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Injectable hydrogels for cartilage and bone tissue
engineering

Mei Liu1,*, Xin Zeng2,*, Chao Ma1, Huan Yi1, Zeeshan Ali3,4, Xianbo Mou1, Song Li5, Yan Deng1,5 and
Nongyue He1,5

Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among
the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for
use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high
water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation
and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we
describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable
hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is
also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue
engineering are discussed.
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INTRODUCTION
Cartilage and subchondral bone damage can be caused
by a variety of conditions, such as trauma, arthritis, and
sports-related injuries.1–4 It has been reported that 60% of
patients examined by knee arthroscopy exhibit cartilage
damage, and ~15% of people over 60 years old have
some clinical symptoms of such damage.5–6 In particular,
the self-healing of damaged cartilage is limited, owing to
its lack of vascularization, innervation, lymphatic networks,
and progenitor cells.6–12 For bone tissue, despite its high
vascularization, commonly used techniques for repair, such
as autografting and allografting, are limited because of
risks of donor-site morbidity, potential infection, and a high
nonunion rate with host tissues.13–17 Bone defects are one
of the leading causes of morbidity and disability in elderly
patients.18 Medical restoration of the damaged cartilage
and bone tissue remains to be achieved. Therefore,
developing a method to perfectly and permanently repair
the damaged cartilage and bone tissue is of significant

clinical interest for patients with cartilage lesions and bone
defects.
Tissue engineering, which emerged in the early 1990s,

has become one of the most commonly used approaches
for cartilage and bone tissue reconstruction and regen-
eration.19–22 Generally, an engineered tissue is composed
of a scaffold, cells, and necessary growth factors.23–24

To fully reconstruct the damaged cartilage and bone
tissue, it is important to synthesize biocompatible and
biodegradable scaffolds that mimic the native features of
the specific tissue, successfully transport cells and growth
factors to the damaged tissue, and provide support to the
newly formed tissue until it matures.25 Ideally, the scaffolds
of both cartilage and bone tissue engineering should be
porous, highly biocompatible, nontoxic, and capable of
promoting cell differentiation and new tissue formation;
they should also have stable mechanical properties,
degrade in response to the formation of new tissue,
facilitate the diffusion of nutrients and metabolites, adhere
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and integrate with the surrounding native tissue, and
properly fill the injured site.3,24,26–28

Since the 1990s, a variety of biomaterials have been
investigated and tested for cartilage- and bone tissue-
engineering applications.29–38 Among all the biomaterials,
hydrogels have received widespread interest, particularly
for their use as scaffolds in cartilage and bone tissue
engineering, owing to their structural similarity to the
extracellular matrix (ECM) and their porous framework,
which enables cell transplantation and proliferation.39

Hydrogels are three-dimensional (3D) cross-linked networks
formed by hydrophilic homopolymers, copolymers, or
macromers that swell in aqueous solution and provide an
appropriate microenvironment similar to the ECM, thus
facilitating the migration, adhesion, proliferation, and
differentiation of chondrocytes and osteoprogenitor cells
to osteoblasts, and efficiently delivering nutrients and
growth factors.39–42 Recently, injectable hydrogels have
attracted the attention of biomaterials scientists for carti-
lage- and bone tissue-engineering applications, because
they can replace implantation surgery with a minimally
invasive injection method and can form any desired
shape, to match irregular defects.3,43–47 The schematic
describing injectable hydrogels for cartilage- and bone
tissue-engineering applications is illustrated in Figure 1.
Excellent biomaterials and appropriate fabricationmeth-

ods play crucial roles in developing ideal injectable
hydrogels that can function as scaffolds for cartilage-
and bone tissue-engineering applications. A variety of
biomaterials, both natural and synthetic, have been

exploited to prepare injectable hydrogels; these biomater-
ials include chitosan,43 collagen or gelatin,48–49 alginate,50

hyaluronic acid,51 heparin,52 chondroitin sulfate,53 poly
(ethylene glycol) (PEG),54 and poly(vinyl alcohol).55 Inject-
able hydrogels can be fabricated through both physical
and chemical methods. Physically injectable hydrogels are
spontaneously formed by weak secondary forces, whereas
chemical hydrogels are usually formed by covalently
cross-linking.56–58 On the basis of the concrete fabrica-
tion methods, injectable hydrogels can be classified as
enzymatically cross-linked hydrogels,59 photo-cross-linked
hydrogels,60 Schiff base cross-linked hydrogels,61 Michael
addition-mediated hydrogels,62 click chemistry-mediated
hydrogels,44,63 ion-sensitive hydrogels,64 pH-sensitive hydro-
gels,65 and temperature-sensitive hydrogels.66–67 Although
injectable hydrogels prepared by different methods
have been investigated for decades, there are scarcely
any perfect injectable hydrogels that have been
utilized in clinical regenerative medicine. Therefore, the
development of an excellent injectable hydrogel for
cartilage- and bone tissue-engineering applications is
urgently needed. In this review, various biomaterials and
fabrication methods for developing injectable hydrogels
for cartilage- and bone tissue-engineering applications are
discussed.
Even though many journal articles and reviews on

injectable hydrogels for tissue engineering have been
published, this is the first review that particularly focuses
on both biomaterials and fabrication methods for devel-
oping novel injectable hydrogels, specifically for use in
cartilage and bone tissue engineering. In this review, we
provide a guide for selecting an appropriate biomaterial
and fabrication method to prepare such injectable
hydrogels. In addition, the biology of cartilage and the
bony ECM is also discussed. Finally, perspectives on future
injectable hydrogels for cartilage and bone tissue engi-
neering are also discussed.

THE BIOLOGY OF CARTILAGE AND THE BONY ECM
In cartilage and bone tissue engineering, detailed under-
standing of the biology of cartilage and the bony
ECM is crucial in realizing successful cartilage and
bone tissue regeneration. Cartilage is a fiber-reinforced
composite material composed of chondrocytes surrou-
nded by specialized ECM consisting of structural and
functional proteins, glycoproteins, and glycosaminoglycans
assembled in unique tissue-specific 3D microenvironment
architectures.68–71 The composition and structure of carti-
lage tissue are always depth-dependent (Figure 2) and can
be divided into four different zones on the basis of collagen
fiber alignment and proteoglycan composition.72–74 From
the superficial zone to the deep zone, the proteoglycan

Figure 1. Schematic illustration of approaches to make injectable
hydrogels for cartilage- and bone tissue-engineering applications.
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content gradually increases. In the superficial zone, the
collagen fibers are aligned parallel to the surface. Collagen
fibers in the middle zone are unaligned and tangential to
the cartilage surface. In the deep zone, collagen fibers
are arranged radially. Finally, the collagen fibers in the
calcified zone tend to arborize with little organization and
mineralization.

