25/18/32 38/39/37/33/40/42 36/33/40/33/38/33 35/37/35/35/31/33 31/36

Average
(%)

59/55/54/51/40/54 46/48/46/46/38/48 47/44/45/44/39/44 62/54/54/54/53/60 54/50/53/49/42/52 47/44/42/42/34/42 47/49

Notes H-Happiness Sa-Sadness Su-Surprise D-Disgust F-Fear A-Anger



Computational Intelligence and Neuroscience 9

Figure 4: Racially diverse facial expressions implying complicated
neurodynamics and implicit cultural influence (raw photos) [22].

0◦ to 90◦, then the problem turns into the simple frontal
facial expression recognition under different illumination
angle, and we obtain acceptable results8, even in the extreme
illumination angle 90◦, that is because face image is generally
symmetrical, thus it is relatively easy to recognize, even
for facial expressions (Usually this viewpoint holds, when
a subject’s emotional expression is not symmetrical across
his face, it is possible that he/she is trying to pretending to
hide the inner emotional status, or express it unnaturally.).
But when subject’s pose is more than 30◦, the symmetry is
destroyed, and being lack of structure information makes
the algorithm hard to extract reliable information, at the
same time, casted shadow effects and attached shadow
will make the recognition worse, even when the degraded
image is partially restored by normalization preprocessing
algorithms9. During the experiment, our method performs
satisfactory only when test image is relatively integrated,
which means the shadow effect influences image not too
much10 and it also indicate that the so-called “immediate
vision” (meaning fast categorization without eye movements
or attention) has its limitations for dealing with illumination
variant problem, which could be sent to the higher cognitive,
attention demanding area for processing. However, it should
also note that compared with the unnormalized image, the
recognition result of the approach did not degrade much,
indicating the robustness for the performance of the system
(invariance to the illumination variation).

6. Discussions, Summaries, and
Future Directions

6.1. Summaries. In this paper, we focus on a potential form
of cortex like framework of fast categorical decision making
for facial expression recognition. Our hypothesis is that rapid
decision making is feed forward in V1, and neural encod-
ing’s inborn physiological behavior will reduce the redun-
dant information, increase selectivity, while maintain invari-
ance, thus, in a way that is consistent with perceptual per-
formance, therefore, the system described in this work is
based on a consensus among neuroscientists, psychologists

and on fitting available experimental data. It falls into a
family of feedforward models of object recognition that tries
to duplicate the tuning properties of neurons in several visual
cortical areas. The model consists of several levels, the type of
function of each layer is summarized separately as follows.

The first layer mimics the biological properties of On and
Off cells of retina, enhancing the high-contrast parts of a
given image, using two-dimensional difference of Gaussians,
performing the role of highpass filters.

The second layer consists of applying Gabor filters to
the input from the first one, mimicking the processing by
simple cells in the primary visual cortex. Olshausen and Field
demonstrated that optimizing a simple sparse coding scheme
over a set of natural images produces a set of edge filters
similar to Gabor filters [26, 43]. Thus, the output of Gabor
filters on the input images should have the desirable sparse
property.

The third level does something unorthodox for tradi-
tional computer vision models, it tries to remove the redun-
dant representations of information while preserving the
maximization of mutual information, revealing the underly-
ing independent components of the inputs, a typical efficient
coding approach. Hence, generative statistical models such
as TICA would be the obvious choice at this stage. The moti-
vation is trigged by the small world connectivity (meaning
sparsely distributed, locally stimulated computation pheno-
mena founded in the cortex) and efficient coding hypothesis
(meaning early visual processes should take advantage of the
statistical regularities or redundancies of inputs to repre-
sent as much information as possible given limited neural
resources) suggest that energy efficiency can be used to
account for the sparse coding theory [1, 2, 26, 43]. It has been
noticed that the fraction of ever, strongly active neurons is
relatively small for the stimuli, the so-called sparse coding
theory demonstrates that the neurons in primary visual
cortex form a sparse representation of natural scenes in the
viewpoint of statistics. Vinje and Gallant et al acclaimed that
neurons in the early visual system should have the unique
ability of decorrelating the incoming visual signals, removing
the redundant information, in an effort to maximize the
information transmission [27]. Although it is still not clear
how to model the entire visual cortical system to selectively
amplify important features to facilitate discrimination, it
has been widely accepted that sparse-coding-based neuron
system improves neural information processing and cortex
perception.

The last stage of our system is a standard informa-
tion accumulation and decision part following the origi-
nal SpikeNet model, corresponding to V4-IT, neurons are
trained to be selective to predefined categories (one neuronal
map for each individual).

