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The representation of individual planar locations and
features stored in working memory can be affected by
the average representation. However, less is known
about how the average representation affects the
short-term storage of depth information. To evaluate the
possible different roles of the ensemble average in
working memory for planar and depth information, we
used mathematical models to fit the data collected from
one study on working memory for depth and 12 studies
on working memory for planar information. The pattern
of recalled depth was well captured by models assuming
that there was a probability of reporting the average
depth instead of the individual depth, compressing the
recalled front-back distance of the stimulus ensemble
compared to the perceived distance. However, when
modeling the recalled planar information, we found that
participants tended to report individual nontarget
features when the target was not memorized, and the
assumption of reporting average information improves
the data fitting only in very few studies. These results
provide evidence for our hypothesis that average depth
information can be used as a substitution for individual
depth information stored in working memory, but for
planar visual features, the substitution of target with the
average works under a constraint that the average of
to-be-remembered features is readily accessible.

Introduction

Although it has long been known that humans can
well perceive the depth or distance information (e.g.
a 6-month-old infant can see the depth of a “visual
cliff” to avoid a fatal fall; Gibson & Walk, 1960), recent
studies show that our ability of memorizing depth
information for only a few seconds is poor (Qian, Li,
Zhang, & Lei, 2020; Qian & Zhang, 2019; Reeves & Lei,
2017). Working memory for depth (WMd) is found to

be inaccurate when a single depth position is required
to be remembered (with a change detection accuracy of
78%), and even worse for multiple depth positions (with
an accuracy below 70% for 4 items or more; see Qian
& Zhang, 2019 & Wang, Jiang, Huang, & Qian, 2021).
The inadequacy in working memory seems to be unique
for depth information, because working memory
for multiple planar visual features is fairly accurate
(Luck & Vogel, 1997) and unbiased (Wilken & Ma,
2004).

One important characteristic of WMd is the so-called
contraction bias (also called compression bias) – the
depth positions near the observer are later recalled to
be farther and those far from the observer are recalled
to be nearer, so the whole range of recalled depths is
narrower than the true range (Tanaka, Yamamoto,
Watanabe, & Sung-En, 2016; Zhang, Gao, & Qian,
2021). The contraction bias has been consistently
reported in delayed estimation tasks, which often
required participants to memorize multiple depth
positions defined by binocular disparity, and then
asked them to recall one of the depth positions after
a brief delay (e.g. Zhang, Gao, & Qian, 2021). The
bias was originated from memory not perception,
because the memory displays were presented long
enough (approximately 800 to 1000 ms; Tanaka et al.,
2016; Zhang, Gao, & Qian, 2021) for participants to
perceive the stereoscopic depth accurately. Hence, the
contraction bias is likely due to the poverty of WMd,
which prompts participants to use compensation
strategies further causing the systematic errors. In our
previous study, we used a delayed estimation task and
found that the magnitude of contraction increased
with memory load when the target was presented
alone during the test phase (single-display condition;
Zhang, Gao, & Qian, 2021), but the magnitude of
contraction remained unchanged with memory load
when the other nontarget memory items were presented
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during the test phase (whole-display condition). We
suggested that the presence of nontarget items provided
consistent 2-D spatial configuration and relational
depth information during memory retrieval, which
alleviated the contraction bias for a larger memory load
(set size approximately 3 to 6).

“Swap” error and average
representation in working memory

It is still unclear why the contraction bias occurred in
WMd. One possibility is that the bias could be explained
by the so-called “swap” errors – mistakenly reporting a
nontarget item instead of correctly reporting the target
item (Bays, Catalao, & Husain, 2009). The swap error
may be originated from noise in memory for the cued
features of items (feature-variability account), which
leads to errors in the feature by which responses were
cued (e.g. location) and thus inaccurate judgments on
which item to be tested (Bays, Catalao, & Husain, 2009;
Schneegans & Bays, 2016). It may also reflect a binding
error in working memory – falsely binding a tested
feature with a spatial location even if the features and
locations are themselves correctly memorized (Bays,
Catalao, & Husain, 2009). Recently, researchers also
suggested that the nontarget response may reflect a
guessing strategy that it is better to report a memorized
item, although not the tested one, than to make a
random guess (Huang, 2020; Pratte, 2019). In a typical
depth recall task (e.g. Zhang, Gao, & Qian, 2021),
the to-be-memorized depth positions were randomly
selected from a set of depth planes without replacement.
When a near position was selected as the target, there
was a higher chance for the nontargets to be at farther
positions, and vice versa. Therefore, participants are
more likely to mistakenly swap a farther nontarget
with a near target, or swap a nearer nontarget with a
far target, which leads to the contraction bias. In this
case, the swap error reflects a biased guessing strategy
induced by the experimental setting.

Another possible explanation is that the recalled
individual depth position may be biased toward the
average (possibly over time), which leads the recalled
depth to contract toward the average. There is growing
evidence indicating that working memory stores not
only the information of individual items but also the
ensemble information of all items, such as the average
(Brady & Alvarez, 2011; Dubé & Sekuler, 2015; Huang,
2020; Lew & Vul, 2015; Utochkin & Brady, 2020).
Moreover, the average representation can further
affect the individual representation (Brady & Alvarez,
2011; Utochkin & Brady, 2020). Hence, researchers
suggest that the bias toward the average may reflect a
hierarchical encoding in working memory: individual
items are not stored independently but are structured

from the level of feature representations to individual
objects to the level of groups or ensembles, and these
levels of structure interact (Brady & Alvarez, 2011).