In contrast to cartilage tissue, bone is a highly vascular-
ized biomineralized connective tissue with high mechan-
ical strength and structural complexity.57,75 Natural bone
tissue has a distinct hierarchical structural organization at
the macrostructural, microstructural, and nanostructural
levels (Figure 3).76–77 At the macrostructure level, bone can
be distinguished into cortical bone and cancellous bone.
At the microstructure level, the cortical bone is made up of
repeated units of osteon, whereas the cancellous bone is
composed of an interconnecting framework of trabeculae
complemented with bone marrow-filled free spaces. Each
osteon has 20–30 concentric layers of collagen fibers,
called lamellae, which surround the central canal and
contain various blood vessels and nerves. Finally, at the
nanostructure level, there are large amounts of collagen
fibers, calcium phosphate crystals, and non-collagenous
organic proteins, which are the main components of the
trabeculae and osteon units.76 The mechanical properties
of bone tissue strongly depend on the specific structure
and organization of the bony ECM.
This highly organized and complicated structure of the

cartilage and bone is essential to support its biological
functions. The composition of both cartilage and the bony
ECM is highly complex. Normally, the native cartilage ECM
is composed primarily of water, type II collagen,
proteoglycans, hyaluronic acid, glycosaminoglycans, and
elastin.73,76,78–80 Unlike cartilage ECM, the bony ECM is
composed of oriented collagen I fibers and nanocrystals
of carbonated hydroxyapatite, and is complemented
with a number of proteoglycans, glycoproteins, and
sialoproteins.81–82 All components of both cartilage and
the bony ECM, which are continuously synthesized,
secreted, oriented, and modified by the chondrocytes or
osteoblasts that they support, are essential for chondrocyte
and osteoblast growth, development, maintenance, and

Figure 2. Schematic illustration of depth-dependent architecture of
cartilage tissue. From the superficial zone to the deep zone, the
proteoglycan content gradually increases. In the superficial zone, the
collagen fibers are aligned parallel to the surface. Collagen fibers in the
middle zone are unaligned and tangential to the cartilage surface. In the
deep zone, collagen fibers are arranged radially. Finally, the collagen
fibers in the calcified zone tend to arborize with little organization and
mineralization.72

Figure 3. Schematic illustration of a distinct hierarchical structure of bone tissue. (a)At the macrostructural level, bone is composed of cortical bone
and cancellous bone. (b) At the microstructural level, the cortical bone is made up of repeated units of osteon, which is characterized by 20–30
concentric layers of collagen fibers, called lamellae. The lamellae surround the central canal and contain various blood vessels and nerves. (c) At the
nanostructural level, there are large numbers of collagen fibers, which are composed of periodic collagen fibrils and gaps between the collagen
molecules. The calcium phosphate crystals and non-collagenous organic proteins are embedded in these gaps between collagen molecules.76
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regulate the biological activities of the native cartilage
and bone tissue.57,83–84 Under physiological conditions, the
ECM exists in a state of dynamic reciprocity with chon-
drocytes and osteoblasts, and provides a mechanical
framework for supporting the cells.70 In addition, the ECM
and ECM-incorporated growth factors, together with
cytokines, provide a number of functional cues that affect
chondrocyte and osteoblast metabolism, and secretion.
Moreover, the microenvironment provided by the ECM is
dynamic and regulated by factors, such as mechanical
properties, pH, oxygen concentration, and hormonal
actions, that affect tissue homeostasis and possible
aberrations thereof.69,85–86 Eventually, the ECM not only
regulates cell adhesion, migration, growth, differentiation,
and apoptosis but also takes part in cytokine activity and
intracellular signaling.84,86 The complexity of the ECM is
essential for specific function of the cartilage and bone
tissue, and plays an important role in keeping the phy-
siological stability of the microenvironment. Thus, design
and synthesis of novel biomaterials that imitate the natural
ECM are of great significance in cartilage and bone tissue
engineering, and regenerative medicine.

INJECTABLE HYDROGELS PREPARED WITH DIFFERENT
BIOMATERIALS
Various biomaterials have been exploited for the fabrica-
tion of injectable hydrogel scaffolds for cartilage tissue-
engineering applications, including natural biomaterials
and synthetic biomaterials.

Natural biomaterial-based injectable hydrogels
Natural biomaterials have been widely investigated
because of their perfect biocompatibility, biodegradabil-
ity, and similarity to the ECM. Natural biomaterials recently
investigated for use as injectable hydrogel prepar-
ations include chitosan, collagen/gelatin, alginate, fibrin,
elastin, heparin, chondroitin sulfate, and hyaluronic
acid.3,46,50,52–53,87–91

Chitosan-based injectable hydrogels. Chitosan is a linear
polysaccharide that is derived from natural chitin, which is
composed of glucosamine and N-acetylglucosamine.92–95

Recently, chitosan has become increasingly attractive as
an injectable hydrogel for cartilage repair, owing to its
structural similarity to cartilage glycosaminoglycan.43,93,96

Chen et al48 have fabricated a tough chitosan–gelatin
hydrogel via an in situ precipitation method. This
in situ formed hydrogel exhibits improved mechanical
properties, and is biodegradable and biocompatible.
Naderi-Meshkinet al96 have developed a chitosan-
based injectable hydrogel via the combination of
chitosan, glycerol phosphate, and the cross-linking agent

hydroxyethyl cellulose. Systematic investigations of the
viability, proliferation, and differentiation capacity of
encapsulated mesenchymal stem cells in the hydrogel
have indicated that this chitosan-based injectable
hydrogel has a high potential for cartilage tissue
engineering. To make stimuli-responsive injectable hydro-
gels, chitosan is usually combined with various chemical
components. By combining chitosan–glycerophosphate
with different concentrations of starch, Sá-Lima et al97

have successfully prepared a novel thermoresponsive
chitosan–starch hydrogel that can be used as an
injectable vehicle for cell delivery. Furthermore, Moreira
et al98 have reported a bioactive thermogelling chitosan-
based injectable hydrogel synthesized by combining
chitosan, collagen, and bioactive glass nanoparticles.
Chitosan is insoluble in water, but it can be dissolved in
acetic acid solution. Therefore, chitosan-based hydrogels
are obtained from chitosan–acetic acid solution, which
requires tedious washing steps.99 To overcome such
shortcomings, water-soluble chitosan derivatives have
been introduced. For example, Kamoun100 has prepared
a new class of nontoxic, injectable, biodegradable
materials called N-succinyl chitosan-dialdehyde starch
hybrid hydrogels. These hydrogels have shorter gelation
times, limited water uptake, little weight loss, and con-
siderably tighter hydrogel structures, thus making them
preferable scaffolds for cartilage tissue engineering.

