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Various genetic and environmental factors are associated with developmental disorders
(DDs). It has been suggested that interaction between genetic and environmental factors
(G × E) is involved in the etiology of DDs. There are two major approaches to analyze the
interaction: genome-wide and candidate gene-based approaches. In this mini-review, we
demonstrate how these approaches can be applied to reveal the G × E related to DDs
focusing on zebrafish and mouse models. We also discuss novel approaches to analyze
the G × E associated with DDs.
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INTRODUCTION

Developmental toxicity linked to early-life chemical exposure can have a crucial impact on the
development of various tissues and is associated with developmental disorders (DDs) such as fetal
alcohol syndrome (FAS), autism spectrum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), craniofacial anomalies, and congenital heart defects (De la Monte and Kril, 2014; Bölte
et al., 2019; Beames and Lipinski, 2020; Hollander et al., 2020; Kalisch-Smith et al., 2020; Martinelli
et al., 2020). The susceptibility to these chemicals may be determined by genetic factors (Lovely et al.,
2017; Musci et al., 2019; Beames and Lipinski, 2020; Boyce et al., 2020; Gomes et al., 2021) (Figure 1).
The gene–environment interaction (G × E) may affect the balance between resilience and the risk of
DDs (Cicchetti and Rogosch, 2012; Elbau et al., 2019; Molnar-Szakacs et al., 2021).

G × E can be analyzed using genome-wide and candidate gene-based approaches (Elbau et al.,
2019; Gomes et al., 2021). For example, analysis of samples using the Simons Simplex Collection
(Fischbach and Lord, 2010) combined with array comparative genomic hybridization screening
revealed the interactive effects of copy number variations (CNV) and maternal infection on the
risk of ASD (Mazina et al., 2015). A genome-wide approach using the Simons Simplex Collection
also revealed the interactive effects of prenatal antidepressant exposure and the corresponding
gene mutations on the severity of ASD (Ackerman et al., 2017). A population-based case-control
study found that the joint effect of CNV and air pollution exposure increased the risk of ASD
(Kim et al., 2017). Candidate gene approaches demonstrated that the interactions between
maternal genotype of paraoxonase 1, a key enzyme in the metabolism of organophosphates, and
prenatal exposure to organophosphates impacted cognitive development in the child (Engel
et al., 2011), and also that interaction between a functional promoter variant in the MET receptor
tyrosine kinase gene of children and air pollution exposure increased the risk of ASD (Volk et al.,
2014). However, studying G × E in the human population is still challenging because of various
reasons, including the difficulties in selecting genetic variants, the study design, the
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environmental factors of interest, and the temporality of
environmental exposure (Mcallister et al., 2017; Esposito
et al., 2018). Animal models have been successfully used to
analyze G × E and its impact on developmental defects
(Eberhart and Parnell, 2016; Hong and Krauss, 2018;
Beames and Lipinski, 2020; Lovely, 2020; Raterman et al.,
2020; Fernandes and Lovely, 2021). We review G × E
studies applying genome-wide and candidate gene-based
approaches using zebrafish and mouse models, especially
focusing on gene-ethanol interaction, and their impact on
developmental defects (Table 1).

Genetic Susceptibilities to Developmental
Ethanol Exposure
Genome-Wide Approaches
Zebrafish have been successfully used to identify the genes
involved in disease development through unbiased forward
genetic screening with chemical mutagenesis (Mullins et al.,
1994; Kelsh et al., 1996; Amsterdam and Hopkins, 2006;
Swartz et al., 2020). The signaling pathways involved in
cranial neural crest development are impaired in FAS, leading
to various craniofacial anomalies such as cleft palate and
holoprosencephaly (Smith et al., 2014; Nasreddine et al.,
2021). To examine this, an N-ethyl-N-nitrosourea (ENU)-
based random mutagenesis was performed to identify novel
ethanol-sensitive zebrafish mutants, wherein F3 embryos from
126 inbred F2 families were exposed to 1% ethanol in the medium
from 6 h post-fertilization (hpf) until they were screened. Alcian
Blue/Alizarin Red staining was performed 4–7 days post-
fertilization (dpf) to examine alterations in the craniofacial
skeleton. The screening identified a novel ethanol-sensitive
mutant in which the splice donor of exon 15 in si:dkey-
88l16.3, a previously uncharacterized gene, was mutated
(Swartz et al., 2020). The mechanisms of how the impairment
of si:dkey-88l16.3 is involved in the craniofacial defects remain to
be clarified.

