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In quantum information, complementarity of quantum mechanical observables plays a key role. The
eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More
generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the
Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the
identification of a maximal set of MUBs remains an open problem, although there is strong numerical
evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed
holographic technique, we implement and test different sets of three MUBs for a single photon
six-dimensional quantum state (a ‘‘qusix’’), encoded exploiting polarization and orbital angular momentum
of photons. A close agreement is observed between theory and experiments. Our results can find
applications in state tomography, quantitative wave-particle duality, quantum key distribution.

T
he ‘‘complementarity’’ of different observables of a same physical system is one of the basic features of the
quantum world1. Beside its fundamental relationship with the concept of wave-particle duality, comple-
mentarity today plays a key role in areas ranging from quantum state reconstruction2 to quantum informa-

tion applications such as quantum key distribution3. Mathematically, complementary observables are described
by noncommuting Hermitian operators whose sets of eigenstates form different bases in the Hilbert space that are
said to be ‘‘mutually unbiased’’ (MUBs). This expression refers to the fact that the overlap (or inner product) of
any pair of states belonging to different bases is the same4.

In quantum cryptography, complementary observables and the associated MUBs are the core of all protocols
proposed for secure quantum key distribution, starting from the famous BB84 protocol5 and its extension to three
qubit bases6. The ‘‘no cloning theorem’’ implies that Alice and Bob can always recognize a possible eavesdropper
attack by detecting the associated disturbance introduced in the system. In particular, the adoption of MUBs for
encoding the information is known to maximize this disturbance allowing one to recognize the attack most
effectively3.

In high-dimensional systems, complementary observables and the corresponding MUBs have been exploited
to enhance the security in quantum cryptograpy7, perform fundamental tests of quantum mechanics, such as
quantum contextuality8–10, explore logical indeterminacy11, and several other tasks in quantum information. For
instance, new quantum key distribution protocols were conceived in which a larger error rate can be tolerated
while preserving security12,13. Moreover a different protocol extending Ekert9114 by using entangled qutrits has
been experimentally realized15. In quantum state tomography, MUBs play a crucial role because they correspond
to the optimal choice of the measurements to be performed in order to obtain a full reconstruction of the density
matrix.

Given a Hilbert space of dimension d, an important problem is to find the maximum number of MUBs that can
be defined simultaneously. Although for spaces of prime-power dimensions there exist several methods to find a
maximal set of d 1 1 MUBs16, this problem remains in general hitherto unsolved17,18. Dimension six, in particular,
has been widely investigated in the last few years19–22 because it is the lowest one for which the problem is still
open. Nevertheless, several theorems imposing restrictions on the properties of the maximal set of MUBs have
been proved23,24 and strong numerical evidence suggests that no more than three mutually unbiased bases actually
exist in dimension six19,22,25,26.
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Different experimental approaches have been recently adopted to
implement complete sets of MUBs for state reconstruction in photo-
nic systems. For example, the polarization of a photon pair was used
to define MUBs in dimension four27, the orbital angular momentum
(OAM) of single photons has been used to address Hilbert spaces
with d 5 2, 3, 4, 5 28, and multiple propagation modes were combined
to reach dimensions d 5 7, 8 29. Hybrid methods combining polar-
ization and OAM were also used to define and manipulate photonic
ququarts (d 5 4)30,31. However, since in d 5 6 no complete set of
MUBs is known, this case has not been investigated hitherto for state
tomography and, to our knowledge, even the minimal set of three
MUBs has never been demonstrated in an experimental framework.
In the present work, we shall focus our attention on this important
six-dimensional (6D) case.

In this paper we demonstrate the generation of MUBs in 6D by
exploiting two different approaches. A 6D Hilbert space can be
always decomposed in the tensor product of a two-dimensional
(2D) and a three-dimensional (3D) space. Hence, a possible route
to implementing 6D quantum states (qusix) is by combining the 2D
and 3D spaces related to two different degrees of freedom of the
photon. Following this route, in our first experiment we prepare
and analyze all states of three MUBs in a 6D Hilbert space obtained
by combining the 2D space of polarization and a given 3D subspace
of the OAM. The OAM degree of freedom is related to the photon’s
transverse-mode spatial structure, and in principle it allows one to
define a single-photon Hilbert space of arbitrarily large dimension-
ality32–35. In our second experiment, we exploit this feature to prepare
and test three MUBs in a 6D space defined only in the OAM of the
photon. The polarization qubit is easily manipulated with standard
optical elements, while arbitrary OAM states can be obtained by
computer-generated holography using a spatial light modulator
(SLM). In the present work we developed a novel method to deter-
mine the hologram kinoform in order to obtain a sufficiently high
fidelity in the state generation. Indeed, MUBs are very sensitive to the
generation fidelity and relatively small imperfections are immedi-
ately visible in the MUBs cross overlaps. A high fidelity is also crucial
to exploit MUBs for quantum cryptography.