The average representation can affect the
performance of working memory even without an
explicit instruction to estimate or memorize the average
(e.g. Brady & Alvarez, 2011). This phenomenon may
reflect that the averaging is automatic in working
memory (Dubé & Sekuler, 2015). If so, the bias toward
the average should be pervasive in working memory
for the visuo-spatial information. However, note that
the effect of average representation may work under
the constraint that the average feature value across
individual items should be easily perceivable. For
example, the four bars are oriented toward –30 degrees,
–15 degrees, 15 degrees, and 30 degrees, and their
average orientation is clearly 0 degrees; however, if they
were oriented toward –90 degrees, 0 degrees, 90 degrees,
and 180 degrees, their average is unoriented. Indeed,
studies that investigated the average representation in
working memory often chose the individual feature
values based on a predefined average feature value, so
that their average representation is readily accessible
(e.g. Brady & Alvarez, 2011; Utochkin & Brady, 2020).
Similarly, the depth planes tested in the previous studies
can also be easily averaged and finding the middle
of the whole depth volume may be “natural” in such
experimental settings, which results in the contraction
bias in WMd.

Although the behavioral evidence of the contraction
bias has been consistently observed in working memory,
which one of the above mechanisms contributes to
the bias is yet to be explored. Recently, Huang (2020)
characterized this bias in visual working memory
(VWM) to distinguish these two accounts by modeling
responses in delayed estimation tasks (Huang, 2020).
He found that the bias is mainly caused by the swap
responses, whereas directly adding a target-based
bias toward the average contributes only a little to
the observed data. However, behavioral evidence
demonstrated by Utochkin and Brady (2020) showed
that the ensemble average could substantially influence
the memory of individual items even after accounting
for the possibility of swap errors. We think that the
divergence of the results lies in how the ensemble
information plays a part in memory responses: if
the target has not been correctly retained, the mean
representation is then possibly recalled to serve as an
informative guess, resulting in a bias toward the average;
whereas if the target has been memorized with sufficient
precision, the mean representation is no longer in effect.
This may explain why directly adding a mean bias to
the target response works under constraints. Therefore,
we suggest that the contraction bias results from two
separate sources of swap errors – mistakenly recalling
a nontarget item or strategically using the ensemble
average as a substitute.
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In addition, although there is convincing evidence
suggesting that the ensemble statistics plays an
important role in working memory, exactly which part
of memory stimuli constitutes the ensemble is still an
open question. It seems that by default, the ensemble is
composed of all memory items within one trial, as the
aforementioned studies implied. However, researchers
showed that participants can also preserve and combine
visual information across trials (Akrami, Kopec,
Brody, & Diamond, 2018;Chetverikov, Campana, &
Kristjánsson, 2016; Crawford, Corbin, & Landy, 2019).
In a recent study, Crawford et al. (2019) found that
the estimate of averaging several visual stimuli in one
trial was biased toward the central value of stimuli in
previous trials. Therefore, we think that if ensemble
average does contribute to the contraction bias, the
question of whether the ensemble was defined by
stimuli in the present trial, or by stimuli in all past trials,
needs to be clarified.

Mathematical models for working
memory

Past research on VWM has examined how
mathematical models with different response
components could fit to the behavioral data from
working memory tasks, and thus to provide theoretical
evidence for validating specific response components.
For example, Zhang and Luck (2008) devised a classic
model assuming that the recall performance for VWM
can be characterized by a component of successfully
memorizing the target and a component of random
guessing if the target is absent in memory. Although
the authors showed that this “target and guess” model
provides relatively satisfying fits to the data, Bays,
Catalao, and Husain (2009) argued that swap errors
could be an important response component and the
revised model showed that the swap error increases
with memory load (also see Schneegans & Bays,
2016). This model is in accordance with our intuition
that we are more likely to mistake one object for
another when various objects are to be memorized,
and it also seems to be consistent with the previous
findings on WMd that the contraction bias increased
with set size in the single-display condition (Zhang,
Gao, & Qian, 2021). In addition, variants of models
have been developed over the decades, examining
the nature of the internal representations in VWM
and the underlying neural mechanisms (Hardman,
Vergauwe, & Ricker, 2017; Schneegans, Taylor, &
Bays, 2020). For example, Hardman and colleagues
(2017) developed a mathematical model of VWM
that can differentiate between the continuous and
categorical memory representations, and presented

evidence showing that coarse categorical information
is also represented in VWM. Based on the principles
of stochastic sampling and neural coding, Schneegans
and colleagues (2020) developed a model that establish
a unified computational framework to reconcile the
different accounts regarding whether the storage in
VWM is discrete-slot based or continuous-resource
based.

However, none of the previous modeling studies
has investigated the possibility of “swapping” the
target representation with the average representation.
In Huang (2020), he characterized the recall estimates
toward the average as an inherent bias added on to
the recall estimate of the target, which was essentially
different from a swap error. We think that it is
important and necessary to distinguish the two types
of “swapping” – swapping a nontarget or the ensemble
average, because the nontargets and the ensemble
average may be represented with different memory
precision. In a typical recall task, it is unknown to
an observer which one of the memory displays is the
target until the testing stage. Hence, the variability
of recall of a nontarget should in principle be the
same as that of a response based on recalling the
target. On the other hand, studies have shown that the
representation of the ensemble average is different from
that of individuals (e.g. Ariely, 2001), indicating that
the variability of responses to the average could differ
from that of responses to an individual item. In other
words, modeling a swap error of nontargets can be
different from that of the average in their variances of
the underlying response distributions.

In this study, our primary purpose is to explore
whether the contraction bias found in WMd can be
attributed to swapping the target with the average
representation or the nontarget representation. Here,
we used the data from our previous study on WMd
(Zhang, Gao, & Qian, 2021) and collected a new data
set to perform the analysis. The behavioral data was
fitted into mathematical models that consisted of one to
four response components – target response (reporting
the tested depth), average response (reporting the
average as the target), nontarget response (swapping
the target with a nontarget), and random guessing.
In addition, we tested the different average responses
based on an ensemble of memory items in one trial, or
of all memory items in past trials. If “swapping with the
average” contributes to the contraction bias, we should
observe a considerably high probability of average
response, and the models, including the component
of average response, should outperform the models
without this component.

Our secondary purpose is to evaluate and compare
the contribution of average response in working
memory for depth, for planar visual features, and
for 2-D planar locations. If the averaging process is
automatic in working memory, a tendency to report the
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average should occur universally in working memory
for both depth and planar locations and features. But if
it is an optional strategy, it should occur only in some
situations, especially when the ensemble average is easily
accessible.