Candidate Gene-Based Approaches
Genes involved in sonic hedgehog (SHH) signaling pathways
have been intensively analyzed in studies on G × E associated with
FAS. In zebrafish, knockdown or haploinsufficiency of shh
sensitizes embryos to alcohol-induced craniofacial defects
(Zhang et al., 2011; Everson et al., 2020). In mice,
haploinsufficiency of Shh, or Gli2, which encodes a zinc finger
transcription factor that acts as a mediator of hedgehog signaling,
increases sensitivity to ethanol-induced holoprosencephaly
(Kietzman et al., 2014).

A screen of zebrafish mutants found that VANGL planar cell
polarity protein 2 (vangl2) is involved in the genetic susceptibility
to craniofacial defects induced by developmental ethanol
exposure (Swartz et al., 2014). VANGL2 is a transmembrane
protein that regulates the Wnt-mediated planar cell polarity
(PCP) pathway (Yang and Mlodzik, 2015; Bailly et al., 2018;

FIGURE 1 | A model of gene–environment interaction proposed in this
mini-review. (A) When environmental insults during development can be
counterbalanced by the resilience in the individuals without the genetic
susceptibilities, the insults may not cause developmental disorders. (B)
Environmental insults during development can be enhanced and defeat the
resilience of the individuals with the genetic susceptibilities, which may cause
developmental disorders. Note that genetic susceptibilities may modulate the
power of resilience.

TABLE 1 | The reviewed studies of gene–environment interactions related to developmental disorders.

Exposure App, sp Genetic susceptibilities Phenotypic outcomes References

Ethanol GW, Dr Mutation in si:dkey-88l16.3 Craniofacial anomalies Swartz et al. (2020)
Ethanol CG, Dr Knockdown or haploinsufficiency of shh Craniofacial anomalies Zhang et al. (2011); Everson et al. (2020)
Ethanol CG, Mm haploinsufficiency of Shh or Gli2 Craniofacial anomalies Kietzman et al. (2014)
Ethanol CG, Mm Mutation in Cdon Holoprosencephaly Hong and Krauss, (2012)
Ethanol CG, Dr Haploinsufficiency of vangl2 Craniofacial anomalies Swartz et al. (2014)
Ethanol CG, Dr Mutation in pdgfra Craniofacial anomalies Mccarthy et al. (2013)
Abamectin GW, Dr Mutation in sox7 promoter Craniofacial anomalies, pericardial edema, scoliosis Balik-Meisner et al. (2018)
PBO CG, Dr Haploinsufficiency of shh Craniofacial anomalies Everson et al. (2020)
PBO CG, Dr Haploinsufficiency of Shh Holoprosencephaly Everson et al. (2019)
Vismodegib CG, Mm Haploinsufficiency of Gli2 Holoprosencephaly Heyne et al. (2016)
Blebbistatin CG, Dr Haploinsufficiency of vangl2 Craniofacial anomalies Sidik et al. (2021)

PBO, piperonyl butoxide; Ap, Approach; Sp, species; GW, genome-wide approach; CG, candidate gene-based approach; Dr, danio rerio; Mm, mus musculus.
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Bell et al., 2021). Zebrafish with mutations of vangl2 show slightly
shortened craniofacial elements when there is no exposure to
ethanol, whereas severe craniofacial anomalies such as
synophthalmia, rod-like ethmoid plate, and disrupted axon
projections, are observed in the vangl2 mutant exposed to
ethanol during development (Swartz et al., 2014).

