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The intestinal parasite Cryptosporidium is a significant cause of severe diarrhoeal disease
that can have long term effects. Therapeutic options remain limited despite a significant
impact on public health, partly due to various challenges in the field of Cryptosporidium
research, including the availability of genomic and transcriptomic data from environmental
and clinical isolates. In this review we explore how long read DNA and RNA sequencing
technologies have begun to provide novel insights into the biology of the parasite. The
increased deployment of these technologies will help researchers address key gaps in the
understanding of Cryptosporidium biology, and ultimately drive translational research and
better parasite control.
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INTRODUCTION

Cryptosporidium is an intracellular parasite that is an important cause of global diarrhoeal disease in
animals and humans. Infection in animals, particularly livestock, results in increased agricultural
cost and decreased production (Shaw et al., 2020). In humans, children and immunocompromised
patients carry a disproportionate burden of disease and early life infections have been shown to be
associated with stunted growth (Khalil et al., 2018). Acute disease accounts for 4.22 million disability
adjusted life years (DALYs) annually, yet the chronic effects of disease, such as growth stunting, are
estimated to account for a further 7.85 million DALYs (Khalil et al., 2018). Despite this substantial
impact on public health, there are no fully effective treatments and no available vaccinations against
disease (Schneider et al., 2021).

The life cycle of the Cryptosporidium parasite is complex and progresses through several
morphologies – the infective form of the parasite is the oocyst, which is an environmentally hardy
form that transmits via a faecal-oral route. Oocysts that are ingested by the host release four motile
forms of the parasite, sporozoites, that invade epithelial cells that line the host intestinal tract. Once
inside the epithelial cell, the parasite undergoes asexual replication, known as schizogony or
merogony, before making a sexual commitment and undergoing sexual replication, known as
gametogony. These sexual forms then come together to create new infective oocysts that are released
into the environment in the host faeces (Current and Reese, 1986).

Cryptosporidium is a prominent infection in vertebrates and there are over 35 recognised
species with varying host specificity (Feng et al., 2018). Infection in humans is primarily driven by
two species: Cryptosporidium hominis and Cryptosporidium parvum. To date, fifteen unique
genome assemblies of Cryptosporidium have been generated and eight genomes annotated
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(Warrenfeltz et al., 2020). The inconsistent availability and
quality of Cryptosporidium reference genomes has not only
impacted our understanding of the basic biology of the parasite,
but translational advances in surveillance, diagnostics, and
th e r ap eu t i c s h av e a l s o b e en l a g g ing . Fo r many
Cryptosporidium genomes significant time has elapsed since
they were initially sequenced and assembled. These references
may require updated sequencing with next generation
technologies, or genome re–annotation and polishing to
ensure that as reference genomes they do not mislead
interpretations during genomic or molecular studies (Baptista
et al., 2022). A greater understanding of the parasite genome in
silico will complement recent in vivo and in vitro advances that
have increased our understanding of parasite and infection
biology (Marzook and Sateriale, 2020). In this review we
descr ibe some of the many chal l enges fac ing the
Cryptosporidium research community, and we explore the
ways recent advances in sequencing, specifically long read
technologies, have begun and will continue to address them.
CHALLENGES IN CRYPTOSPORIDIUM
RESEARCH

Historically, Cryptosporidium research has suffered from a lack
of suitable models to study infection. However, recent
developments have started to turn the tides and expand the
capabilities of researchers. Stem-cell based models of infection,
such as the organoid (Heo et al., 2018) and air-liquid interface
models (Wilke et al., 2019), more closely recapitulate the cellular
diversity and architecture of the gut, allowing for more
translational studies of infection. A recently developed mouse
model of cryptosporidiosis also offers a fully genetically tractable
system that replicates human pathology in vivo (Sateriale et al.,
2019). Despite these advances, there is still no reliable method for
continuous culture of the Cryptosporidium parasite. In vitro
culturing is still limited to pre-fertilisation stages as parasites
are unable to complete sexual reproduction using traditional cell
culture methods (Tandel et al., 2019). These culturing
constraints mean that clonal populations of parasites cannot be
generated, and this is particularly pertinent for genomic studies.