6.2. Discussion. Ongoing efforts within cognitive neuro-
science, pattern recognition, and advanced human-machine
system have been directed toward the building of computa-
tionally intelligent models using simulated neuron units as
basic building blocks. Such efforts, inspired by the standard
design of cortex-like mechanism and traditional artificial
neural networks, are limited by the difficulties arising from
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single functional performance and massive computational
inconvenience, especially when dealing with large-scale,
complex-pattern recognition problem. Our proposed model,
on the other hand, suggests that, by combining the models
and tasks of cognition with modern neurocomputational
approaches, the neurosystematic approach to the study of
cortex-like mechanism has the potential to overcome the
aforementioned difficulties, to extend our knowledge of
brain mechanisms underlying the cognition analysis, and
to advance theoretical models of how we recognize face
or, for example, perceive other people’s emotion in a rich,
dynamic, and complex environment, providing a new start-
ing point for improved models of visual cortex-like mech-
anism, informed by the formal mathematical approach of
neuron models and constrained by known visual ventral
pathway models. Researches have already begun to illustrate
how this combination can act directly on several specific
application tasks.

6.3. Future Directions. There seem to be at least four direc-
tions that could be followed to further improve the perfor-
mance of the cortex-like mechanism here.

First, as future direction, in an effort to to improve the
use of biologically plausible realistic neural networks for
pattern analysis, adaptation is highly required. It has been
experimentally shown that V1 receptive fields adaptively
change with the input stimuli so as to increase the informa-
tion carried by the neural response about the filtered sti-
mulus [44], which means neural encoding is adaptive, and
this adaptive filtering process actually affects the spatial fre-
quency composition of the neural filter, thus enhances infor-
mation transmission in visual cortex, in agreement with
optimal neural encoding. It would be convenient if this adap-
tion filtering mechanism could be integrated into the sys-
tem, since current models lack of adaption, one way would be
using adaptive gabor filters, or applying local adaptive, global
stable kernel methods.

Second, very recent findings from neuroscience by Tsao,
Freiwald et al. suggest that successive stages in the face net-
work may perform a stepwise transformation: from selec-
tivity for viewpoint, regardless of identity, to selectivity for
identity, regardless of viewpoint [45–47]. The general impli-
cation is that earlier processing stages in the ventral pathway
carry information about generic categories (e.g., face versus
nonface, a typical fast categorical decision-making task, also
in accordance with the current theoretical models and exper-
imental founding) and viewpoint, whereas later processing
stages carry information about individual exemplars (e.g.,
Roger versus Michael), eliminating viewpoint information to
achieve invariant recognition, suggesting that invariant scale
and position feature descriptors (for example, operators like
SIFT) may be necessary to be introduced to form additional
layer. The same concept would undoubtedly be suitable for
the robust facial expression recognition.

Third, the current spiking neuron models are determin-
istic, restricting them from describing and modelling large-
scale, dynamic, and stochastic process, while as spiking pro-
cess in biological neurons are stochastic by nature (neurons

spike or not, synapses connected or not, transmission chan-
nels open or not, etc), it would be appropriate to look for new
inspirations to enhance the current SNN models with proba-
bilistic parameters, forming probabilistic spiking neural net-
works (pSNNs). For example, adding probabilistic param-
eters to the spiking neuron model (such as Izhivich’s SNN
model) will mimic the behavior of the cortical neurons in
vivo, in which the parameters are used to control synapses
established during spiking generation and transmitting. And
the Hebbian learning rule can be employed for controlling
the probabilistic parameters self-adaptation and connection
weights associated with the synapses which are established
using Thorpe’s rule during the network learning procedure.
Such a pSNN model will exhibit more explicit behavior
and robust performance than the original model and deter-
ministic network organizations. Some experimental results
have already been presented for its efficiency for performing
functions difficult to be implemented using conventional
models [48].

Finally, another promising direction would be the mod-
ification of SNN architecture. All the existing neuromodels
will emphasis on multilayer feedforward transformed, hier-
archical layout structures which is based on the traditional
physiological experimental founding. However, very recent
experiment has found that processing within visual feature
patches and additional recurrent processing between patches
at different levels of the processing hierarchy (parallel) are
likely further mechanisms that may bring about more elabo-
rate representations [46]. It would be important and neces-
sary to use recurrent spiking neural network to describe the
dynamics of the process. However, this means that we need to
discard the original architecture because spike propagation
adopted in those straight forward models such as SpikeNet is
feedforward only and iterative processes cannot occur in the
sense that, even if lateral interactions are present in the last
processing stage, each neuron can only fire once. In order
to solve the more complicated, dynamic facial information
analysis problem, the fundamental redesign of the neuron
models [49] is by all means important and necessary.