Methods

Empirical data

Working memory for depth
We used part of the previously published data set

from Zhang et al. (2021) for analysis. The data were
collected using a typical delayed estimation task,
whose experimental procedure was summarized as
follows (for details see Zhang, Gao, & Qian, 2021).
Participants viewed an array of memory items (blue
squares) presented at different stereoscopic depth
positions defined by binocular disparity. They were
asked to reproduce the depth of one selected item
(target depth) after a brief delay by adjusting the depth
position of a probe. The probe could be presented
alone (single-display condition), or be presented with
the other nontarget items (whole-display condition).
The set size of the memory array was up to six. There
were 16 participants in the original study, but seven
of them lacked the detailed records for the depth
positions of memory array in each trial and thus were
excluded. We recruited six new participants (all women;
mean age = 24.3 years), and the data sets from 15
participants with a total of 10,500 trials were used
for model fitting. We received the ethical approval
for this research from institutional review board
(IRB) of our department. Written informed consent
was obtained from each participant prior to all the
experiments.

Planar visual working memory
We collected 12 published data sets of visual working

memory for planar stimuli (Aagten-Murphy & Bays,
2019; Bays, 2014; Bays, Catalao, & Husain, 2009; Bays,
Wu, & Husain, 2011; Gorgoraptis, Catalao, Bays, &
Husain, 2011; Pratte, Park, Rademaker, & Tong, 2017;
Utochkin & Brady, 2020; van den Berg, Shin, Chou,
George, & Ma, 2012; see Table 1 for details), hereafter
referred to as approximately E1 to E12. Three of the
data sets tested working memory for planar locations
(approximately E1 to E3), and the others tested working
memory for planar features. In the most of these
experiments, the features or locations of memory items
were randomly selected: locations arranged in a circular
configuration, colors on a colorful wheel, orientations
form a range of 0 degrees to 180 degrees, or a range of
0 degrees to 360 degrees. In approximately E10 to 12,
the authors tested how the ensemble average affected
memory performances of individual orientations, and
the average feature value was predetermined to aid in
selecting orientations of individual memory items on
each trial. Together, there were 420 subjects and 106,724
trials in total.

Mathematical modeling

We assumed that the response in a delayed estimation
task could be characterized by combinations of four
components – target response, average response,
nontarget response, and random guessing. Figure 1
illustrates the probability distributions of each response
component in the models.

A target response indicates that participants make an
informative recall when they correctly memorized the
target. The target component can be defined as:

p
(
θ̂
) = γTϕ(μ,σ )

(
θ̂ − θ

)
, (1)

No. Study Stimulus Set size Display Subjects

1 Aagten-Murphy & Bays (2019) Experiment 1 2D Location 1 2 4 Single 12
2 Aagten-Murphy & Bays (2019) Experiment 2 2D Location 4 Single 12
3 Aagten-Murphy & Bays (2019) Experiment 3 2D Location 4 Single 12
4 Bays, Catalao, & Husain (2009) Color 1 2 4 6 Single 12
5 Bays (2014) Experiment 1 Orientation (bar) 1 2 4 8 Single 8
6 Gorgoraptis, Catalao, Bays, & Husain (2011) Experiment 2 Orientation (bar) 1–5 Single 8
7 Bays, Wu, & Husain (2011) Orientation (bar) 1 6 Single 10
8 van den Berg, Shin, Chou, George, & Ma (2012) Orientation (Gabor) 1–8 Single 6
9 Pratte, Park, Rademaker, & Tong (2017) Orientation (Gabor) 1 2 3 6 Single 12
10 Utochkin & Brady (2020) Experiment 1 Orientation (triangle) 4 Single 16
11 Utochkin & Brady (2020) Experiment 2 Orientation (triangle) 4 Single 16
12 Utochkin & Brady (2020) Experiment 3 Orientation (triangle) 3 Single 296

Table 1. Summaries of the studies on visual working memory of planar stimuli reanalyzed in this study.
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Figure 1. The probability distribution of the four response components in the model. (A) the distribution of the participant’s response
based on the target and random guessing. Variability in response for memorized target predicts a Gaussian distribution centered on
the actual target feature (shown in blue), and random guessing predicts a uniform distribution (shown in green). (B) the distribution
of response based on the target (blue), random guessing (green), and the nontarget. Variability in response for the non-target predicts
a Gaussian distribution centered on the nontarget feature, with the same standard deviation as the target distribution (shown in red).
(C) The distribution of response based on the target (blue), random guessing (green), and the average. Variability in response for the
average predicts a Gaussian distribution centered on the average value, but with the different standard deviation (shown in orange).

where γ T is the proportion of trials in which participants
make a target response, θ indicates the to-be-memorized
value of the target, and θ̂ indicates the recalled value.
For WMd, the target-based recalls are assumed to be
normally distributed, and thus ϕ represents a Gaussian
distribution. For planar VWM, the responses are made
on a circular analogue, and therefore ϕ are assumed to
be a Von Mises distribution (Gaussian-like distribution
for circular dimensions). The ϕ is characterized by
its mean, μ, and its standard deviation, σ . Because
studies showed that the recalled depth is not only
contracted but also severely overestimated (e.g. Zhang,
Gao, & Qian, 2021), for WMd, we set μ as the mean
of participants’ recalled depths to compensate for the
overestimation. For planar VWM, we set μ as 0, because
no such overestimation was found in VWM for color
and orientation (Wilken & Ma, 2004). The standard
deviation of the response distribution, σ , which is the
variability of target-based recalls, reflects the precision
of memory recalls of the target – a smaller σ indicates
a more precise recall. The free parameters of this
component are γ T and σ . Because the stereoacuity for
the most able observers is about 0.007 degrees (Carrillo,
Baldwin, & Hess, 2020), and the least adjustable unit of
depth in the task is 0.01 degrees, we restricted that σ
cannot be smaller than 0.01 degrees for WMd.