Impairment of platelet-derived growth factor (PDGF) receptor
α (PDGFRA) and the resultant mutation in the 3′ untranslated
region (UTR) of the PDGFRA gene (c.*34G > A) is associated
with cleft palate in humans, mice, and zebrafish (Xu et al., 2005;
Eberhart et al., 2008; Rattanasopha et al., 2012). MicroRNA
(miRNA) 140 (miR-140) binds to the 3′-UTR of pdgfra and
suppresses the expression of Pdgfra in zebrafish (Eberhart et al.,
2008). The suppression of PDGFRA by miR-140 is also observed
in cultured mouse palate cells (Li et al., 2019a). The c.*34G > A
mutation is located 10 bp away from a predicted binding site of
miR-140 (Rattanasopha et al., 2012). Ethanol exposure increases
miR-140 levels in the extracellular vesicles of fetal neural stem
cells (Tseng et al., 2019). Pdgfra is protective against ethanol-
induced craniofacial anomalies in zebrafish (Mccarthy et al.,
2013). These findings suggest that miR-140-mediated
PDGFRA expression may be involved in the susceptibility to
ethanol that is associated with craniofacial anomalies.

Genetic Susceptibilities to Other
Developmental Toxicants
Genome-Wide Approaches
Genetic diversity in zebrafish populations can be used to analyze
G × E. A large-scale drug screening for the assessment of
developmental toxicity in a zebrafish line found that
abamectin, a widely used insecticide and anthelmintic, elicited
differential responses in the population (Balik-Meisner et al.,
2018). A genome-wide association study (GWAS) using 276
individual zebrafish, either susceptible or resistant to the
developmental toxicity of abamectin, identified a G/T variant
in the promoter region of sox7 to be associated with this
differential response in the population (Balik-Meisner et al.,
2018). The T allele frequency of affected and unaffected
individuals was 45 and 12%, respectively, and the expression
of sox7 after abamectin exposure in affected individuals was
significantly lower than that in unaffected individuals (Balik-
Meisner et al., 2018). Ablation of Sox7 and mutation of sox7 in
mice and zebrafish, respectively, can cause pericardial edema,
which is a phenotype observed in the developmental toxicity of
abamectin (Wat et al., 2012; Hermkens et al., 2015). These
findings suggest that the single nucleotide variation (SNV) at
the sox7 promoter is involved in susceptibility to the
developmental toxicity of abamectin. However, the possibility
that polygenic functions are involved in the differential
susceptibility cannot be excluded (Balik-Meisner et al., 2018).
Rodent population models such as the Hybrid Mouse Diversity
Panel, Collaborative Cross, and Diversity Outbred, have been
successfully used to identify novel genes that are susceptible to
environmental exposure (Harrill and Mcallister, 2017). Various
other methodologies to analyze G × E have also been actively
developed (Mcallister et al., 2017; Esposito et al., 2018). Multiple

gene functions that are related to the susceptibility to
environmental exposure and are causative of DDs may be
elucidated by utilizing these new methodologies.

Candidate Gene-Based Approaches
Cranial neural crest cells regulate craniofacial development
through multiple pathways, including SHH, and Wnt/PCP
signaling pathways (Bush and Jiang, 2012; Suzuki et al., 2016).
Candidate gene-based approaches that target genes involved in
these pathways have successfully identified that G × E is
associated with craniofacial anomalies such as
holoprosencephaly and cleft palate (Eberhart and Parnell,
2016; Hong and Krauss, 2018; Beames and Lipinski, 2020;
Lovely, 2020; Raterman et al., 2020; Fernandes and Lovely, 2021).