The Cryptosporidium genome is very compact at ~9Mb and the
parasite scavenges nutrients from the host, obscuring metabolic
pathways. The parasite also uses alternative splice forms, making it
a challenge to validate and annotate genes and their functions
(Baptista et al., 2022). As a result, many genome assemblies contain
large percentages of hypothetical or uncharacterised proteins
(Table 1). Oocysts are often sampled as the most readily
available life cycle stage, however they only display minute
morphological differences at the species level. Individuals in
endemic regions are often co-infected with multiple strains or
species and these differences can only be observed genetically
(Ryan et al., 2021). Importantly, as each oocyst contains four
sporozoites, an individual oocyst is considered a mixed population.
Even single cell sequencing only partially addresses concerns
around mixed populations, but does facilitate the detection of
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low frequency variation (Troell et al., 2016; Baptista et al., 2021).
Genetic recombination occurs during sexual replication generating
diversity that influences virulence and transmissibility. Establishing
clonal cultures of isolates would address some of the challenges in
deconvoluting this diversity.
LONG READ GENOMICS TO IMPROVE
OUR UNDERSTANDING OF PARASITE
VIRULENCE AND TRANSMISSION

Despite the decreasing cost and increasing relative ease of
sequencing it is an underutilised tool in Cryptosporidium research;
and for many years, the field has relied on the C. parvum and C.
hominis genomes generated in 2004 through whole genome
shotgun Sanger sequencing and HAPPY mapping (Abrahamsen
et al., 2004; Xu et al., 2004). Annotation remains a resource and
labour intensive process and while there have been several re-
annotations of the C. parvum genome, it was only recently updated
using a combination of Pacific Biosciences long reads and Illumina
DNA and RNA short reads. This combined approach significantly
improved the genome assembly quality across key metrics–
including contiguity, completeness, and correctness, and
generated a high quality C. parvum IOWA-ATCC reference
genome (Baptista et al., 2022). This revised genome has already
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
revealed several new insights into the parasite’s biology, including
the identification of new parasite transporters. One surprising find
from this reannotation is the amount of copy number variation in
theCryptosporidium genome (Figure 1). Variations in copy number
have been shown to affect gene expression and increase phenotypic
variation (Freeman et al., 2006), and in C. parvum it is thought to
contribute to phenotypes such as host specificity and sporozoite
invasion (Zhang et al., 2019). DNA long reads– especially through
intergenic and repeat regions in the genome, can help resolve
artificial compression of the genome and reveal variations in copy
number (Logsdon et al., 2020). The recent updates to the C. parvum
genome revealed at least 13 genes with variations in copy number,
including the recently identified MEDLE family of host-exported
virulence factors (Dumaine et al., 2021). This reannotation of the C.
parvum genome is an exemplary case and the quality of the
Cryptosporidium reference genomes varies greatly across species,
therefore more concerted efforts are needed to generate high quality
references of the other species (Table 1). In particular, C. hominis as
the other prominent causative agent of human disease andC. tyzzeri
as a murine model of human infection, are both desperately in need
of a reannotation. The C. tyzzeri genome specifically, illustrates how
current strategies using the limited genomic data available can
present a false confidence in the quality of a genome assembly.
The current C. tyzzeri assembly (Sateriale et al., 2019) relies heavily
on C. parvum data to scaffold the genome and this cross species
assembly can lead to a loss of information, especially translocations
FIGURE 1 | Sources of genetic diversity in Cryptosporidium parasites. 1) Recombination occurs during sexual replication and meiotic divisions distribute parental
alleles, resulting in recombinant progeny. 2) Horizontal gene transfer of bacterial genes has been observed in Cryptosporidium species suggesting a link with the host
gastrointestinal microbiota. 3) Copy number variation has been observed in at least 13 Cryptosporidium parvum genes with implications for parasite host range
and invasion.
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and inversions. Increased use of long read sequencing across
Cryptosporidium species will address these inaccuracies and lead
to more informative assemblies.