An average response indicates that participants recall
the average representation instead of the target. The
average component can be defined as:

p
(
θ̂
) = γAϕ(0,σA )

(
θ̂ − θ̄

)
, (2)

where γ A is the proportion of trials in which
participants make an average response, and θ̄ indicates
the ensemble average, which was set as the mean
of all the individual values. The standard deviation

(variability) of responses based on the average, σA,
reflects the precision of recalls for the average depth –
a smaller σA indicates a more precise recall. The free
parameters of this component are γ A and σA. For
WMd, we restricted that σA cannot be smaller than
0.01 degrees.

A nontarget response indicates that participants
mistakenly recall a nontarget item (Bays, Catalao,
& Husain, 2009). The nontarget component can be
defined as:

p
(
θ̂
) = γN

1
m

m∑

i

ϕ(μ,σm )
(
θ̂ − θ∗

i
)
, (3)

the to-be-memorized values of m nontarget items in one
trial are donated by {θ∗

1 , θ
∗
2 ,……, θ∗

m}. Each nontarget
has an equal probability of being mistakenly reported
as an estimate of the target. Because participants
could not distinguish the target item from nontarget
items until the testing phase, all the items should be
memorized with equal precision in principle. Hence, the
nontarget response and the target response share the
same parameter of variability (i.e. σm is equal to σ , and
the mean of the response distribution, μ). The only free
parameter of the nontarget component is γN, which is
the proportion of trials in which participants make a
nontarget response.

Random guessing indicates that the participants
make a random guess when they fail to retain the target,
so responses on these trials are drawn from a uniform
distribution. The guessing component can be defined
as:

p
(
θ̂
) = γG

1
r
, (4)
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Model Target response Average response Nontarget response Guess

T&G � – – �
TA � � (Trial average) – �
WA � � (Whole average) – �
TA&WA � � (Trial average and whole average) – �
T&G&N � – � �
TA&N � � (Trial average) � �
WA&N � � (Whole average) � �

Table 2. Summaries of models compared in this article.

where the r is the span of the possible deviation between
the recalled value and the to-be-memorized value of
the target, θ̂ − θ . The r is 3.06 degrees for depths,
180 degrees for orientations of bars and Gabors,
and 360 degrees for planar locations, colors, and
orientations of the triangles used in the included
experiments. γ G is the proportion of trials in which
participants make random guesses, which is equal to
1 minus the proportions of all other types of responses.

We compared seven models that differ in their
assumptions of response components (Table 2).

Target and guess model
The basic model, which was developed by Zhang

and Luck (2008), assumes that participants either make
informative recalls based on the knowledge of the
target or make noninformative random guesses. The
model therefore has a target response component and
a random guessing component, and is addressed as the
“target and guess (T&G)”model hereafter. T&G model
is defined as:

p
(
θ̂
) = γTϕ(μ,σ )

(
θ̂ − θ

) + γG
1
r
. (5)

Trial-average model
This model is a variant of the T&G model, which

includes a target response component, a random
guessing component, and an average response
component. In particular, the average response is based
on the average of the to-be-memorized values in one
trial (i.e. the trial average, which is termed as the TA
component). It can be defined as:

θTA =

m∑
j

θ j

m
, (6)

where the θ j is the value of the jth item among m items
on a trial. For planar VWM, the θ̄TA is the circular
mean (Fisher, 1995) of the feature values on a trial.

The TA model can be defined as:

p
(
θ̂
)= γTϕ(μ,σ )

(
θ̂ − θ

) + γAϕ(0,σA )
(
θ̂ − θ̄TA

)

+ γG
1
r
. (7)

Whole-average model
This model is otherwise identical to the TA model,

except that the average response is based on the average
of to-be-memorized values in the present and all
previous trials (i.e. whole average, which is termed as
the WA component). The whole average on the nth trial
can be defined as:

θWA =

n∑
i

mi∑
j

θi j

n∑
i
mi

, (8)

where the θ ij is the value of the jth item among mi items
on the ith trial in a total of n previous trials. For planar
VWM, the θ̄WA is the circular mean of all the feature
values on the current trial and all previous trials. Note
that replacing θ̄TA in Equation 7 with θ̄WA defines the
WA model.

Target and Guess and Non-target model. This model
is another variant of the T&G model, which includes
a target response component, a random guessing
component, and a nontarget response component.
No average response component is incorporated. The
model can be defined as:

p
(
θ̂
) = γTϕ(μ,σ )

(
θ̂ − θ

) + γN
1
m

m∑

i

ϕ(μ,σm )
(
θ̂ − θ∗

i
)

+ γG
1
r
. (9)

The last two models incorporate an average
component to the target and guess and nontarget
(T&G&N) model. If the average response is based
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on the trial average (θ̄TA), the model is termed as
trial-average and non-target (TA&N) model; if the
average response is based on the whole average (θ̄WA),
the model is termed as whole-average and nontarget
(WA&N) model. Both can be defined as:

p
(
θ̂
) = γTϕ(μ,σ )

(
θ̂ − θ

) + γAϕ(0,σA )
(
θ̂ − θ̄

)

+ γN
1
m

m∑

i

ϕ(μ,σm )
(
θ̂ − θ∗

i
) + γG

1
r
. (10)

Note that θ̄ in Equation 10 is replaced with θ̄TA for
the TA&N model, and is replaced with θ̄WA for the
WA&N model.

An additional model with both a TA component and
a WA component were evaluated if the models with
an average response component (e.g. the TA model,
the WA model, etc.) outperformed the models without
(e.g. the T&G model, and the T&G&N model). This is
the trial-average and whole-average (TA&WA) model,
which can be defined as:

p
(
θ̂
) = γTϕ(μ,σ )

(
θ̂ − θ

) + γTAϕ(0,σTA )
(
θ̂ − θ̄TA

)

+ γWAϕ(0,σWA )
(
θ̂ − θ̄WA

) + γG
1
r
, (11)

where γ TA and γWA are the proportion of trials in which
participants reported the TA and the WA, with the
standard deviation of σTA and σWA, respectively. Note
that, in principle, we could add a nontarget component
in the TA&WA model, but this would result in too
many free parameters in the model and therefore it was
not evaluated.