Collagen/gelatin-based injectable hydrogels. Collagen
is the most abundant mammalian protein in the skin,
connective tissue, ligaments, bone, and cartilage of the
body.101–104 There are at least 19 types of collagen, such
as type I, type II, type III, and type V.101 Recently, naturally
derived collagen has been widely used to construct
collagen-based scaffolds for various biomedical applica-
tions, particularly tissue engineering, because it has the
favorable property of being weakly antigenic.8,49,105 Yuan
et al105 have combined type I and type II collagens to
construct a favorable injectable hydrogel whose com-
pressive modulus can be regulated by changing the type
I collagen content in the hydrogel. The chondrocytes
embedded in the hydrogel maintain their natural
morphology and secrete cartilage-specific ECM.
Funayamaet al106 have developed an injectable type II
collagen hydrogel scaffold and have embedded chon-
drocytes in the collagen-based hydrogel and injected it
into the damaged rabbit cartilage without a periosteal
graft. At 8 weeks after the injection, favorable hyaline
cartilage regeneration with good chondrocyte morphol-
ogy was observed, and significant differences between
the transplanted and control groups were observed after
24 weeks. Furthermore, collagen-based injectable hydro-
gels can be prepared by integrating collagen with other
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biomaterials. For example, Kontturiet al107 have devel-
oped an injectable, in situ forming type II collagen/
hyaluronic acid hydrogel for cartilage tissue engineering.
After encapsulation of chondrocytes and chondrogenic
growth factor transforming growth factor-β1 into the
hydrogel, the cell viability and proliferation, morphology,
glycosaminoglycan production, and gene expression
have been investigated. This hydrogel is able to
maintain chondrocyte viability and characteristics, and
it maybe a potential injectable scaffold for cartilage tissue
engineering.
Gelatin is a natural protein derived from the degrada-

tion of collagen with high biocompatibility and biode-
gradability in physiological environments.108–109 Recently,
use of gelatin to prepare injectable hydrogels has
received popularity. Oh et al110 have designed and
synthesized an interconnected, double thermoresponsive
macroporous gelatin-based injectable hydrogel by stabi-
lizing oil-in-water high internal phase emulsions, with
gelatin-graft-poly(N-isopropyl acrylamide). In this inject-
able hydrogel, gelatin was chosen as the backbone of
the amphiphilic graft copolymer to form high internal
phase emulsions. The double thermoresponsive properties
of the hydrogel promote proliferation and penetrate
fibroblasts during cell seeding. Geng et al111 have
prepared a gelatin-based injectable hydrogel from
oxidized dextran, amino gelatin, and 4-arm PEG-acrylate
through a two-step process. The attachment and spread-
ing of preosteoblasts, as well as the encapsulated cell
spreading and proliferation within the hydrogel indicate
that the injectable hydrogel possesses favorable mechan-
ical properties, biodegradability, and biocompatibility.

Hyaluronic acid-based injectable hydrogels. Hyaluronic
acid, which interacts with chondrocytes through surface
receptors such as CD44 and RHAMM,112–114 is a linear
polysaccharide in the adult cartilage ECM and is
composed of disaccharide units of glucuronic acid and
N-acetylglucosamine.115–117 Hyaluronic acid plays very
important roles in cartilage and limb bud formation,
mesenchymal cell condensation, chondrocyte matrix
deposition, and chondrogenic differentiation.73,118–119

Therefore, hyaluronic acid is regarded as an ideal
biomaterial for cartilage tissue repair. Yu et al120 have
fabricated an injectable hyaluronic acid/PEG hydrogel
with excellent mechanical properties for cartilage tissue
engineering. Cells encapsulated in the hydrogel in situ
demonstrate high metabolic viability and proliferation. In
addition, taking advantage of its biocompatibility, struc-
tural similarity to glycosaminoglycan, and ready formation
of ionic complexes of chitosan, Park et al121 have
successfully fabricated an injectable chitosan–hyaluronic
acid hydrogel utilizing hyaluronic acid and methacrylated

glycol chitosan. Chondrocytes encapsulated in the
hydrogel show excellent proliferation and increased
deposition of cartilaginous ECM; considering these results,
this hydrogel has great potential for cartilage tissue repair.
To overcome its poor mechanical properties, fast

degradation, and hydrolytic reactions, hyaluronic acid is
usually modified or combined with other biomaterials for
practical applications.113,122 Palumbo et al123 have
designed an in situ forming hydrogel by the addition of
divinyl sulfone-functionalized inulin to two types of amino-
functionalized hyaluronic acid derivatives, specifically
pendant ethylenediamino and amino/octadecyl hyaluro-
nic acids. The properties of the hydrogel indicate that the
presence of pendant C18 chains improves the mechan-
ical performances of hyaluronic acid-based hydrogels
and decreases their susceptibility to hyaluronidase hydro-
lysis. Furthermore, encapsulated bovine chondrocytes in
the hydrogel result in high viability and proliferation.
Domingue et al124 have used cellulose nanocrystals as
nanofillers to develop a new class of reinforced hyaluronic
acid-based injectable hydrogels, which comprise adipic
aciddihydrazide-modified hyaluronic acid and aldehyde-
modified hyaluronic acid reinforced by the aldehyde-
modified cellulose nanocrystals. The biological perfor-
mance of the developed hydrogel has been evaluated
on the basis of the incorporation of human adipose-
derived stem cells. The hydrogel has been found to
possess preeminent cell-supportive properties and
to spread well within the volume of gels, in addition to
exhibiting pronounced proliferative activity.

Fibrin-based injectable hydrogels. Fibrin, which is
regarded as a favorable cell-transplantation matrix that
can enhance cell attachment, proliferation, differentia-
tion, and migration in a 3D scaffold, is a natural fibrous
protein involved in blood clotting.125–127 In previous
studies, fibrin, alone or in combination with other materials,
has been used to synthesize scaffolds for cartilage tissue-
engineering applications.128–131 Benavides et al132 have
applied fibrin-based hydrogels, together with PEG and
human amniotic fluid-derived stem cells, to develop a
novel injectable hydrogel system that is able to induce a
fibrin-driven angiogenic host response and promote in situ
amniotic fluid-derived stem cell-derived neovasculariza-
tion. Almeida et al133 have developed an injectable,
cartilaginous ECM microparticle-functionalized fibrin-
based hydrogel, which transforms growth factor trans-
forming growth factor-β3 into a putative therapeutic for
articular cartilage regeneration. The capacity of the
hydrogel to promote chondrogenes is of freshly isolated
stromal cells in vivo suggests that the hydrogel can induce
cartilage formation and has the potential for cartilage
repair, and thus may have the potential to overcome
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several current challenges related to cartilage tissue
engineering. In addition, because alginate microbeads
are stable and biocompatible, this hydrogel has been
widely applied among injectable hydrogel systems for
tissue regeneration.125 Hwang et al134 have developed a
novel hybrid hydrogel system using alginate particles and
a fibrin matrix. In this hydrogel, the introduction of alginate
particles into a fibrin matrix enhances cellular mobility and
proliferation, volume retention, and vascularization in vivo,
thus making the injectable hybrid system a desirable
approach for cartilage tissue-engineering applications.