Understanding transmission hinges on the ability to identify and
differentiate different genotypes during surveillance. Currently,
genes such as gp60 and 18S rRNA are used for single locus typing
(SLT) and a variety of markers are selected on a study by study basis
for multilocus sequence typing (MLST) (Robinson and Chalmers,
2012). SLT is not a robust strategy that can account for the effects of
recombination during sexual stages. Additionally, the gene currently
used for much of single locus typing– gp60, is a virulence gene and
therefore under selective pressure whichmay affect its suitability as a
marker gene (Morris et al., 2019). Indeed the lack of global
geographical sub structuring observed when comparing gp60
alleles in isolates from different locations demonstrates that the
selection pressures driving gp60 evolution mean it cannot be used
for universal single locus typing (Widmer, 2009; Robinson and
Chalmers, 2012). In order to perform MLST markers are selected
and used in single studies, because when applied to isolates from
different geographical regions the performance of these panels
declines significantly (Robinson and Chalmers, 2012).
Furthermore, isolates identified as the same species through 18S
rRNA typing can display differing phenotypes and even different
host specificity; together with the knowledge that multiple copies of
this gene are present across the genome, this suggests that copy
number variation (CNV) or variation at other loci will prove to be
more informative (Nader et al., 2019; Baptista et al., 2022). It is
important to address these incongruencies moving past our reliance
on outdated strategies such as SLT, and developing more broadly
applicable MLST panels. Improved genomic sequencing will
provide the greater sequence coverage of multiple loci required to
fully resolve and understand population.

Another major challenge for the surveillance and population
genomics of Cryptosporidium is deconvolution. Individuals in
endemic regions can present mixed strain and species infections
(Ryan et al., 2021) and, without a consensus of marker genes,
current strategies struggle to resolve the structure of subpopulations
of the same species (Robinson and Chalmers, 2012; Baptista et al.,
2021). When investigating subpopulations, the diversity generated
by recombination events during sexual replication means that
mixed populations of sporozoites can exist in a single oocyst
(Figure 1) (Dettwiler et al., 2021). Additionally, Cryptosporidium
spp. have acquired large quantities of genes through horizontal gene
transfer (Figure 1) (Huang et al., 2004). In order to fully understand
the movement of genes into and within parasite populations more
high-quality sequences are needed.
LONG READ TRANSCRIPTOMICS TO
IMPROVE OUR UNDERSTANDING OF
PARASITE BIOLOGY AND GENE
REGULATION

Advances in genomics and transcriptomics go hand in hand,
and combining long and short read DNA sequencing with short
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
read RNA sequencing (RNAseq) has already improved the
annotation of the C. parvum, C. hominis, and C. tyzzeri
genomes (Baptista et al., 2022). Available strand specific
RNAseq data has revealed some information regarding
splicing mechanisms and isoforms in Cryptosporidium (Li
et al., 2020). The long non-coding RNAs (lncRNA) identified
were predominantly antisense sense transcripts (91.7%) that
covered nearly 10% of predicted mRNA transcripts and were
primarily located at the 3’ end of the sense mRNA (Li et al.,
2020). Additionally, these data provided evidence of splicing in
lncRNA and suggested the presence of bidirectional promoters
(Li et al., 2020), indicating that the parasite has mechanisms for
complex control of gene expression (Gil and Ulitsky, 2018). In
organisms with compact genomes, like Cryptosporidium, which
is only 20% intergenic, utilising RNAseq to annotate and
validate genes can be challenging (Baptista et al., 2022).
Resolving genes that are in close proximity through
transcriptome assembly using short reads can often result in
the artificial fusion of exons (Xie et al., 2016). Furthermore,
short read RNAseq cannot provide information regarding
concurrent alternative or rare splicing isoforms (Lee et al.,
2021). There are six modes of alternative splicing (exon
skipping, intron retention, constitutive splicing, mutually
exclusive exons & alternative 3′ or 5’ splice sites) that are
observed at varied frequencies in organisms, with intron
retention most frequently detected in protozoa and lower
metazoans, and exon skipping in higher metazoans (Wang
et al., 2015; Yeoh et al., 2019). Long-read technologies such as
Pacific Biosciences (PacBio) IsoSeq and Oxford Nanopore
(ONT) direct RNA sequencing could be used to examine
alternative splicing aiding in the verification and annotation
of genes, and identification novel splice forms. In addition to
limited information regarding splicing there are currently, no
models for nucleotide modification in Cryptosporidium species
and there are mixed reports on the evidence of methylation
sites in the genome (Gissot et al., 2008; Aliaga et al., 2019).
However, with the discovery of alternative methylation models
in other apicomplexans (Baumgarten et al., 2019) it is
important to reinvestigate and identify these models in
Cryptosporidium species and ONT direct RNAseq will allow
researchers to do this.