Results
Mutually unbiased bases. Let A and B be two operators in a d-
dimensional Hilbert space, with orthonormal eigenbases {jaiæ} and
{jbiæ} respectively. Eigenstates of these observables are said to be
mutually unbiased2,4 if

aijbj
� ��� ��2~ 1

d
, Vi,j[ 1, . . . ,df g: ð1Þ

Such operators are also called mutually complementary, or
maximally noncommutative, since given any eigenstate of one, the
outcome resulting from a measurement of the other is completely
undetermined. In a d-dimensional Hilbert space a pair of MUBs can
always be found. Indeed, let {jaiæ} be the computational basis,

aij if g~ 0j i, 1j i, . . . , d{1j if g: ð2Þ

A discrete Fourier transform can be then used to define the following
dual basis, which is mutually unbiased to the previous one:

bij i~
1ffiffiffi
d
p
Xd{1

j~0

v
ij
d aj

�� � ð3Þ

where vd 5 exp (i2p/d), and the non-italic i denotes the imaginary
unit (not to be confused with the index i). The pair of operators
associated to these bases, often named Ẑ and X̂ reminiscent of the
Pauli operators, provides an algebraic complete set of observables
that fully parametrizes the physical degree of freedom described by

the Hilbert space: all other operators acting on this space are product
of powers of Ẑ and X̂4.

An open issue concerns the maximal number of MUBs that can be
found in a d-dimensional space; in the specific case when d is equal to
a prime number or to a prime power, a maximal set of d 1 1 MUBs
does exist4. This set is also ‘‘complete’’, in the sense that by projective
measurements over its states (d 2 1)(d 1 1) 5 d2 2 1 independent
real parameters can be obtained, which are exactly the number of
parameters needed for full density matrix reconstruction2. A com-
plete set of MUBs can be found using several methods, i.e., the Galois
Field, the Heisenberg-Weyl group, Hadamard matrices, etc. (for a
review see4,16). However, in the general case of composite dimensions
that are not prime powers such as d 5 6, 10, 12, …, all these methods
fail36. On the base of extensive numerical simulations, it has been
conjectured that complete sets of MUBs do not exist in this case25,26,
although such conjecture hitherto has not been rigorously proven. A
minimum number of MUBs that is known to exist in such cases is
given by pk 1 1, where pk is the lowest factor in the prime decom-
position of the number d37. For instance, in the d 5 6 case, three
MUBs can be easily constructed, but no evidence for the existence of
a fourth basis that is unbiased with the first three has ever been found.

The Hilbert space H6 of a 6D system can be always factorized in
the direct product of a 2D and a 3D space, i.e.,

H6~H2
6H3:

Both these Hilbert subspaces possess complete sets of MUBs,

ma
i

�� �� �
and nb

j

��� En o
, containing respectively three and four bases.

Although the states of these bases can be combined to form twelve
different separable bases for the space H6, which can be used for a
complete tomography of the qusix state, only sets with three MUBs
can be constructed. A possible choice is given by the following three
bases:

I~ m1
i

�� �
6 n1

j

��� En o

II~ m2
i

�� �
6 n2

j

��� En o

III~ m3
i

�� �
6 n3

j

��� En o
ð5Þ

where i [ {1, 2} and j [ {1, 2, 3}; an explicit matricial expression of
states that we consider is reported in the Methods section. It can be
immediately seen that any other basis obtained introducing the

fourth one n4
j

��� En o
of the spaceH3 would not be mutually unbiased

with the others, since it is missing a different basis inH2. The set (5)
consists of 18 product states and cannot be extended by any other
vector inH6, even if entangled states are considered23; moreover if a
complete MUB set in d 5 6 existed, then only one among the seven
bases therein could be composed of product states, while all others
must be entangled24.