Alginate-based injectable hydrogels. Alginate, which
consists of guluronic andmannuronic acids, is a polysaccharide
extracted from brown algae (Phaeophyceae).50,135–136

Alginate has become one of the most commonly used
biomaterials in injectable hydrogel preparation for carti-
lage tissue-engineering applications, owing to its favor-
able scaffold forming, non-immunogenicity, and non-
toxicity.135,137–139 For example, Balakrishnan et al140 have
produced a rapidly gelling, oxidized alginate-based
injectable hydrogel by self-cross-linking periodate-
oxidized alginate and gelatin in the presence of borax.
The hydrogel integrates well with the cartilage tissue in
addition to exhibiting negligible inflammatory and oxida-
tive stress responses. Moreover, chondrocytes encapsu-
lated in the hydrogel have favorable viability, and exhibit
a normal phenotype in terms of proliferation and migra-
tion within the matrix, thus suggesting that the hydrogel is
a promising injectable, cell-attracting adhesive scaffold
for cartilage tissue engineering.
However, there is a drawback to using an injectable

alginate hydrogel: it is not strong enough to maintain the
structural shape of the regenerated tissue.141 Therefore,
alginate is usually modified or used in combination with
other biomaterials to improve its mechanical properties.
Zhao et al142 have devised a fully injectable and mecha-
nically strong calcium phosphate–alginate cement
hydrogel system. The mechanical properties of the
hydrogel are much better than those of previous inject-
able polymeric and hydrogel carriers, and the encapsu-
lated cells are viable, exhibit osteodifferentiation, and
secrete bone minerals. Furthermore, owing to its lack of
cell adhesion ability, alginate is usually blended with other
polymers.143–144 An injectable, biodegradable, oxidized
alginate/hyaluronic acid hydrogel has been prepared by
Park and Lee.143 At 6 weeks after injection of the hydrogel
with primary chondrocytes into mice, effective cartilage
regeneration has been observed. In another study, a class
of biocompatible and biodegradable alginate-based
hydrogel blend has been synthesized by using alginate
and O-carboxymethyl chitosan with the addition of
fibrin nanoparticles.144 Evaluation of the swelling ratio,

degradation profile, compressive strength, and elastic
module have indicated that alginate/O-carboxymethyl
chitosan forms a preferable blend for tissue-engineering
applications.

Heparin-based injectable hydrogels. Heparin, which is
best known for its anticoagulant properties, is a negatively
charged, highly sulfated, linear polysaccharide com-
posed of repeating disaccharide units of 1,4-linked uronic
acid and glucosamine residues.145–148 Owing to its
negatively charged functional groups, heparin can inter-
act with proteins, including ECM proteins, growth factors,
and chemokines, which plays important roles in many
biological processes, such as triggering multiple down-
stream signaling pathways and controlling cellular pro-
liferation, and differentiation.149–154 As a result, heparin
has widely been used for the fabrication of injectable
hydrogels that control the delivery of growth factors in
tissues, especially during cartilage tissue repair.153,155–158

For example, Jin et al159 have used horseradish perox-
idase (HRP)-mediated co-cross-linking to form dextran–
tyramine (Dex–TA) and heparin–tyramine injectable
hydrogel conjugates whose swelling and mechanical
properties can be controlled for cartilage tissue-
engineering applications. Chondrocytes incorporated in
the hydrogel exhibit favorable viability and proliferation,
with increased production of chondroitin sulfate and
abundant collagen content. In addition, heparin-based
injectable hydrogels can also be combined with other
scaffolds to reinforce its curative effects. Such a strategy
has been attempted by Kim et al,160 who have combined
the advantages of a porous gelatin-incorporated poly
(L-lactide-co-ε-caprolactone) scaffold and heparin-
based injectable hydrogels to produce a scaffold/hydro-
gel composite for delivering chondrocytes to repair partial
thickness cartilage defects. Cells encapsulated in the
scaffold/hydrogel composite exhibit enhanced expres-
sion of chondrogenic genes and increased the produc-
tion of glycosaminoglycans. In addition, significant
cartilage formation that integrates well with the surround-
ing natural cartilage tissue has been observed when this
composite has been used to repair partial thickness
defects of rabbit knees. All of these results indicate that
the scaffold/hydrogel composite is a promising scaffold
system for cartilage regeneration.

Elastin-based injectable hydrogels. Elastin is an insoluble,
polymeric, elastic protein found in soft tissue, such as skin,
blood vessels, and lungs.161–162 Currently, elastin-based
biomaterials are widely used in tissue engineering, espe-
cially in fabricating injectable hydrogels for cartilage tissue
engineering, because elastin not only improves local
elasticity but also facilitates cellular interactions and
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signaling during neoplastic tissue formation.162–163 For
instance, Fathi et al87 have fabricated a highly cytocom-
patible and injectable elastin-based hydrogel with alter-
able gelation characteristics, favorable mechanical
properties, and good structural stability. This hydrogel is
generated by the synthesis of a polymer (PNPHO) by
functionalizing poly(N-isopropylacrylamide-co-polylactide-2-
hydroxyethylmethacrylate-co-oligo(ethylene glycol)mono-
methyl ether methacrylate with succinimide ester groups,
then covalently attaching elastin to PNPHO via interaction
of its primary amine groups with the ester groups of PNPHO
in aqueous solution. The elastin-co-PNPHO solutions are
injectable and convert into hydrogels in situ at 37 °C
without any cross-linking reagent. In addition, this elastin-
based injectable hydrogel shows favorable structural
stability and mechanical properties as well as preferable
cyto-biocompatibility, thus making it a favorable candi-
date for cartilage tissue-engineering applications.

