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Introduction

The haptoglobin 2-2 (Hp2-2) genotype is associated with 
atherosclerosis in patients with type 2 diabetes mellitus 
(T2DM). This has been attributed to decreased affinity of 
haptoglobin (Hp) to haemoglobin, diminished clearance 
of Hp2-2-haemoglobin complexes and impaired anti-
inflammatory pathways.1 We have seen that the Hp2-2 
genotype is associated with lower Hp concentrations, 
higher inflammation and atherosclerosis in T2DM.2

Endothelial dysfunction is considered to be the initiat-
ing event in atherosclerosis and precedes the development 
of diabetes.3,4 Endothelial cell apoptosis (EC apoptosis) in 
response to inflammation and oxidative stress may increase 
smooth muscle cell proliferation and migration, enhance 
blood coagulation and increase leukocyte infiltration into 
the endothelium thus leading to endothelial dysfunction.5

We developed an in vitro hemodynamic lab-on-chip 
model mimicking the physiological pulsatile nature of the 
blood flow in the vascular system.6–8 Using this system, 
we previously observed in a few T2DM cases that Hp con-
centration was significantly lower in plasma of diabetes 
patients with a higher rate of EC apoptosis.8

Hp concentrations are known to be lower in individuals 
with Hp2-2 genotype and in individuals with single-nucle-
otide polymorphism (SNP) rs2000999.9 However, the 
effect of the Hp2-2 genotype in diabetes patients on  
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EC apoptosis has not been studied previously. In this study, 
we aim to investigate the correlation between the Hp con-
centrations and the ability to induce EC apoptosis in T2DM 
patients with Hp2-2 compared with non-Hp2-2 genotypes.

Methods and materials

From the initial study,2 as described earlier wherein we had 
recruited 160 known T2DM individuals and performed  
Hp genotyping, we first performed a pilot study using 10  
randomly selected Hp2-2 genotype and 10 non Hp2-2 
genotype samples. We subsequently chose 20 consecutive 
subjects with the Hp2-2 genotype and 20 subjects with non 
Hp2-2 genotype who had donated larger volumes of blood 
samples for future research. The exclusion criteria included 
intercurrent illness, serum creatinine >200 µmol/L, his-
tory of previous cardiovascular events, ischaemic cerebro-
vascular disease or peripheral arterial disease. Informed 
consent was obtained from all patients, and this study  
was approved by the Institutional Review Board [(NHG 
DSRB) Ref Nos.: 2013/01235 and 2014/00236]. Base- 
line characteristics of these 40 patients are presented  
in Supplementary Table 1. The subjects’ demographics, 
anthropometrics and blood pressure were recorded. Hp 
concentrations and high-sensitivity C-reactive protein 
(hsCRP) levels were measured by turbidimetry. The total 
haptoglobin beta (Hpβ) concentrations of plasma samples 
were determined by Western Blot Analysis. Glycated hae-
moglobin (HbA1c) was determined by immunoturbidi-
metric measurement (Beckman Coulter, Inc., Brea, CA, 
USA). Carotid ultrasonography was performed by two 
operators trained before study initiation following the  
recommendations of the Mannheim carotid intima media 
thickness (CIMT) consensus.10

Genomic DNA was extracted from peripheral blood 
using QIAamp DNA kit (Qiagen). Hp genotyping and 
genotyping for SNP rs2000999 were performed using 
TaqMan-based real-time polymerase chain reaction 
according to the study of Soejima and Koda.11 Oxidative 
stress index was calculated using the commercial assay 
(Diacron, Grosseto, Italy) as developed by Vassalle et al.12

The continuous variables are described as mean (stand-
ard deviation (SD)) or median (interquartile range (IQR)) 
after assessing normality. Categorical variables are sum-
marized using frequency (percentage). We compared the 
continuous baseline variables in the Hp2-2 and non Hp2-2 
genotypes using independent sample t-test or Mann–
Whitney U test depending on the normality of the varia-
bles. Difference in percentages between Hp2-2 and non 
Hp2-2 genotypes was tested using χ2 test for categorical 
baseline variables. Univariate analysis was performed to 
examine EC apoptosis in the Hp genotypes against demo-
graphics, metabolic variables, Hp concentrations, hsCRP, 
iron indices and oxidative stress index. The associations 
between EC apoptosis and the above variables were subse-
quently analysed using multivariable regression model. 

For the multivariable analysis, all the variables chosen in 
the univariate analysis were included. To adjust for col-
linearity, we used non-high-density lipoprotein (HDL) 
cholesterol instead of all lipid variables and ferritin only 
among the iron indices. To assess whether associations  
differ by Hp, a single interaction model was used includ-
ing Hp, Hpb and their interaction. All analysis was done 
using STATA version 13.1 (Stata Corp, College Station, 
TX, USA), and a p value less than 0.05 was considered  
to indicate statistical significance.