OAM encoding and the holographic technique. Let jmæ denotes the
eigenstate of the photon OAM with eigenvalue m , where m is any
integer. These states define the entire infinite-dimensional Hilbert
space of OAM. We note that a full specification of the transverse
optical modes would actually require assigning also a radial number,
as in the case of Laguerre-Gauss modes. However, here and in the
following we will omit this radial number and the specification of a
given radial profile will be understood for each value of jmj.

We now define a 3D subspace O in OAM as that spanned by the
three eigenvectors {j11æ, j0æ, j21æ}. These states can be taken to
define the logical basis O1 of a photonic qutrit in the Hilbert space
O. A second basis inO that is mutually unbiased with the logical one
can be obtained as the Fourier-transform one O2~ a1j i, a2j i, a3j if g
defined as in Eq. (3). Explicitly, we have a1j i~ {1j iz 0j izð
1j iÞ
� ffiffiffi

3
p

, a2j i~ {1j izv 0j izv2 z1j ið Þ
� ffiffiffi

3
p

, a3j i~ {1j izv2 0j izð
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v z1j iÞ
� ffiffiffi

3
p

, where v 5 v3 5 exp (i2p/3) and we have used the
identity v4 5 v. The other two bases of a maximal set of MUBs inO
are then defined as follows: O3~ b1j i, b2j i, b3j if g with b1j i~
{1j izv 0j izv 1j ið Þ

� ffiffiffi
3
p

, b2j i~ {1j izv2 0j izz1j ið Þ
� ffiffiffi

3
p

, b3j i~
{1j iz 0j izv2 z1j ið Þ

� ffiffiffi
3
p

and O4~ c1j i, c2j i, c3j if g with c1j i~
{1j izv2 0j izv2 1j ið Þ

� ffiffiffi
3
p

, c2j i~ {1j izv 0j iz z1j ið Þ
� ffiffiffi

3
p

, c3j i~
{1j iz 0j izv z1j ið Þ

� ffiffiffi
3
p

.
As shown in Eq. (5), in order to construct three MUBs in the 6D

hybrid space, we will only need the first three basesO1,O2,O3. The
intensity and phase profiles of the nine OAM states belonging to
these three MUBs are shown in Fig. 1.

Let us now discuss the experimental method we adopted for the
generation (and detection) of these nine states, and of all other OAM
superposition states in this work. Arbitrary optical field transverse
modes can be obtained by diffraction of an input Gaussian TEM00

mode on a SLM programmed for displaying a prescribed ‘‘kino-
form’’, that is the pattern determining the phase retardation experi-
enced by the input wave in diffraction. The main problem is that the
SLM is a phase-only optical element, while to obtain arbitrary OAM
modes we need to be able to tailor both the phase and the amplitude
transverse profiles of the outgoing field. This can be obtained by
modulating both the shape and contrast of the kinoform fringes.
To determine the kinoform, we initially tried some of the most com-
monly used methods38, but found that they often give rise to a

non-negligible ‘‘cross-talk’’, i.e., nonzero overlaps between different
states of the same basis, and to significant unbalances in the overlaps
of each state of a given basis with the states of other bases. In other
words, the generation fidelity of these methods was not good enough
for our purposes. For this reason, we developed an holographic
method that is specifically optimized in the fidelity.

Let us first assume that the input field is a plane wave. Our goal is
to obtain in the first order of diffraction a prescribed optical field
AeiW, A and W being the optical field normalized amplitude and
phase, respectively. A straight-forward calculation39 shows that such
optical field is obtained in the far field if the kinoform phase modu-
lation has the following expression:

M~Mod W{pIz 2px
L

	 

,2p

� �
I ð6Þ

where L is the grating period that fixes the diffraction angle,
I~ 1zsinc{1 Að Þ=pð Þ, in which sinc21 stands for inverse of sinc(x)
5 sin(x)/x function in the domain [2p, 0], and Mod is the modulo
function that gives the remainder after division of the first argument
by the second. The inverse of sinc function was evaluated numer-
ically by the Newton method, with an accuracy of seven digits.