Chondroitin sulfate-based injectable hydrogels. Chon-
droitin sulfate, which is composed of sulfated disacchar-
ide repeating units with 1–3 linkages of D-glucuronic acid
and N-acetylgalactosamine, is an abundant anionic
linear polysaccharide present in connective tissue and
bones, and is an important component of cartilage in the
body.164–167 Chondroitin sulfate plays important roles in
many biological processes such as intracellular signaling,
cell recognition, the connection between ECM compo-
nents and cell-surface glycoproteins, and chondrocyte
phenotype regulation, as has widely been investigated in
cartilage tissue engineering.168–171 Wiltsey et al172 have
developed a poly(N-isopropylacrylamide)-graft-chondroi-
tin sulfate-based injectable hydrogel scaffold, which acts
as a favorable adhesive interface with surrounding tissue.
The hydrogel system has been demonstrated to have
improved mechanical properties at 37 °C, enhanced
adhesive tensile strength (ranging from 0.4 to 1 kPa), and
no cytotoxicity to human embryonic kidney 293 cells.
Chen et al173 have successfully developed a novel
injectable pullulan/chondroitin sulfate composite hydro-
gel, synthesized under physiological conditions, for carti-
lage tissue engineering. The hydrogel system is very
cytocompatible, enhances cell proliferation, and
increases cartilaginous ECM deposition, thus showing
promise for cartilage tissue repair.

Synthetic biomaterial-based injectable hydrogels
Compared with natural biomaterials, synthetic biomaterials,
owing to their enhanced controllability and reproducibility,
enable the systematic study of cell–matrix interactions.57

To date, several degradable synthetic polymers have
been studied for the development of injectable hydrogels
for cartilage tissue engineering; these polymers include

PEG,114,174–177 poly(L-glutamic acid),178–179 poly(vinyl
alcohol),180 poly(propylene fumarate),181 α,β-poly-
(N-hydroxyethyl)-DL-aspartamide,182 PEG-poly(N-isopropyl
acrylamide) (PNIPAAm),183 methoxy polyethylene glycol,184

and methoxy polyethylene glycol–poly(ε-caprolactone).185

For example, Yan et al186 have reported a novel poly
(L-glutamic acid)-based injectable hydrogel. Preliminary
studies of the hydrogel have demonstrated successful
injectability, rapid in vivo gelling, excellent cell growth,
satisfactory mechanical stability, and favorable ectopic
cartilage formation. Skaalureet al187 have developed a
new cartilage-specific, degradable hydrogel based on
PEG and have encapsulated bovine chondrocytes from
different sources in the hydrogel for cartilage tissue
engineering. This new PEG-based injectable hydrogel
shows promise for cartilage regeneration. Moreover, De
France et al188 have designed an in situ gelling nano-
composite hydrogel based on poly(oligoethylene glycol
methacrylate) and rigid rod-like cellulose nanocrystals.
This injectable hydrogel possesses enhanced mechanical
properties, increased stability and gelation rates, and
decreased swelling ratios.
However, synthetic biomaterials are not very biocompa-

tible, and, as compared with natural biomaterials, they
lack biological activity. The most common strategy used to
solve this problem is modifying or combining synthetic
biomaterials with bioactive polymers. For example, Yan
et al178 have fabricated a series of injectable poly(L-
glutamic acid)/alginate (PLGA/ALG) hydrogels by self-
cross-linking hydrazide-modified poly(L-glutamic acid) and
aldehyde-modified alginate. This injectable PLGA/ALG
hydrogel exhibits attractive properties for future applica-
tion in cartilage tissue engineering. In addition, Yu
et al120,189 have fabricated two hyaluronic acid/PEG-
based injectable hydrogels. Both hydrogels possess
good mechanical properties and short gelation times,
and the cells encapsulated in the hydrogels exhibit high
metabolic viability and proliferation, thus indicating that
both hydrogels have great potential in cartilage tissue
engineering.

INJECTABLE HYDROGELS FABRICATED VIA DIFFERENT
APPROACHES
There are various approaches available for the fabrication
of injectable hydrogels; depending on the approach
used, injectable hydrogels can be divided into physical
hydrogels and chemical hydrogels. Physical hydrogels
are spontaneously formed by weak secondary forces,
which respond to the changes in temperature, pH, or
ionic concentration.63,190–191 Chemical hydrogels are pro-
duced through a variety of chemical processes, for
example, enzymatic cross-linking, Schiff base cross-linking,
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Michael additions, click chemistry, and photo-cross-
linking.44,56,62–63,192–193

Injectable hydrogels by physical methods
Temperature-sensitive injectable hydrogels. Injectable
hydrogels that are sensitive to temperature changes have
recently attracted substantial attention for applications in
cartilage tissue engineering, because of their gelation
ability at physiological temperature. These injectable
hydrogels are present in aqueous form at room tempera-
ture, but they rapidly gel at physiological temperature
before solidifying in the desired tissue.194–195 The threshold
temperature at which hydrogels transform from a solution
to a hydrogel state is defined as the lower critical solu-
tion temperature. The most useful characteristic of
temperature-sensitive hydrogels is that they can undergo
a phase transition without any chemical stimulus. To date,
the most common explanation of the phase transition
mechanism of temperature-sensitive injectable hydrogels
is that when the temperature changes, there is a
change in the hydration state favoring intra- and inter-
molecular hydrogen bonding, thus eventually changing
the hydrogel solubility.196–197 Therefore, to make inject-
able hydrogels that are sensitive to temperatures,
temperature-sensitive polymers such as poly(lactic-
co-glycolic acid)–PEG,194 poly(N,N-diethylacrylamide),195

PNIPAAm,197 and poly(ethylene glycol-b-[DL-lactic acid-
co-glycolic acid]-b-ethylene glycol)198 are needed.
PNIPAAm, an inverse temperature-sensitive polymer

derived from polyacrylic acid, has become one of the
most commonly used temperature-sensitive polymers,
owing to its rapid phase transition at its ~ 32 °C lower
critical solution temperature.199–201 However, linear PNI-
PAAm is not stable at physiological temperature, thus
requiring the modification of other polymers to improve
the stability and mechanical properties. Kloudaet al202

have studied the effects of the macromer end group,
acrylate or methacrylate, and the effects of fabrication
conditions on the degradative and swelling properties of
PNIPAAm-based injectable hydrogels. When immersed in
cell culture medium at physiological temperature, the
hydrogels maintain constant swelling, and exhibit no
observable degradation over 8 weeks; the methacrylated
hydrogels show greater swelling than their acrylated
analogs. Another temperature-sensitive PNIPAAm-based
injectable hydrogel, synthesized by functionalizing PNI-
PAAm with methacrylate groups by degradable phos-
phate ester bonds, has transition temperatures between
room temperature and physiological temperature.203

Making temperature-sensitive injectable hydrogels by
modifying PNIPAAm with natural polymers is another
strategy to optimize their stability and mechanical

properties. Ren et al204 have grafted temperature-
sensitive PNIPAAm onto gelatin via atom transfer radical
polymerization, creating a hydrogel that successfully
undergoes a sol-to-gel transition at physiological tem-
perature. Tan et al205 have synthesized a temperature-
sensitive injectable hydrogel whose lower critical solution
temperature is ~ 35 °C, by grafting PNIPAAm-COOH with a
single carboxy end group onto aminated alginate
through amide bond linkages. In addition, the hydrogel
is not cytotoxic and preserves the viability of the
entrapped cells, thus making it suitable as a cell delivery
vehicle for cartilage tissue-engineering applications.