For each model, the maximum likelihood estimates
(MLEs) of the free parameters were obtained separately
for each participant and each set size condition using
a nonlinear optimization algorithm (Nelder & Mead,
1965). We used MATLAB and the toolbox adapted
from BaysLab (http://bayslab.com) to run modeling.

Model comparison and parameter estimates
analysis

Working memory for depth
We use two approaches to qualitative evaluate how

well the model fits the data newly collected and those
from the previous study on WMd (Zhang et al., 2021).
First, we examined whether a model could simulate
the contraction bias observed in WMd (i.e. the bias of
overestimating the nearer depths [negative disparity]
and underestimating the far depths [positive disparity]),
which in the data resulted in the slope of the linear
regression between the recalled depths and the true
depths being smaller than one (for details, see Zhang
et al., 2021). Hence, if a model could well simulate
the contraction bias, the slope of the linear regression
between its predicted depths and the true depths

should also smaller than one. Second, we examined
whether a model could simulate how the magnitude
of the contraction bias varied with the set size of
memory items. In the raw data, the contraction bias
increased with set size in the single-display condition,
but it did not vary with set size in the whole-display
condition. This indicates that the probability of the
possible origin(s) of contraction bias (average response
or/and nontarget response) increases with set size in
the single-display condition, but remains stable across
set sizes in the whole-display condition. A well-fitting
model should also capture this characteristic. Therefore,
we conducted repeated-measures ANOVA to test
whether the probability of each type of response varied
with set sizes (trend analyses). In this study, p values for
multiple comparisons were corrected by an adjustment
of false discovery rate (FDR correction; Benjamini &
Hochberg, 1995).

To quantitatively compare the model fittings, we
calculated the Akaike Information Criterion (AIC;
Akaike, 1974) per model fitting for each participant.
Lower AIC values indicate better fittings. The best
fitting model was chosen based on the AIC value.

In addition, we further examined the precision of
memory representation indicated by the best fitting
model. The precision of memory is reflected by the
standard deviation of responses. In this study, the
standard deviation of each type of response component
is a parameter estimated in the corresponding model
(in the unit of degree of visual angle), therefore
based on the types of response component embedded
in the model, we may be able to evaluate the
precision of different memory responses. In this
case, a paired-samples t-test (for a model including
target/nontarget and average response components; e.g.
Bays, Catalao, & Husain, 2009) would be conducted
accordingly.

Planar visual working memory
For the studies on planar VWM, our main focus is to

evaluate how pervasive the average responses are used
in the task of working memory for planar information.
Because the previous studies that investigated memory
averaging often used different tasks compared to that
investigated individual memory representation (e.g. the
former usually involved a task instruction of estimating
the average; Ariely, 2001), the representation precision
of the memory average and individual item has not
been evaluated within a single experimental paradigm.
Here, we used mathematical models to differentiate
the average-based responses and the individual-based
(target/nontarget) responses in each study, and this
allows us to evaluate the two types of memory
representation without specific task instructions of
estimating either an individual or the average. The
same models were applied, and the AIC value per
model fitting for each participant in each experiment

http://bayslab.com
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was calculated for comparison. The results of AIC
values indicated whether incorporating an average
response component in the model could improve the
goodness of fit. In addition, for the best fitting model,
we conduct a paired-samples t-test to compare the
precision of memory representation indicated by the
specific response component.

Results

Working memory for depth

Model fitting
Figures 2A and 2B show participants’ recalled values

for target depths and the estimated values predicted

by the models, and Figures 2C and 2D show the 95%
confidence interval of the slope of each regression line.
The slope of the fitted line of raw data was 0.84 in the
single-display condition and 0.90 in the whole-display
condition. The contraction bias was captured by the
models, including a single average component (either
TA or WA), with the slopes being around 0.90 for both
the single and whole displays (for the single display: TA
= 0.90; WA = 0.89; TA&N = 0.91; and WA&N = 0.89;
for the whole display, TA = 0.92; WA = 0.92; TA&N =
0.93; and WA&N = 0.92). However, the models without
an average component predicted no such a bias, with
the slopes being about 0.99 for the T&G model (single
display = 0.99 and whole display = 0.98), and 0.96 for
the T&G&N model (single display = 0.96 and whole
display = 0.96). Note that, in principle, the T&G model

Figure 2. Model comparison of predicted performance. (A) and (B) Participants’ estimates of each target depth and the corresponding
predicted values of models in single- and whole-display conditions, respectively. Lines indicate the linear regression lines of the
relations between depth estimates (or predicted values) and target depths. Error bars represent ± 1 SEM. (C) and (D) The 95%
confidence intervals (CIs) of the slopes of the regression lines in A and B. Bars represent CIs of slopes predicted by models. The dash
line represents the slope of the regression line between participants’ real recalled depths and the target depths, and the gray area
represents the CI of this slope.
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Figure 3. The estimated probability of each response component as a function of set size. (A) and (B) The response ratios of T&G, TA,
WA, and TA&WA models in single- and whole-display conditions, respectively. (C) and (D) The response ratios of T&G&N, TA&N, and
WA&N models in single- and whole-display conditions, respectively. Error bars represent ± 1 SEM.

cannot predict a slope other than 1.0, because the
random guesses should not be expected to converge
to the center of the depth volume. The experimental
settings of the delayed estimation tasks for depth
might induce a contraction bias in the T&G&N model
(see “Swap” error section in Introduction), but the
results of modeling fittings suggest that the nontarget
response component cannot sufficiently explain amount
of contraction bias observed in the behavioral data.
Overall, adding a nontarget component did not improve
the fitting for the models that already had an average
component. These results showed that the average
response components, not the nontarget response
component, are crucial in simulating the contraction
bias.

Because both the TA model and the WA model
predicted the contraction bias well, we further fitted the

TA&WA model. The slope is 0.89 for the single display
and 0.92 for the whole display. The 95% confidence
intervals (Figures 2C, 2D) showed that the TA&WA
model fitted slightly better than the TA model, and
slightly worse than the WA model, suggesting that the
average over the previous trials might weight more than
the trial average in the response.