By this method we calculated the kinoforms needed to generate the
nine OAM states of the first three MUBs of the OAM qutrit. The
resulting hologram patterns are shown in Fig. 1. It can be seen that
these kinoforms include only an azimuthal dependence, since the

Figure 1 | MUBs for hybrid photonic qusix encoding: Representation of quantum states with dimension d 5 6 obtained from the direct product of a
three-dimensional subspaceO of OAM and the two-dimensional space p of polarization. The three main boxes correspond to the three MUBs. On the

left side, the intensity and phase distributions of each OAM spatial mode and the corresponding generating kinoform are shown. On the right side

the polarization states are illustrated graphically by showing the optical electric field orientation in space at a given time.
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OAM state definition ignores the radial coordinate. This implies that
the same kinoforms can also be used with a Gaussian input beam
instead of a plane wave and only the radial profile of the diffracted
wave will be affected, while the OAM state will remain the same.
Moreover, we do not need to finely adjust the input beam waist of the
Gaussian beam.

We note that the holograms defined by Eq. (6) generate ideally
exact modes in the far field, so that the expected overlap between
states belonging to the same basis vanishes identically and that
between states belonging to different MUBs, it is 1/3 in the qutrit
space (and hence it will be 1/6 in the qusix space, after combining
with polarization). As mentioned, this is not the case for other com-
monly used holographic methods. For example, numerical simula-
tions based on the method reported in Ref. 40 yielded mean state
fidelities of 100%, 88.5% and 84.5% for the three OAM qutrit bases.
This corresponds to 6% and 7.7% of mean cross-talk between states
belonging to the last two bases. Moreover, the overlap between states
of different MUBs is found to vary between 21% and 48%, depending
on the state pair. These fidelity problems are absent in our method.
More details about the performances of the holographic method used
in this work will be reported elsewhere39.

Hybrid qusix encoding and characterization. Our first experimental
implementation of qusix photonic states has been achieved by
combining the 2D space p of polarization and the 3D subspace O
of OAM in single photons. The logical basis I of quantum states in
dimension six has been hence implemented as follows:

I~ H,{1j i, H,0j i, H,z1j i, V,{1j i, V,0j i, V,z1j if g ð7Þ

where jHæ, jVæ denote horizontal and vertical linear polarizations, as
shown in Fig. 1, which have been combined with the three eigenstates
of OAM forming the basis O1.

Following Eq. (5), a second basis II, unbiased with the first, is
obtained by combining the diagonal/antidiagonal polarization states

Aj i~ 1ffiffiffi
2
p Hj iz Vj ið Þ, Dj i~ 1ffiffiffi

2
p Hj i{ Vj ið Þ

 �
with the OAM

states of basis O2. The third basis of the set of MUBs was finally
obtained by combining the circular polarization states

Lj i~ 1ffiffiffi
2
p Hj izi Vj ið Þ, Rj i~ 1ffiffiffi

2
p Hj i{i Vj ið Þ

 �
with the OAM

third basis O3.
In order to experimentally generate these hybrid qusix states we

employed the setup shown in Fig. 2. Single photons emitted at a
7 kHz rate via spontaneous parametric down conversion in a beta-
barium-borate crystal41 are collected by a single-mode fiber (SM) to
filter out all the spatial modes but the Gaussian mode TEM00, i.e.,
OAM state j0æ (OAM qutrit initialization). A set of waveplates (C)
compensates the polarization after the transmission through the
fiber. The photons are then sent through a polarizing beam splitter
(PBS) (polarization qubit initialization) and, after adjusting the
radial-mode size by a pair of lenses (MA), to a first reflecting spatial
light modulator (SLM1) which generates the desired OAM qutrit
state. The hologram kinoform displayed on the SLM1 for each
OAM state to be generated, in the first-order diffraction, is shown
in Fig. 1. After SLM1, a half wave-plate (HWP) and a quarter wave-
plate (QWP) are used to write the polarization qubit in the photon.
Hence we are able to generate any hybrid qusix that is a product of a
qutrit and a qubit.

The qusix-carrying photon is then sent to the detection stage. This
stage is composed of a polarization analysis set (HWP, QWP and a
PBS) and a second spatial light modulator (SLM2) for converting in
diffraction the OAM state to be detected back into a Gaussian mode.
The photon is finally coupled to a single mode fiber, to filter only this
Gaussian mode, connected to a single-photon counter module
(SPCM). To eliminate the Gouy phase-shift effects between different
OAM eigenstates occurring in free propagation, an imaging system

(not shown in the figure) has been included to image the screen of
SLM1 onto the SLM2. All waveplates and SLMs were computer-
controlled so as to allow for a fully automatic generation and mea-
surement procedure. With this setup, it is possible to perform a
projective measurement upon every possible separable state of polar-
ization and OAM.