pH-sensitive injectable hydrogels. Injectable hydrogels
sensitive to pH value show significant potential in regenera-
tive medicine. To obtain pH-sensitive injectable hydrogels, it
is necessary to incorporate the hydrogel with a pH-sensitive
moiety such as the polyelectrolyte N-palmitoylchitosan,65

polyacrylic acid,206 oligomeric sulfamethazine,207 and sulfa-
methazine oligomers (SMOs).208 For example, Shim et al209

and Kim et al191 have synthesized a pH-sensitive injectable
hydrogel by adding pH-sensitive SMOs to both ends
of a temperature-sensitive poly(ε-caprolactone-co-lactide)–
PEG–poly(ε-caprolactone-co-lactide) (PCLA–PEG–PCLA)
block copolymer. This pH-sensitive SMO–PCLA–PEG–PCLA–
SMO injectable hydrogel exists in solution at high pH (pH 8.0),
but rapidly changes into a stable gel under physiological
conditions (pH 7.4). Kim et al191 have encapsulated human
mesenchymal stem cells and recombinant human bone
morphogenetic protein-2 into the hydrogels under physiolo-
gical conditions and injected the mixture into the backs of
mice. Histological studies observing human mesenchymal
stem cell differentiation for 7 weeks have revealed miner-
alized tissue formation and high levels of alkaline phospha-
tase activity in the mineralized tissue.

Other physical injectable hydrogels. Other physical
injectable hydrogels, such as ion-sensitive and stress-
sensitive hydrogels, for cartilage tissue-engineering
applications have also been reported.62–64 For instance,
Park et al64 have prepared an ionically cross-linkable
hyaluronate-grafted-alginate hydrogel that easily forms
gels in the presence of calcium ions and has been
demonstrated to be useful in cartilage regeneration by
the subcutaneous injection of primary chondrocyte-
encapsulated hyaluronate-grafted-alginate into the dor-
sal region in a mouse model. Except for the novel
methods of developing physical injectable hydrogels,
determining how to improve the biocompatibility, biode-
gradability, mechanical properties, and the in vivo main-
tenance of structural integrity of correlated biomaterials
are further research topics for the design of physical
injectable hydrogels.
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Injectable hydrogels by chemical methods
Injectable hydrogels by enzymatic cross-linking. Recently,
the use of the enzymatic cross-linking method applied to
the development of novel injectable hydrogels has drawn
attention, owing to the fast gelation, high site specificity,
ability to work at normal physiological conditions, and low
cytotoxicity.210–215 Several enzyme-mediated cross-linking
systems have been applied to synthesizing injectable
hydrogels for cartilage tissue-engineering applications,
including transglutaminase, tyrosinase, phosphopantethei-
nyl transferase, lysyl oxidase, plasma amine oxidase,
phosphatase, thermolysin, β-lactamase, and peroxidase.215

Among them, HRP is the most commonly used enzyme in
synthesizing injectable hydrogels. HRP is a single-chain
β-type hemoprotein that catalyzes the conjugation of
phenol and aniline derivatives in the presence of
H2O2.

215–216 The HRP-mediated cross-linking system cova-
lently binds the phenol-conjugated polymers to the ECM
proteins of the surrounding native tissue and thus is
beneficial in maintaining the structural integrity of the
wound tissue.217

Both natural and synthetic polymers that contain phenol
groups or are functionalized with tyramine, tyrosine, or
other aminophenol molecules can be enzymatically
cross-linked by HRP (Figure 4).218–220 For example, Wang
et al221 have reported an HRP-mediated gelatin–hydro-
xyphenylpropionic acid-based injectable hydrogel for
ectopic cartilage formation and early-stage osteochon-
dral defect repair. The reported hydrogel was fabricated
by oxidative coupling of hydroxyphenylpropionic acid
moieties, catalyzed by HRP and H2O2. Jin et al222 have
also enzymatically cross-linked Dex–TA conjugates in the
presence of HRP and H2O2 to prepare an injectable
hydrogel for cartilage tissue repair. Chondrocytes encap-
sulated in the Dex–TA hydrogels have been found to
retain their viability and normal morphology after 2 weeks,
and to secrete glycosaminoglycans and collagen type II
after culturing for 14 and 21 days, thus indicating that the
enzymatically cross-linked injectable Dex–TA hydrogels
are promising for cartilage tissue-engineering applications.

Injectable hydrogels by Schiff base cross-linking. Schiff
base reactions have been widely used for synthesizing
injectable hydrogels for cartilage regeneration applica-
tions, owing to the mild reaction conditions and high
reaction rate, as well as the ability to form imine bonds
between amino and aldehyde groups without any
external stimuli or additional reagents under physiological
conditions.92,223–228 Chitosan is an excellent biomaterial
for preparing injectable hydrogels via Schiff base cross-
linking, owing to the abundant amino groups on its
backbone. For example, Cheng et al229 have reported
an injectable chitosan-based polysaccharide hydrogel
for cell and protein delivery, which is cross-linked via an
imine bond resulting from the Schiff base reaction
between the amino functionalities of chitosan and the
aldehyde groups of dextran aldehyde in aqueous solu-
tions. Cao et al230 have utilized a multi-benzaldehyde-
functionalized PEG analog, poly(ethylene oxide-co-glyci-
dol)-CHO(poly(EO-co-Gly)-CHO), and glycol chitosan to
successfully develop an injectable hydrogel system for
cartilage tissue repair, which was chemically cross-linked
through a Schiff base reaction between amino groups of
glycol chitosan and aldehyde groups of poly(EO-co-Gly)-
CHO under physiological conditions in situ (Figure 5). In
addition, other biomaterial-based injectable hydrogels
coupled by Schiff base cross-linking have been widely
investigated. Most recently, Ma et al231 have developed
a biodegradable and injectable polymer–liposome
hydrogel by using aldehyde-modified xanthan gum and
phosphatidylethanolamine liposomes, which are chemi-
cally cross-linked by a Schiff base reaction between the
aldehyde groups of aldehyde-modified xanthan gum and

Figure 4. Schematic illustration of injectable hydrogels prepared by
the enzymatic cross-linking method with horseradish peroxidase (HRP)
and H2O2.

Figure 5. Schematic illustration of injectable hydrogels prepared by
Schiff base cross-linking between aqueous solutions of GC and poly
(EO-co-Gly)-CHO.230
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amino groups of PE liposomes. This xanthan gum-based
liposome hydrogel has many advantages, such as rapid
preparation at room temperature, ready biodegradation
by enzymes, excellent self-healing capability, and the
ability to maintain favorable cell viability.