7. Conclusions

Building a intelligent human-machine system has always
been a dream for scholars for centuries, there has been a great
deal of interest in studying the emulation of brain-like pro-
cess for the purpose of pattern recognition. In this paper, a
practical implementation is presented using a highly struc-
tured cortex-simulated system, which can be simply
described as feedforward, hierarchical simulation of ven-
tral stream of visual cortex using biologically plausible, com-
putationally convenient spiking neural network system. The
proposed cortical-like feedforward hierarchy framework
has the merit of capable of dealing with complicate pattern
recognition problems. Discriminative visual features are
grouped and refined along stepwise levels. The independent
component analysis can perform better than other descript-
ors for facial expression recognition, since the efficient cod-
ing approach-based representation is localized and sparse,
providing highly discriminative and efficient feature



Computational Intelligence and Neuroscience 11

descriptors. We demonstrate our system on several facial
expression recognition tasks. Of note, small structure
modifications and different learning schemes allow for
implementing more complicated decision system, showing
great potential for discovering implicit pattern of interest
and further analysis.
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Endnotes

1. Note that some models [9, 10, 24] have proposed impli-
cit or explicit processing in early visual areas to create
a SIFT like image representation, although the need
for such explicit preprocessing has been questioned on
the basis of neurophysiological evidence. However, very
recent experimental results support this viewpoint [47].

2. Generally, illumination and shadows are classified into
two types: cast shadows and attached shadows. Cast
shadows arise when a light source is obstructed by a part
of the same or another object, such as shadows casted by
the nose which is caused by the side light source, and
they could yield global constraints on surface depths.
On the other hand, attached shadows arise when “the
angle between a surface and a light source direction is
obtuse, and they yield local constraints on surface [50].”
For details, see to [50].

3. Several models and neurophysiological experiments on
macaque monkey inferotemporal cortex have shown
that explicit structural coding mechanism for three-
dimensional object shape can be embodied by multiple
object surface fragments, view-dependent theories and
spatial relationships between shape elements inferred by
the illumination-dependent theories [47, 51].

4. Recent physiological founding [25] shows that inde-
pendence does not hold by simply applying the ICA
model to the image due to the existence of strongly non-
linear correlations among the extracted components
and topographic organization structure among the
neighbor neurons.

5. Similar experimental results have been published pre-
viously in the conference paper in [22], here we rear-
ranged the whole experiment and acquired slightly dif-
ferent results. Notice that experimental results are ben-
chmarks cited from [34].

6. The former name of the Minzu University of China is
called central university of nationalities, Minzu is the
Chinese pronunciation of ethnic groups or nationalities.

7. Experimental procedures may vary from one to another
(e.g., data used, cross-validation, leave-one-out, prepro-
cessing, scale normalization, etc.). Therefore, compar-
isons should be taken cautiously.

8. Lower results than the original paper in [22] due to the
different subjects and preprocessing methods, during
the 0◦ situation, the direction light at 0◦ position is open,
overlapped with the two photographic sunlamps (see
Figure 3 for illustration), causing light spots which blur-
red some essential features.

9. For the illumination normalization problem, we applied
a human perception-based image processing method
which could provide color constancy and dynamic range
compression simultaneously in the preprocessing sec-
tion, specifically, multiscale retinex approach, or MSR
algorithm [52], is applied and written as follows:

Fi
(
x, y

) =
N∑

n=1

Wn

︸ ︷︷ ︸
MSR

× log
[
Si
(
x, y

)]− log
[
Si
(
x, y

)∗Mn
(
x, y

)]
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SSR

,

(12)

where the expression within the summation represents
an single-scale retinex model. Si(x, y) is the image dis-
tribution in ith color spectral band. N stands for the
scale numbers and i represents the three color bands.Wn

are the weighting factors for the scales. Mn(x, y) are the
surround Gaussian function defined by

Mn
(
x, y

) = Kn exp

[−(x2 + y2
)

σ2
n

]
, (13)

where σn determines the space and amplitude of the
function. Kn is applied to make sure

∫ ∫
F(x, y)dx dy =

1. Experimental results show that it produces a much
better image in both term of color and dynamic range
than the other similar methods such as histogram
equalization (HE) and logarithmic method.

10. During the capture of the image, if the illumination
variation is controlled by flashlight (like some other
face database such as CMU PIE [53]), then these strict
point light source could be relatively easier to be erased
by some preprocessing algorithm such as simple white
balancing or MSR algorithm, whereas in CUN face
database, the direction light system (fifteen fluorescent
lamps controlled by a switch matrix) is not point light
source actually, making it hard to discount the effects,
even by MSR algorithm.
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