There are global chemicals and therapeutic drugs that can
affect SHH signaling. For example, piperonyl butoxide (PBO), a
semisynthetic pesticide synergist present in hundreds of
commercial products, can inhibit SHH signaling (Wang et al.,
2012). In mice and zebrafish with haploinsufficiency of SHH, the
embryos are sensitized to craniofacial defects induced by PBO
(Everson et al., 2019; Everson et al., 2020).

Cholesterol is required in the SHH signaling cascade (Haas
and Muenke, 2010). Statins, therapeutic drugs for
hypercholesterolemia, negatively affect SHH signaling through
the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase
(HMGCR) that is a key enzyme in cholesterol synthesis (Haas
and Muenke, 2010; Abramyan, 2019). In zebrafish, orofacial
defects are induced by the developmental exposure to statins
or mutation of hmgcr (Signore et al., 2016). Mutation of 7-
dehydrocholesterol reductase gene that encodes an enzyme
involved in cholesterol metabolism, is the cause of Smith-
Lemli-Opitz syndrome (SLOS), a DD with multiple congenital
anomalies including cleft palate and holoprosencephaly (Kelley
and Hennekam, 2000). The severity of SLOS depends on the
maternal apo E genotype (Witsch-Baumgartner et al., 2004). Apo
E, a protein regulating the transport of cholesterol and other
lipids in the blood and the brain, includes three common
isoforms: ApoE2, ApoE3, and ApoE4 (Villeneuve et al., 2014).
Because ApoE2 is defective in binding to low-density lipoprotein
receptors, plasma total cholesterol level tends to be low in
individuals with the ApoE2 genotype (Witsch-Baumgartner
et al., 2004). The severity score of SLOS is higher in children
from mothers with the ApoE2 genotype than from those without
it (Witsch-Baumgartner et al., 2004). Individuals with the ApoE2
genotype are more sensitive to statin therapy than those with the
ApoE4 genotype (Mega et al., 2009). A link between cholesterol
metabolism and ASD has been suggested (Gillberg et al., 2017).
These studies suggest that G × E involved in cholesterol
metabolism may be associated with DDs.

Mice with single-allele Gli2 mutation show an increased
incidence of holoprosencephaly induced by vismodegib, a
hedgehog pathway inhibitor (Heyne et al., 2016). Mice with a
null mutation of Cdon, which encodes an SHH co-receptor, are
sensitized to prenatal ethanol exposure to produce
holoprosencephaly with defective expression of genes targeted
by SHH (Hong and Krauss, 2012). Apart from the susceptibility
to these teratogens, mice with haploinsufficiency of Shh or Gli2,

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8636643

Nishimura and Kurosawa Gene-Environment Interactions in Developmental Disorders

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


or null allele of Cdon, are phenotypically indistinguishable from
the wild-type littermates (Hong and Krauss, 2012; Kietzman et al.,
2014; Heyne et al., 2016). In contrast, mice with a null mutation of
Mosmo, which encodes a component of a membrane protein
complex called MMM that promotes degradation of the
Hedgehog signal transducer Smoothened, show multiple birth
defects with increased SHH signaling (Kong et al., 2021). These
birth defects can be suppressed by in utero treatment with
vismodegib to inhibit SHH signaling (Kong et al., 2021). These
studies suggest that individuals with mutations involved in the
SHH pathway may be susceptible to chemicals that affect SHH
signaling.

Mutation of vangl2 sensitizes the zebrafish to craniofacial
anomalies induced by blebbistatin, an inhibitor of the Wnt/
PCP pathway (Sidik et al., 2021). Genes involved in the PCP
pathway have also emerged as susceptibility-inducing genes in
ASD and other DDs (Sans et al., 2016; Milgrom-Hoffman and
Humbert, 2018). Therefore, G × E affecting PCP pathways
warrants further investigation.