Microfluidic-based apoptotic assay

We used the in vitro hemodynamic lab-on-chip model 
(microfluidic system) mimicking the physiological  
pulsatile nature of the vascular system.6–8 In brief,  
human umbilical vein endothelial cells (HUVEC)-C3 cells 
expressing a fluorescence resonance energy transfer 
(FRET)-based biosensor that changes colour from green to 
blue in response to caspase-3 activation during apoptosis 
were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM) containing 500 µg/mL G-418 sulphate (Gibco, 
Gaithersburg, MD, USA) to maintain the FRET sensor in 
the stable cell line. A suspension of cells at a density of 
approximately 1 × 107 cells/mL was injected into the 
microfluidic channels at the dimensions of width = 600 µm, 
height = 150 µm, and length = 1.5 cm for 2 days to form an 
intact monolayer. Culture medium (15 mL) containing 10% 
of patient’s plasma (1.5 mL) and 10 mmol/L glucose was 
applied to HUVEC-C3 sensor cells in a pulsatile flow rate 
of 2.21 µL/s producing an average shear stress of 23.6 dyne/
cm2 for 8 h, which is equivalent to the shear stress gener-
ated in blood flow under a pulse rate of 110 beats/min. 
Afterwards, cells were cultured under a static condition in 
the CO2 incubator for another 40 h to allow major apoptotic 
events such as caspase-3 or -7 activation to occur.

We first performed a pilot study, wherein we took 
blood samples from diabetes patients with the Hp2-2 
(n = 10) and with non-Hp2-2 genotype (n = 10) and per-
formed western blot assay for Hpβ concentrations and 
then pooled the samples for the apoptotic assay. For each 
genotype, 250 µL plasma was taken from each sample, 
and a total of 2.5 mL plasma was obtained for each group. 
The glucose concentration was adjusted to 10 mmol/L to 
avoid the effect of glucose variants. Subsequently indi-
vidual plasma samples from 40 diabetes patients with the 
Hp2-2 (n = 20) and non-Hp2-2 genotype (n = 20) were 
used to run the microfluidic-based apoptotic assay and 
western blot assay for Hpβ concentrations.

Results
In the pilot study, there was no difference in the mean Hpβ 
concentration between these two genotypes (Hp2-2 = 0.9 
vs non-Hp2-2 = 0.91, p > 0.05) (Figure 1(a)). Because the 
volume of individual plasma sample was too low to con-
duct our microfluidic-based apoptotic assay, the plasma 
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samples from each Hp genotype were pooled and used  
in this experiment. HUVEC-C3 cells were grown in the 
microfluidic channels for 2 days to form an intact mon-
olayer, and culture medium containing 10% of patient’s 
plasma plus 10 mmol/L glucose was applied to the cells in 
a pulsatile manner under a shear stress of 23.6 dyne/cm2 
for 8 h. Afterwards, cells were cultured under a static con-
dition in a CO2 incubator for another 40 h. FRET images 
were obtained by fluorescence microscopy (Figure 1(b)), 
and the quantified results revealed that plasma from  
Hp2-2 group caused significantly higher rate of EC 

apoptosis (23.18%) than that from non-Hp2-2 group 
(15.32%) (Figure 1(c)).

To confirm the correlation between the Hpβ concen-
trations and apoptotic rates, we subsequently performed 
individual experiments using the plasma samples from 20 
Hp2-2 and 20 non-Hp2-2 patients (who had donated larger 
plasma samples for future research). For individual plasma 
analysis, the baseline characteristics in terms of age, gen-
der, duration of diabetes, body mass index (BMI), HbA1c, 
lipid profile, C-reactive levels and carotid artery intima 
media thickness of the 20 patients in each group, were well 

Figure 1. Pooled plasma samples of Hp2-2 group result higher EC apoptosis: (a) Western blot analysis of Hpβ from a control 
plasma, 10 Hp2-2 and 10 non-Hp2-2 plasma. The values of ‘Rel to Con’ represent the ratio of the band intensity of Hpβ from each 
sample over the band intensity of the control. * indicates the samples with lower concentrations of Hpβ, (b) representative FRET 
images of HUVEC-C3 cells treated with plasma from a healthy control, pooled Hp2-2 (n = 10) and non-Hp2-2 (n = 10) samples, 
respectively. Glucose concentrations were adjusted to 10 mmol/L. Live cells appear in green and apoptotic cells appear in blue 
and (c) apoptotic rates were calculated using the formula of apoptotic rate (%) = number of blue cells/(number of blue and green 
cells) × 100. A total of 200–300 cells from at least three observation fields were counted, p < 0.05.
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matched (Supplementary Table 1). The only variable  
that was different in Hp2-2 individuals was the lower  
Hp concentrations (p < 0.05). The Hpβ concentrations as 

measured by Western blotting varied significantly among 
individual samples (Figure 2(a)). An average Hp-beta con-
centration was tested using a group of plasma samples 