Injectable hydrogels by Michael addition. The Michael
addition reaction, which is the nucleophilic addition of a
carbanion or a nucleophile to an α,β-unsaturated carbo-
nyl compound (Figure 6), is another commonly used
approach to prepare injectable hydrogels, owing to its
reaction under physiological conditions and controllable
reaction time.193,232–239 Hyaluronic acid, chitosan, and
PEG are frequently used biomaterials for injectable
hydrogel preparation via the Michael addition reaction
for cartilage tissue engineering under physiological
conditions.114,240–242 For example, Calogero et al243 have
prepared two kinds of hyaluronic acid-based injectable
hydrogels by Michael addition, using the amino derivative
of hyaluronic acid (HA-EDA), α-elastin-grafted HA-EDA,
and α,β-poly(N-2-hydroxyethyl)-DL-aspartamidederivatized
with divinylsulfone. The swelling and degradation profile as
well as its ability to incorporate viable articular chondro-
cytes of the injectable hydrogel indicate that this
injectable hydrogel scaffold possesses desired properties
for the treatment of articular cartilage damage under
physiological conditions.

Injectable hydrogels by click chemistry. Click chemistry
refers to a synthetic concept involving a wide range of

reactions (Figure 7), including copper-catalyzed azide-
alkyne cyclo-addition reactions,244–246 Diels–Alder
reactions,120 the thiol-ene reactions,247–248 tetrazine–nor-
bornene chemistry,249 thiol-epoxy,250 and thiol-maleimide
couplings.251 These reactions have shown great promise
for the development of injectable hydrogels, owing to
their rapid polymerization kinetics and low reactivity with
cellular components.252–254 For example, Kaga et al255

have fabricated a dendron–polymer–dendron conju-
gate-based injectable hydrogel through radical thiol-ene
“click” reactions. In this fabrication process, the dendron–
polymer conjugates were prepared through an azide-
alkyne “click” reaction of alkene-containing polyester
dendrons, bearing an alkyne group at their focal point,
with linear PEG-bisazides. The sequential thiol-ene “click”
reaction uses a tetrathiol-based cross-linker to cross-link
these alkene-functionalized dendron–polymer conju-
gates, thus resulting in clear and transparent hydrogels.

Injectable hydrogels by photo-cross-linking. Photo-cross-
linking is a complex process, consisting of initiation,
propagation, and termination steps, triggered by electro-
magnetic radiation in the visible and ultraviolet regions
(Figure 8).256–257 First, free radicals are created by the
excitation of photoinitiators, as a result of the illumination
in the initiation step. Then, long kinetic chains are cross-
linked by propagating the radicals through unreacted
double bonds in the propagation step, and this is followed
by a termination step, which is characterized by the end
of cross-linking in the 3D polymeric network.257 In recent
years, photo-cross-linking methods have been widely
applied to prepare injectable hydrogels for cartilage
tissue engineering because of the ability to control the
timing and location of cross-linking under physiological
conditions.258–266 For example, Papadopoulos et al267

have developed a poly(ethylene glycol)dimethacrylate
copolymer-based injectable hydrogel by photo-cross-
linking for cartilage tissue-engineering applications. Swine

Figure 6. Schematic illustration of injectable hydrogels prepared by
the Michael addition cross-linking method.

Figure 7. Schematic illustration of injectable hydrogels prepared by
click chemistry.

Figure 8. Schematic illustration of injectable hydrogels prepared by
the photo-cross-linking method. Reprinted with permission from
ref. 256 2009 Elsevier Publishing Group.
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auricular chondrocytes have been encapsulated into
PEGDM copolymer hydrogels composed of degradable
(PEG-4,5 LA-DM) and nondegradable PEGDM macromers
in a 60:40 molar ratio. The histological, biochemical, and
integrative features of the neocartilage indicate that the
viability, proliferation, and normal secretion of glycosami-
noglycan and hydroxyproline contents of the seeded
chondrocytes are maintained, and the neocartilage
resembles the native swine auricular cartilage, thus
indicating the promise of these hydrogels in cartilage
tissue-engineering applications.

INJECTABLE HYDROGELS FOR BONE TISSUE
ENGINEERING
Bone defects have become one of the leading causes of
morbidity and disability among elderly people
worldwide.268–269 Although autografting is regarded as
the gold standard for bone defect repair, it is limited by
the donor-site morbidity and uncertain adverse effects.270

Therefore, bone tissue engineering has attracted consider-
able attention from researchers as a promising strategy for
repairing bone defects without the limitations and short-
comings of using either bone autografts, allografts, or
xenografts.271

Recently, various injectable hydrogels with good mold-
ability and 3D structures have been widely investigated for
use in bone tissue engineering. Among the biomaterials
used for preparing injectable hydrogels, alginate is one of
the most investigated biomaterials used in bone tissue
engineering.135 Matsuno et al272 have developed a novel
injectable 3D hydrogel for bone tissue engineering that
uses β-tricalcium phosphate beads and alginate as a
scaffold. Mesenchymal stem cells 3D-cultured within the
hydrogel have been implanted subcutaneously for in vivo
experiments, and have indicated that the scaffold can
favorably support osteogenic differentiation. Han et al273

have prepared an injectable calcium silicate/sodium
alginate hybrid hydrogel by incorporating calcium silicate
into an alginate solution. In 30 s to 10min, this hydrogel
undergoes internal in situ gelling when calcium ions are
released from calcium silicate with the introduction of
D-gluconic acid δ-lactone. Moreover, the hydrogel effi-
ciently promotes the adhesion, proliferation, and differen-
tiation of osteogenic and angiogenic cells. Chitosan is
another commonly used biomaterial for synthesizing inject-
able hydrogels in bone tissue engineering.274 Dessi et al275

have successfully developed a thermosensitive chitosan-
based hydrogel cross-linked with β-glycerophosphate and
reinforced by physical interactions with β-tricalcium phos-
phate. The hydrogel simulates natural bone tissue and
supports cellular activity and undergoes a sol–gel transition
at physiological temperature with typical rheological

properties. Meanwhile, owing to the properties of collagen,
this hydrogel enhances cell adhesion and proliferation.
Ding et al276 have incorporated collagen into the chitosan/
β-glycerophosphate system to synthesize an injectable
chitosan/β-glycerophosphate/collagen-based hydrogel
scaffold for bone tissue engineering. Mesenchymal stem
cells co-cultured in the hydrogel have been demonstrated
to be capable of supporting neovascularization and
osteogenic lineage differentiation. In recent years, syn-
thetic biomaterials-based injectable hydrogels for bone
tissue engineering have attracted attention. Jang et al277