Non-coding RNA such as miRNA and long non-coding RNA
(lncRNA) have also attracted attention as important mediators in
response to environmental stressors (Miguel et al., 2020). For
example, lncRNA is involved in the toxic response to dioxins,
such as jaw malformation and pericardiac edema, by
downregulating the expression of sox9b (Mathew et al., 2008;
Xiong et al., 2008; Garcia et al., 2018). The roles of non-coding
RNA in G × E associated with ASD have been actively studied
(Beversdorf et al., 2021; Cui et al., 2021).

DISCUSSION

Advances in genome editing technologies have enabled us to edit
any gene of interest in various experimental models, including
zebrafish and induced pluripotent stem (iPS) cells generated from
human samples (Adachi et al., 2022; Whiteley et al., 2022). Public
databases focusing on genes, biological samples, and chemicals
related to various diseases including DDs, have been expanding
(Al-Jawahiri and Milne, 2017; Reilly et al., 2017; Lombardo et al.,
2019; Davis et al., 2021). These resources have accelerated G ×
E-focused research related to DDs.

Brain organoids derived from human iPS cells have emerged
as a powerful tool to study the G × E with regard to DDs
(Schmidt, 2021). Human brain organoids generated from iPS
cells with the knockout of chromodomain helicase DNA binding
protein 8 (CHD8), a strong candidate gene associated with ASD,
showed increased susceptibility to chlorpyriphos, an
organophosphate pesticide that has adverse effects on the
developing nervous system, compared to those from the wild-
type iPS cells (Modafferi et al., 2021). Human iPS cell-derived
cerebral organoids have also been successfully used to analyze the
developmental neurotoxicity of alcohol at the genetic, metabolic,
subcellular, cellular, and tissue levels (Arzua et al., 2020). These

studies suggest that human brain organoids can be used as
versatile models to analyze the G × E associated with DDs.

Public databases such as the Comparative Toxicogenomic
Database (CTD) (Davis et al., 2021), Gene Expression
Omnibus (GEO) (Clough and Barrett, 2016), Simons
Simplex Collection (SSC) (Fischbach and Lord, 2010), and
Autism Sequencing Consortium (ASC) (Buxbaum et al., 2012)
can be used to discover novel interactions between chemicals
and genes associated with DDs. For example, an integrative
analysis using CTD, SSC, and ASC revealed a total of 212
gene–environment interaction pairs putatively relevant for
ASD, and provided a list of candidate genes susceptible to
chemicals associated with ASD, such as valproic acid, benzo(a)
pyrene, bisphenol A, particulate matter, and perfluorooctane
sulfonic acid (Santos et al., 2019). A novel in silico approach
using GEO identified tumor suppressors: p53, retinoblastoma
1, and Krüppel-like factor 8 as leading nodes in the network of
developmental neurotoxicity of selective serotonin reuptake
inhibitors and antidepressants associated with ASD (Li et al.,
2021). A study using CTD and a database of ASD gene
networks (Nelson et al., 2012) found that ASD-associated
genes are selectively targeted by environmental pollutants
such as pesticides, heavy metals, and phthalates (Carter and
Blizard, 2016). Novel disease-associated genes can be
identified using whole exome sequencing of biological
samples from patients with DDs (Kuroda et al., 2019a;
Kuroda et al., 2019b). CTD can be used to examine whether
the novel genes are targeted by environmental chemicals and
thereby confirm the role of these genes in the susceptibility to
the chemicals (Davis et al., 2021). A database named Human
Tissue-specific Exposure Atlas (TExAs) has been developed by
compilation of various databases, including CTD, Exposome-
Explorer (Neveu et al., 2020), PubChem (Kim et al., 2021),
ToxCast (Dix et al., 2007), and DisGeNET (Piñero et al., 2019).
Using TExAs, one can retrieve the information about tissue-
specific target genes of the chemicals and diseases associated
with these genes (Ravichandran et al., 2021). The integration of
databases combined with new approach methodologies may
provide novel insights into the G × E related to DDs (Li et al.,
2019b; Cheroni et al., 2020).
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