Figure 2. (a) Lower concentrations of Hpβ correlate with higher EC apoptotic rates in diabetes plasma samples, (b and c) 
normalized concentrations of Hpβ determined by Western blotting from 40 plasma samples. Representative FRET images of 
HUVEC-C3 using plasma samples from (b) two patients with the Hp2-2 genotype and (c) two patients with the non-Hp2-2 
genotype, (d) all glucose concentrations were standardized to 10 mmol/L. (e and f) Apoptotic rates determined using individual 
plasma from Hp2-2 patients (n = 20) and non-Hp2-2 patients (n = 20). Correlation of normalized Hp concentrations to apoptotic 
rates of HUVEC-C3 in the (e) Hp2-2 group and (f) non-Hp2-2 group.
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from healthy volunteers, and all the results using T2DM 
patients plasma samples were compared to it as a ratio. 
The mean ratio of Hp-beta concentration was 0.83 ± 0.27 
from 20 Hp2-2 samples and 0.80 ± 0.30 from 20 non-
Hp2-2 samples (p = 0.67) (Figure 2(a)). We then used  
our microfluidic system to quantify apoptotic rate of 
HUVEC-C3 cells in each plasma samples. Figure 2(b) and 
(c) shows representative FRET images from four samples 
of Hp2-2 and non-Hp2-2, and Figure 2(d) displays quanti-
fied apoptotic rates from all 40 patients’ plasma. The mean 
EC apoptosis rates were 17.04% in Hp2-2 and 16.69% in 
non-Hp2-2 patients (p = 0.78). A multivariable analysis 
examining EC apoptosis with the variables: age, Hpβ con-
centrations, blood pressure, glucose, HbA1c, non HDL-
cholesterol, CRP, total Hp, ferritin and oxidative stress 
index showed that only Hpβ remained significant [β = −9.24 
(95% confidence interval (CI): −13.10, −5.37), p < 0.001] 
(Supplementary Table 2). Further analysis revealed a cor-
relation between lower concentrations of Hpβ and higher 
rates of EC apoptosis both in Hp2-2 group (R2 = 0.6764, 
p < 0.001, Figure 2(e)) and in non-Hp2-2 group (R2 =  
0.4652, p = 0.001, Figure 2(f)). To assess whether associa-
tions differ by Hp, a single interaction model was used to 
test the interaction between Hp genotypes and Hpβ in 
causing EC apoptosis. The interaction term was not statis-
tically significant (p = 0.90) showing no significant differ-
ences in the interaction between Hpβ and Hp genotypes in 
causing EC apoptosis. Only one sample with Hp2-2 geno-
type also had the SNP rs2000999. The Hpβ concentration 
in this individual was higher than the average Hpβ concen-
tration in the Hp2-2 group.

Discussion and conclusion

It is known that in Hp2-2 genotype individuals have lower 
Hp concentrations and qualitatively inferior Hp, in terms 
of lower binding affinity to haemoglobin which in turn 
leads to lower ability to be scavenged by the cluster of dif-
ferentiation 163 (CD-163) macrophages and cleared from 
the plasma.1,2 However experimental in vitro and in vivo 
studies show no functional difference in the haemoglobin 
detoxification mediated by Hp2-2 versus non Hp2-2.13,14 
Using pooled plasma from 20 diabetes patients, we found 
higher EC apoptosis rates in Hp2-2 compared to non-
Hp2-2 genotype. Using individual plasma samples from 
40 patients, lower Hpβ concentrations correlated with 
higher EC apoptosis rates regardless of the Hp genotype. 
Since it is well established that the Hp concentrations are 
lower in the population with the Hp2-2 genotype than the 
non Hp2-2 genotype, quantitative lower Hp concentrations 
may be the main factor leading to higher overall risk 
against Hb-induced oxidative toxicity.15,16 Indeed, our 
study shows that regardless of the Hp genotype, Hpβ  
concentrations is a significant contributor towards the 
protection from EC apoptosis.

The immune turbidimetry method used to measure 
total Hp concentrations likely also include Hp-related 

protein (HRP), whereas the Western blot method used to 
measure Hpβ likely only measures Hp as the beta chains 
in HRP having an additional cysteine residue in the beta 
chain.13 Hence, we saw better correlations with the Hpβ 
measured by Western blot analysis. Nevertheless, both 
methods suggest that Hp (a powerful antioxidant) may 
play a major role in protection from EC apoptosis in 
diabetes.

This suggests possible distinct pathophysiological 
mechanisms for EC apoptosis in the diabetes patients, and 
the role of Hp needs to be studied further using different 
methods so as targeted interventions can be planned.
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