Figure 3 shows the estimated probability of each
response component as a function of set size (see Table
3 for reports on p values of ANOVAs). For the single
display, the models including the average components
all predict that the probability of average response
increases with set size (ps < 0.024, although not for the
TA component in the TA&WA model), which mirrors
the trend that the contraction bias increased with set
size in the single display. For the whole display, the
models including the average components all predict
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Model Target response Average response Nontarget response

Single-display T&G NS (p = 0.912) – –
TA ↓ (p = 0.002)** ↑ (p = 0.001)** –
WA ↓ (p = 0.004)** ↑ (p = 0.002)** –

TA&WA ↓ (p = 0.001)** TA: NS (p = 0.118) WA: ↑ (p = 0.024)* –
T&G&N ↓ (p = 0.021)* – ↑ (p = 0.048)*
TA&N ↓ (p = 0.003)** ↑ (p = 0.006)** NS (p = 0.135)
WA&N ↓ (p = 0.001)** ↑ (p = 0.003)** NS (p = 0.206)

Whole-display T&G NS (p = 0.183) – –
TA NS (p = 0.12) NS (p = 0.12) –
WA NS (p = 0.073) NS (p = 0.069) –

TA&WA NS (p = 0.152) TA: NS (p = 0.543) WA: NS (p = 0.073) –
T&G&N ↓ (p = 0.005)** – NS (p = 0.168)
TA&N NS (p = 0.131) NS (p = 0.164) NS (p = 0.106)
WA&N NS (p = 0.073) NS (p = 0.097) NS (p = 0.105)

Table 3. Results of trend analysis testing whether the models’ estimated probability of each response component linearly increases
with set size. Note. “↓”, linear decrease; “↑”, linear increase; “*”, p < 0.05; “**”, p < 0.01; NS, not significant.

T&G TA WA TA&WA T&G&N TA&N WA&N

Single-display −49.90 (7.70) −50.63 (7.45) −51.06 (7.27) −47.73 (7.26) −48.93 (7.66) −48.67 (7.40) −49.05 (7.32)
Whole-display −75.81 (8.46) −78.13 (8.00) −78.15 (8.04) −75.41 (7.92) −75.05 (8.36) −76.11 (7.99) −76.37 (8.07)

Table 4. Models’ AIC values of working memory for depth. Note. Standard errors in parentheses.

that the probability of average response does not vary
with set size (ps > 0.069), which is also consistent
with the raw data. For the three models, including the
nontarget response, only the T&G&N model predicts
that the probability of nontarget response increases
with set size in the single display. Hence, these results
showed that the models with an average response
component generally performed better in capturing the
characteristics of raw data.

Model comparison
The AIC value of each model in each display

condition is shown in Table 4. To better demonstrate
the effect of average response components on the
model fitting, we subtracted AIC values of the TA,
WA, and TA&WA models from that of the T&G model
(see Figures 4A, 4B). For both displays (especially
in the whole-display condition), the two models
including a single average component (TA or WA)
are better than the basic T&G model. However,
the TA&WA model is worse than the T&G model.
Similarly, to better demonstrate the effect of the
nontarget response component on the model fitting,
we subtracted the AIC values of T&G&N, TA&N, and
WA&N models from the AIC values of T&G, TA, and
WA (the corresponding models without a nontarget
component), respectively (see Figures 4C, 4D). In each
condition, for each model, adding a nontarget response

component brings a larger mean AIC value, which
indicates a worse fitting.

To summarize, the average response component
is important for simulating the contraction biases in
WMd, and the nontarget response component does not
benefit, if it does not harm, the model fitting. However,
including both the TA and the WA components did not
improve model fitting. Therefore, the two models with
a single average response component – the TA and the
WA models – are selected as two candidates for the best
fitting model.

Precision comparison
The above evidence shows that the TA model and

the WA model are the two most competitive models,
both of which include a target response component
and an average response component. To further
evaluate the fidelity of different types of memory
representation, we compared the estimated precision of
the target responses with that of the average responses
in each condition. For the WA model, the mean
standard deviation of target responses was significantly
smaller than that of average responses, indicating that
the precision of memorizing the target depth was
significantly higher than the precision of responses
based on the average depth in the both conditions:
single-display, 0.15 vs. 0.22, t(14) = 2.30, p = 0.037;
whole-display, 0.12 vs. 0.23, t(14) = 4.17, p = 0.002;
and for the TA model: single-display, 0.15 vs. 0.23,
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Figure 4. Models’ relative AIC values. (A) and (B) The effect of the average response component on the model fitting for the single and
whole displays, respectively. Bars represent the AIC value of the T&G model minus that of the TA model, the WA model, or the
TA&WA model. A positive value indicated better fitting than the T&G model. (C) and (D) The effect of the nontarget response
component on the model fitting for the single and whole displays, respectively. Bars represent the AIC values of models without the
nontarget response component minus that of these models with such a component. A positive value indicates that the nontarget
component improves the model fitting. Error bars represent ± 1 SEM.

t(14) = 3.68, p = 0.003; whole-display, 0.12 vs. 0.25,
t(14) = 4.81, p = 0.001. These results show that
individual memory representation is consistently more
precise than the average representation.

Planar visual working memory

Model comparison
Table 5 shows the AIC values of models fitting the

data of VWM for planar information. For most of the
experiments, the best fitting model included a nontarget
response component. Because neither the TA model
nor the WA model provides the best fitting in any of the
experiments, the TA&WA model was not evaluated for
planar VWM.