Long-RNA reads have already revealed several insights into
the biology of related apicomplexan parasites, Toxoplasma gondii
and Plasmodium falciparum. Transcripts from both T. gondii and
P. falciparum retain large quantities of intronic sequences (Lee
et al., 2021). Interestingly, in these parasites, intron retention
rarely corresponds to expanded protein expression through
alternative protein products, instead retention of introns
primarily renders transcripts untranslatable and marked for
nonsense mediated decay (NMD) (Lee et al., 2021). A detailed
understanding of the transcriptional landscape in any
Cryptosporidium species is outstanding. Putative alternatively
spliced genes have been identified in C. parvum and alternative
splicing regulators identified in Cryptosporidium muris, yet these
splice forms and mechanisms are yet to be experimentally
validated (Yeoh et al., 2019; Baptista et al., 2022).
March 2022 | Volume 12 | Article 871860
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DISCUSSION

The recent advances in sequencing technologies have expanded
the capability of genomics and transcriptomics, and this can only
be expected to increase as long-read sequencing is used on a
population scale. Long read technologies not only increase
resolution for haplotype collapsed reference genomes they can
provide individual variant validation (Logsdon et al., 2020) and
increased use of long read technologies on both these fronts will
significantly aid Cryptosporidium research. Generating high
quality reference genomes of more Cryptosporidium species
will facilitate the identification of robust marker genes that can
be used for MLST of isolates during general surveillance and
clinical diagnosis (Morris et al., 2019). Individual variant
resolution using long-read sequencing will help us characterise
isolates, identifying genes and structural variants that drive
pathogenicity. One example of where this will be a particularly
useful tool is in the investigations of C. tyzzeri. The study by
Sateriale et al. isolated a wild strain of the parasite that causes
disease in laboratory mice that recapitulates human pathology
(Sateriale et al., 2019). In contrast, Russler-Germain et al.
identified a strain of C. tyzzeri that occurs commensally in
laboratory mice (Russler-Germain et al., 2021). Genomic
analysis of these variants (and others) may provide a genetic
explanation for the observed differences in pathology.

In addition to facilitating better identification and
characterisation of acute infections that can inform and
improve patient care, sequencing can inform epidemiological
policy more broadly through better parasite surveillance.
Generating tools and methods for deconvoluting inter- and
intra- specific Cryptosporidium population structure is
challenging due to its compact genome, sexual recombination,
CNV, and horizontal gene transfer. However, it is imperative
that we continue to explore these questions in order to identify
the mechanisms behind observations like increased transmissibility
and virulence, reinfection, and seasonality, learning from long read
sequencing studies in Plasmodium (Lin et al., 2018; Runtuwene et al.,
2018; Yang et al., 2021). Studies in other Apicomplexa species should
inform our increased use of long-read DNA sequencing in
Cryptosporidium and subsequent data sets will facilitate the
development of enhanced diagnostics arrays and accurate genotyping.

Long-read RNAseq technologies have and will continue to
reveal important insights into the transcriptional landscape of the
genome and improve our annotation and validation of genes (Lee
et al., 2021; Baptista et al., 2022). Studying complete transcripts
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
can help increase our understanding of the contents of the UTRs;
for example, helping us identify promoter sequences that can be
used for genetic studies, and may form potential therapeutic
targets. Long-read transcriptomics can also shed light on the
abundance of splice isoforms across the life cycle, thereby
increasing our understanding of what defines each stage and the
transitions between them. For example, NMD splicing was found
to be prevalent in T. gondii and P. falciparum (Lee et al., 2021), and
while NMD is typically thought to be stochastic (Saudemont et al.,
2017), it can be regulatory, and in Plasmodium and Toxoplasma
alternative splicing modulates transitions between life cycle stages
(Yeoh et al., 2019; Lee et al., 2021). Long-read transcriptomics
across the different stages of the Cryptosporidium life cycle will
likely help us understand the mechanisms that drive sexual
commitment, possibly unlocking methods to continuously
propagate the parasite, in vitro.

Cryptosporidium research has been hindered in the past by
the inconsistent availability and quality of genomic and
transcriptomic data. The continuing advances in sequencing
technologies, particularly with regards to long-read DNA and
RNA sequencing, are perfectly positioned to drive forward
Cryptosporidium research. The wider use of such technologies
will increase our understanding of the parasite biology and
facilitating translational advances in surveillance, diagnostics,
and therapeutics.
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