have investigated an injectable in vivo forming hydrogel
scaffold made of methoxy polyethylene glycol-b-
polycaprolactone block copolymer for bone tissue engi-
neering. Differentiated osteoblasts encapsulated in the
hydrogel exhibit characteristic expression of osteonectin,
osteopontin, and osteocalcin. Vo et al278 have designed
an N-isopropylacrylamide/gelatin microparticle-composite
hydrogel. The gelatin microparticles incorporated in the
hydrogel enhance bony bridging and mineralization within
the defect and direct bone-implant contact. After encap-
sulation of mesenchymal stem cells in the hydrogel,
significant tissue infiltration and osteoid formation have
been observed, thus suggesting that the hydrogel system
facilitate bone ingrowth and integration.
To improve the mechanical properties and mineraliza-

tion of the scaffold in bone tissue engineering, inorganic
materials are usually introduced with hybrid hydrogels.
Given that hydroxyapatite (HA) is one of the major
inorganic components in bone tissue,279 Fu et al280 have
prepared a novel three-component injectable thermo-
sensitive hydrogel composite composed of triblock PEG–

PCL–PEG copolymer, collagen, and nanohydroxyapatite.
This hydrogel composite has a good interconnected
porous structure in addition to excellent thermosensitivity.
Furthermore, in vivo studies have demonstrated that the
PECE/collagen/nanohydroxyapatite hydrogel has good
biocompatibility and exhibits better performance in
guided bone regeneration than in the self-healing process,
thus indicating its great promise for bone tissue engineer-
ing. Furthermore, Jiao et al281 have synthesized an in situ
cross-linkable citric acid-based biodegradable PEG mal-
eate citrate/HA hydrogel. Huang et al282 have fabricated
an injectable nanohydroxyapatite/glycol chitosan/
hyaluronic acid composite hydrogel. MC-3T3-E1 cells
incorporated in the hydrogel attach and spread well after
7 days of co-incubation, thus suggesting that the hydro-
gel’s potential application in bone tissue engineering. Lin
et al283 have designed an injectable and thermosensitive
hydrogel composite composed of poly(lactic acid-co-
glycolic acid)-g-PEG and HA for its potential application in
bone tissue engineering. The addition of HA into the
hydrogel enhances the mechanical properties and
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bioactivity of the hydrogel. Most recently, an injectable
alginate/HA hydrogel scaffold, combined with gelatin
microspheres (GMs), has been reported by Yan et al.284

In this hydrogel, HA and GMs successfully improve the
mechanical properties of the scaffold, thus demonstrating
that the HA and GMs double-integrated alginate-based
hydrogel has a suitable physical performance and bioac-
tive properties. Thus, the hydrogel shows great potential for
local treatment of pathologies involving bone defects.
Moreover, taking advantage of the structural and regula-
tory cellular functions of zinc (Zn) and its ability to promote
osteoblastogenesis and suppress osteoclastogenesis,285

Niranjan et al286 have reported a thermosensitive
hydrogel, containing Zn, chitosan, and β-glyceropho-
sphate, for bone tissue engineering. Furthermore,
Dhivyaet al287 have designed an injectable thermosensi-
tive zinc-doped chitosan/nanohydroxyapatite/β-glycero-
phosphate-based hydrogel. In vivo studies in a ratbone-
defect model system have indicated the potential of the
hydrogel for accelerating bone formation at molecular
and cellular levels. Other inorganic materials such as
nanosilica and Bioglass have been studied for the
preparation of hybrid hydrogel systems.288–289 For example,
Vishnu Priya et al290 have developed an injectable
hydrogel system by using chitin and poly(butylene succinate)
loaded with fibrin nanoparticles and magnesium-doped
Bioglass. This hydrogel system enhances the initiation of
differentiation and expression of alkaline phosphatase
and osteocalcin, thus indicating its promise for regenerat-
ing irregular bone defects.

CONCLUSIONS AND PERSPECTIVES
Injectable hydrogels are promising scaffolds for cartilage
and bone tissue engineering, owing to their minimal
invasive properties and ability to match irregular defects.
In this review, we summarized many novel injectable
hydrogels prepared by a variety of biomaterial and
fabrication techniques for cartilage- and bone tissue-
engineering applications. First, injectable hydrogels fabri-
cated from both natural biomaterials and synthetic
biomaterials were reviewed. Natural biomaterials such as
chitosan, collagen/gelatin, alginate, fibrin, elastin, heparin,
and hyaluronic acid are among the most commonly used
biomaterials for the preparation of injectable hydrogels,
owing to their perfect cyto-biocompatibility, biodegrad-
ability, low cytotoxicity, and similarity to the natural
cartilage and bony ECMs. However, injectable hydrogels
synthesized from natural biomaterials usually lack mechan-
ical strength, thus limiting their potential utilization. In
contrast, synthetic biomaterials-based injectable hydrogels
have favorable stability and mechanical properties, but
have poor biocompatibility and bioactive properties. Then,

various preparation methods of injectable hydrogels,
including both physical and chemical methods, were
highlighted. Physical hydrogels can be easily fabricated,
owing to their sensitivity to external stimuli such as
temperature, pH, ion concentration, and stress. Although
physical injectable hydrogels can easily be produced and
have low cytotoxicity, they usually have a slow response
time and low stability. In contrast, injectable hydrogels
prepared via chemical methods show favorable stability
under physiological conditions and excellent mechanical
properties, but they have adverse effects in vivo, owing to
chemical reactions.
Over the past several years, there have been many

studies focused on synthesizing novel injectable hydrogels
for cartilage and bone repair. However, many challenges
remain to be addressed in fabricating injectable hydrogels
to optimally achieve cartilage and bone regeneration. The
major challenge of developing injectable hydrogels for
cartilage and bone tissue engineering is the design of
bioactive scaffolds that have perfect biocompatibility,
biodegradability, stability, and favorable mechanical
properties for 3D cell culture, and are able to support
nutrient transportation and growth factor delivery. To
address this challenge, first, bioactive biomaterials that
can be used to prepare novel injectable hydrogels
should be developed. Most recently, attempts at using
glycopolypeptide,291 silk,292 carrageenan,293 pectin,294

and even the ECM295 to synthesize injectable hydrogels
have attracted attention. Second, advanced fabrication
methods require further development, primarily to improve
the mechanical properties and physiological stability, and
to decrease the cytotoxicity and adverse effects of the
hydrogels in vivo. Finally, the development of a methodol-
ogy to integrate the merits of the various biomaterials and
fabrication methods for the preparation of injectable
hydrogels will play an important role in the clinical
applications of hydrogels in cartilage and bone tissue
engineering.
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