T&G TA WA T&G&N TA&N WA&N

E1 −293.18 −292.06 −289.70 −301.34 −298.30 −296.60
E2 −185.31 −205.44 −182.29 −264.19 −264.24 −261.14
E3 −325.63 −336.34 −322.61 −367.10 −364.96 −362.02
E4 306.39 306.35 308.22 299.32 301.60 301.56
E5 495.34 495.45 497.59 493.09 495.78 495.57
E6 185.69 188.61 186.32 189.69
E7 695.03 692.31 687.39 689.79
E8 781.45 784.71 782.82 786.33
E9 1242.97 1243.86 1241.10 1243.55
E10 507.56 439.94 510.88 428.20 422.40 431.52
E11 840.01 784.30 842.70 777.28 767.63 780.45
E12 263.67 264.36 266.14 262.19 264.65 264.89

Table 5. Models’ AIC values of visual working memory for
planar stimuli. Note. Bold numbers are AIC values of the best
model in an experiment.
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Similar to what has been done for WMd, we
subtracted AIC values of the TA and WA models from
that of the T&G model to demonstrate the effect of
average components on the model fitting (see Figure
5A). For all experiments, the WA model is no better
than the T&G model, but the TA model is better than
the T&G model in E2, E3, E10, and E11. Among
these four experiments, E2 and E3 are two of the three
experiments on working memory for planar locations.
For E10 and E11, the individual feature values of
memory items used in these experiments were equally
spaced in a range centered at a predefined average
value, which made their average representation easily
accessible. In all the other experiments, individual
feature values of the to-be-remembered items were
randomly selected.

We further subtracted the AIC values of the
T&G&N, TA&N, and WA&N models from that
of their corresponding models without a nontarget
response component (the T&G, TA, and WA models,
respectively) to demonstrate the effect of nontarget
response component (see Figure 5B). For eight of 12
experiments, adding the nontarget response component
improved the model fitting for all the models tested; for
two experiments (E5 and E12), adding the nontarget
response component improved the fitting for the T&G
and WA models but was almost equivalent for the TA
model; for the other two experiments (E6 and E8),
adding the nontarget response component did not
affect the fitting. For the four experiments (E2, E3, E10,
and E11) in which the average component improves

the fitting, adding the nontarget response component
greatly improved the model fitting (see Figure 5B).
The best fitting model for E2, E10, and E11 is the
TA&N model, and the best fitting model for E3 is the
T&G&N model (see Table 5). The T&G&N model also
fits best in six out of the eight other experiments. These
results indicate that the nontarget response component
is crucial and can be commonly found in tasks of
VWM for planar information, whereas the average
representation response component does not play an
important role in these tasks.

Precision comparison
The precision comparison analyses can only be

performed for experiments whose best fitting model
includes both an individual-based response and an
average response. For E2, E10, and E11, the best fitting
model is TA&N. However, because the AIC values of
the TA&N (–264.24) and T&G&N (–264.19) models
in E2 are almost equivalent, we did not perform the
precision analysis for E2. For E10 and E11, the mean
standard deviation of target responses was significantly
larger than that of average responses, indicating
that the precision of memorizing the orientation of
the target was lower than that of memorizing the
average orientation: in E10, 15.23 vs. 12.56, t(15) =
2.49, p = 0.025; and in E11, 20.24 vs. 12.83, t(15) =
3.97, p = 0.002. These results seem to suggest that
unlike WMd, the average representation for 2-D

Figure 5. Relative AIC values of models fitting the data from experiments on planar VWM. (A) Each point represents the AIC values of
the T&G model minus that of the TA (red) model or the WA (blue) model in that experiment. A positive value indicates that the model
with an average component provides better fitting. (B) Each point represents the AIC values of the T&G model (green), the TA model
(red), and the WA model (blue), minus that of the corresponding models with a non-target response component in that experiment.
A positive value indicates that the model with a nontarget response component provides better fitting. Error bars represent ± 1 SEM.
Along the abscissa axis, the purple numbers indicate the experiments of visual working memory for planar locations; the bold
numbers indicate the experiments in which the average value of to-be-remembered features was selected in advance; the others
indicate the experiments of visual working memory for planar features.
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visual information, if generated, is more precise than
individual representation.

Discussion

In the current study, we explore the contribution
of average representation in the working memory
for depth, and in the working memory for planar
locations and features. We used mathematical modeling
to characterize participants’ responses of recalling
the stored information after a brief delay. For recalls
of depth information, the best-fitted model provides
evidence that the average representation can be as a
substitution of individual information in WMd, but
swapping the target with nontargets rarely occurs in
WMd. In addition, the evidence shows that the present
and the past information both contribute to forming the
average representation of depth. For recalls of planar
features and locations, the best-fitted model indicates
that, in contrast to the WMd, the representation of
nontargets is commonly used as the substitution of
the target, but swapping the target with the average
occurs in the planar VWM only when 2-D spatial
information is tested or when the average representation
is easily perceived and accessed. This indicates that
biasing toward the average is strategical, not inherent or
automatic, in the planar VWM.

Our findings on planar VWM are consistent with
previous studies. For example, (Papenmeier & Timm
2021; a replication of Brady & Alvarez, 2011) found
that the memorized sizes of individual stimuli are
biased toward the average only for some observers.
Evidence also suggests that trial averages have little
influence on recall of circular variables, such as
colors (Harrison, McMaster, & Bays, 2021; van den
Berg, Awh, & Ma, 2014). In addition, past research
showed that the average representation is more precise
than the individual representation by comparing
the performances in separate memory tasks (e.g.
Ariely, 2001; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001), which motivated the hypothesis that
the averaging process is in parallel with the process of
the individuals (Ariely, 2001; Chong & Treisman, 2005;
Epstein & Emmanouil, 2021). In the current study, we
used mathematical models to differentiate the average
representation and individual representation in the same
task, and compare the precision of the two types of
representation based on the standard deviation of the
corresponding distribution estimated by the best model
– a larger standard deviation indicates lower precision
(Zhang & Luck, 2008). We think that this method is
more efficient, and feasible for the tasks not specifically
designed for testing average information. For two of
the experiments (E10 and E11) whose best fitting model
includes the component of average-based responses, the

memory precision of average representation is higher
than that of the individual, which is consistent with the
previous findings on the ensemble perception of planar
features.