Figure 2 | Sketch of experimental setup for generating and testing
photonic MUBs in dimension six. The polarization state is controlled by

suitable sequences of wave plates, while the OAM mode is controlled by

SLMs and single-mode fibers. Legend: SM - single-mode fiber; C -

polarization compensation waveplates; HWP - half-wave plate; QWP -

quarter-wave plate; MA - radial mode adjustment lens set; SLM - spatial

light modulator; SPCM - single-photon counter module; PBS - Polarizing

Beam Splitter.

Figure 3 | Experimental analysis of hybrid qusix photonic states.
Probability distribution resulting from all 18 3 18 projections of each state

within the three MUBs over all the others, comparing theoretical and

experimental values. According to theoretical predictions, we expect that

the 18 3 18 matrix can be divided into nine 6 3 6 blocks Am
n , where the two

indices m, n g {I,II,III} label generation and detection bases, respectively.

Blocks that correspond to projection of one basis over itself (m 5 n) should

be diagonal, i.e., Am
m

� �
i,j~dij. Other blocks, whose values represent the

overlap between states belonging to two different bases, should be flat, i.e.,

Am
n

� �
i,j~1=6, for m ? n.
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As a first test, we verified the MUBs properties by generating each
qusix jyiæ among the 18 states of the MUBs and then projecting it
onto all the 18 states jyjæ. Figure 3 shows the resulting measured
probability distribution Pij 5 jÆyjjyiæj2, compared to the theoretical
one P’ij. For a quantitative comparison, we used the similarity para-

meter S~

P
i,j

ffiffiffiffiffiffiffiffiffiffiffi
PijP’ij

p� �2

P
i,jPij

P
i,jP’ij

, which is a natural generalization of the

fidelity used to compare two wavefunctions, finding S 5 (99.19 6

0.04)%. As a second check of the quality of our hybrid qusix states, we
reconstructed the density matrix of all the 18 states by quantum state
tomography. Since we lack a complete set of MUBs in dimension six,
we performed measurements in all possible product states obtained
combining the three MUBs of the polarization space p and the four
MUBs in the OAM space O, for a total of 72 projections. In Table I,
the resulting experimental fidelities of the 18 MUBs states are
reported. The overall mean fidelity was F~ 98:51+0:04ð Þ%.
Moreover, Figure 4 shows the reconstructed density matrices com-
pared to the theoretical ones for three representative qusix states, one
for each MUB considered here.

Pure-OAM qusix encoding and characterization. Our second expe-
rimental implementation of qusix photonic states has been based on
the OAM space only. Although the hybrid approach may offer
advantages for certain specific tasks42, an encoding in OAM is in
principle suitable of extension to arbitrary dimensionality and
enables the generation of any kind of state, including the entangled
ones which, for hybrid encoding, would need a more complex
experimental setup. To define a 6D Hilbert space, we adopted the
following OAM eigenstates as logical basis:

I~ {3j i, {2j i, {1j i, 1j i, 2j i, 3j if g: ð8Þ

The three MUBs were still defined starting from the tensor products
of a 2D and a 3D spaces, as given in Eq. (5). More details about the
resulting states of the three bases I, II, III are given in Methods.

The experimental setup used for generating and testing the states
of the MUBs is the same as in the hybrid qusix case (see Fig. 2), but
with the polarization optics set so as to keep a fixed polarization
everywhere. The kinoform generation was based on the method

Table I | Experimental fidelities measured for all 18 qusix hybrid
states that characterize the three chosen MUBs

Basis State Fidelity

I | H æ | 11æ 0.986 6 0.002
| H æ | 0æ 0.982 6 0.002
| H æ | 21æ 0.986 6 0.002
| V æ | 11æ 0.988 6 0.002
| V æ | 0æ 0.980 6 0.002
| V æ | 21æ 0.983 6 0.002

II | Aæ | a1æ 0.989 6 0.001
| Aæ | a2æ 0.981 6 0.002
| Aæ | a3æ 0.986 6 0.002
| Dæ | a1æ 0.989 6 0.001
| Dæ | a2æ 0.982 6 0.002
| Dæ | a3æ 0.980 6 0.002

III | Læ | b1æ 0.981 6 0.002
| Læ | b2æ 0.981 6 0.002
| Læ | b3æ 0.979 6 0.002
| Ræ | b1æ 0.977 6 0.002
| Ræ | b2æ 0.972 6 0.002
| Ræ | b3æ 0.970 6 0.002

Average Fidelity 0.9851 6 0.0004

Figure 4 | Quantum tomography of hybrid qusix photonic states. Density matrices associated to states of each of the three MUBs have been fully

reconstructed by projections over all the 72 states obtained by direct product of the three MUBs of the 2D polarization space p and the four ones of the 3D

OAM subspace O. Here we show one state for each MUB. Experimental and theoretical matrices are reported for comparison.

www.nature.com/scientificreports
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described in Sec. III. Figure 5-a shows the intensity and phase profile
of the 18 OAM modes which form the three MUBs. In Figure 5-b, the
theoretical and experimental probability distributions for all combi-
nations of state preparation and detection are reported. The similar-
ity between the two distributions is S 5 (99.06 6 0.04)% while the
mean fidelity over the 18 states is F 5 (98.78 6 0.08)%. Comparing
this result with the hybrid case, in which only OAM states in dimen-
sion 3 were generated, we find that the fidelity of the OAM genera-
tion does not decrease rapidly with the dimensions. Hence, the
holograhic method used in this work promises to be suitable for
the high-fidelity generation of OAM photonic qudits with very large
dimension d.

Discussion
In summary, we have reported the experimental implementation of a
non-extendable set of three MUBs for a photonic quantum system of
dimension six by two different approaches. In the first, the qusix
states have been implemented via a hybrid scheme based on polar-
ization-orbital angular momentum encoding. All the 18 states
belonging to the MUBs are in this case separable states of two dif-
ferent degrees of freedom. The demonstration of MUBs with high
fidelity and unbiasedness has required the development of a new
method for determining the kinoform to be displayed in the spatial
light modulator. The second demonstrated approach was based on a
quantum encoding in the photon OAM space only, at a fixed polar-
ization. The generation of a set of MUBs with high fidelity was again
verified and this method is suitable for a convenient extension to
higher dimensionality. The techniques we have demonstrated here
can find application in fundamental tests of quantum mechanics,
quantitative wave-particle duality, detection of entanglement43,
quantum key distribution12, tests of quantum complementarity,
logical indeterminacy and the so called ‘‘mean king’s problem’’44,45.

Methods
In dimension d 5 2, the eigenstates of the three Pauli operators provide a complete set
of MUBs, which can be represented by the columns of the following three matrices:

p1~
1 0

0 1

	 

, p2~

1ffiffiffi
2
p

1 1

1 {1

	 

, p3~

1ffiffiffi
2
p

1 1

i {i

	 

: ð9Þ

In d 5 3, there exist four MUBs. We represent them here as the columns of the
following four matrices:

O1~

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA, O2~

1ffiffiffi
3
p

1 1 1

1 v v2

1 v2 v

0
BB@

1
CCA

O3~
1ffiffiffi
3
p

1 1 1

v v2 1

v 1 v2

0
BB@

1
CCA, O4~

1ffiffiffi
3
p

1 1 1

v2 v 1

v2 1 v

0
BB@

1
CCA

ð10Þ

where v 5 exp (i2p/3).
In d 5 6, we may construct three MUBs by a direct product of the p1, p2, p3 bases

and the corresponding first three bases O1, O2, O3:

I~p16O1, II~p26O2, III~p36O3 ð11Þ

These three 6D bases have the following matrix representation:

I~

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

ð12Þ

II~
1ffiffiffi
6
p

1 1 1 1 1 1

1 v v2 1 v v2

1 v2 v 1 v2 v

1 1 1 {1 {1 {1

1 v v2 {1 {v {v2

1 v2 v {1 {v2 {v

0
BBBBBBBB@

1
CCCCCCCCA

ð13Þ

III~
1ffiffiffi
6
p

1 1 1 1 1 1

v v2 1 v v2 1

v 1 v2 v 1 v2

i i i {i {i {i

iv iv2 i {iv {iv2 {i

iv i iv2 {iv {i {iv2

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

Figure 5 | Experimental analysis of pure OAM qusix. (a) Graphical representation of all 18 states of the three selected MUBs, in the case of pure OAM 6D

encoding. The precise definition of these states is given in Methods. For each state, both the intensity and phase patterns are shown. (b) Theoretical and

experimental probability distributions for an experiment in which all the 18 3 18 combinations of generated/detected states belonging to the three MUBs

are tested.
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The 18 columns of these three matrices give the coefficients of the logical basis
superpositions defining the 18 OAM states shown in Fig. 5 a).
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