To date, less is known about how the visual system
represents the average of depth information. Using
mathematical modeling, we found that the models’
performances were greatly improved by the assumption
that participants tend to strategically report the average
representation to serve as a substitution for individual
depth in a WMd task. The probability of reporting
the average depth increased with the memory load.
Past research showed that the working memory for
individual depth information is inaccurate even if only
one depth position is to-be-memorized, and it gets even
worse when more depths are to-be-memorized (Qian
& Zhang, 2019). It is possible that the lower accuracy
of memory lead to lower confidence when making
recalls of individual depths, which results in reliance on
other sources of information, such as the average depth
representation. The average may be computed at the
time of perception or at the decision stage, and is given
a higher weight such that it decays less quickly than
the individual depths. Therefore, participants opt for
reporting the average instead of the nontargets when
the target depth is not stored. In addition, the results of
estimated parameters of models (standard deviations
of the corresponding average or target/nontarget
distributions) suggest that the memory precision of the
average depth is lower than that of the individual depth,
which is contrary to the findings on planar features.

The findings on WMd and VWM indicate that there
may be separate mechanisms underlying the ensemble
perception of spatial depth information and that of
planar visual features. The higher precision for average
representation in VWM suggests that the perception
of ensemble information of planar feature can be
independent of the perception of individual features
(Chong & Treisman, 2003; Chong & Treisman, 2005;
Epstein & Emmanouil, 2021). Chong and Treisman
(2003) found that the thresholds for discriminating the
average sizes of two displays were little affected by
memory delay, whereas the thresholds for discriminating
the sizes of two individual items increased with the
delay. These findings support separate processing for
ensemble planar information and individual planar
information. However, for WMd, it is possible that the
average representation of depth is calculated based on
the representation of individual depth, therefore, this
additional process of averaging introduces additional
errors, which result in a lower precision for the average
representation. Because the ensemble statistic may
involve higher level of processing, it might be given
a higher weight and decay more slowly, and therefore
come to dominate WMd as time goes by.

We have shown that unlike in VWM, best fitting
models for WMd are based on the assumption that
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participants tend to strategically use average depth
representation instead of nontarget representation as
a substitution for the target, which may reflect that
depth information stored in work memory is inherently
structural. When the depth information is stored as a
spatial structure or configuration in working memory, it
can be easier to perceive the ensemble information, such
as the average, and harder to individualize each depth
location, as they are stored as a whole. Indeed, recall of
depth is more accurate and less biased when a spatial
configuration is provided (Qian & Zhang, 2019; Zhang
et al, 2021), and manipulating the relative depth order,
which requires registration of the structural depth
information, significantly affects memory performance
for detecting changes in depth (Qian et al., 2020). The
present study, together with the past findings, provides
evidence that the structural and ensemble depth plays
an important role in WMd.

Our study showed that the mathematical models
with an average component based on one trial and that
based on all past trials performed similarly in fitting
the raw data from a WMd task, although the model
with the average overall past trials might have a slight
advantage in model fitting (see Figure 5). To rule out
the possibility that the two types of average coincided
with each other on most trials for each participants, we
checked the absolute difference between the average
depth in one trial and the average depth in all past
trials and found that the mean absolute difference
across participants is about 0.1 degrees, which is much
larger than the stereoacuity for normal observers (0.007
degrees; Carrillo, Baldwin, & Hess, 2020) and more
than half of the relative disparity applied between
the two nearest neighboring depths in the task (0.17
degrees). Therefore, the equally good performance of
the two models may reflect that both the current and
the past information can be served to create the average
depth representation in working memory.

Studies have shown that when explicitly reporting the
average of sequentially presented stimuli, the recently
presented stimuli were more weighted in calculating
the average (Hubert-Wallander & Boynton, 2015;
Tong, Dubé, & Sekuler, 2019; also see Ebbinghaus,
1885/1974). However, the averaging of planar location
shows a reverse trend that the earlier stimuli are
weighted more (Hubert-Wallander & Boynton, 2015).
To further examine the contribution of averaging over
a single trial and all past trials, we fitted the data of
WMd using a recency-prioritized weighted average
model (RA model; see the Supplementary Information
for details), in which the recent stimuli weighted more
for computing the average (following an exponential
function; Tong, Dubé, & Sekuler, 2019). We found that
the RA model performed better than the TA model for
the single display, but do not provide a better fitting
than the WA model (the two models perform similarly),
suggesting that the information from all previous trials

tend to be weighted equally for computing the average
depth. It is possible that the internal representation
of the average depth is updated on each trial, so that
information in all trials contributes equally to the
formation of average depth.

The hierarchical encoding model postulates that
items are stored in working memory at several levels
from individual items to the whole ensemble of them
(Brady & Alvarez, 2011; Utochkin & Brady, 2020).
We think that the whole memory history contributes
to form the ensemble (including the average), which
may be at a relatively high level of representation in the
framework of hierarchical encoding model. Numerous
studies have found that stimulus history can influence
current judgments in cognitive tasks (Akrami et al.,
2018; Chetverikov, Campana, & Kristjánsson, 2016;
Crawford, Corbin, & Landy, 2019). Consistently, we
found that not only the currently presented depth
information but also all past depth information can
be useful in creating the average depth representation,
indicating that the information from the memory
history of stimuli is incorporated in the ensemble.
As information stored in the long-term memory may
benefit the working memory performance (Brady,
Störmer, & Alvarez, 2016, Xie & Zhang, 2017), we
think that the ensemble based on memory history of
stimuli may be stored in a higher level of the hierarchy
model, which also can affect individual representation.

Notably, our conclusions for WMd rely on the
data from a single study and therefore need further
confirmation. In addition, the current work on WMd
focuses on the contribution of average representation
in the cases where the target may not be stored, but we
cannot rule out the possibility that the responses may
be systematically biased toward the center of space,
leading to the contraction bias. This center bias can be
found in studies using noncircular spaces (e.g. Sims,
Jacobs, & Knill, 2012; Wilken & Ma, 2004) and can be
reproduced by Bayesian models that incorporate a prior
reflecting the stimulus space (e.g. Salmela, Ölander,
Muukkonen, & Bays, 2019). The present study did not
distinguish whether the contraction bias comes from
reporting the average of the tested feature values or a
systematic bias to the center of the space, and future
investigation is needed to clarify these two accounts.

Keywords: working memory, computational modeling,
ensemble representation, depth
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