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Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and
Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune
system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous
harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen
species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling
pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in
this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways
and thus have good application prospects. This article summarized the research advancements regarding the antioxidative
effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical
treatment with ginsenosides.

1. Introduction

Ginseng (Panax ginseng Meyer) is one of the most widely used
herbal nutrition drugs worldwide. Ginseng has long been used
as a dietary supplement and regulator to relieve fatigue in East-
ern countries, especially in China, Korea, and Japan [1]. Ginseng
has always been regarded as the “king of herbs” in Chinese
traditional medicine, as it enhances fitness and tranquilizes the
mind. Modern pharmacological studies have suggested that
ginseng has various pharmacological effects, including antican-
cer, antioxidant, anti-inflammatory, and other biological effects
[2]. Ginsenosides, which are triterpene saponins, are the major
components of ginseng. Thus far, >180 ginsenosides have been
isolated from ginseng, and these components have become
popular research topics [3]. According to the structures of the
glycones, ginsenosides are classified into two major types:
dammarane-type ginsenosides and oleanane-type ginseno-

sides [4]. Based on their chemical structures, dammarane-
type ginsenosides are typically further divided into two groups:
protopanaxadiol- (PPD-) group ginsenosides and protopanax-
atriol- (PPT-) group ginsenosides [5]. The PPD-group ginse-
nosides include Rb1, Rb2, Rb3, Rc, Rd, Rg3, and Rh2, while
the PPT-group ginsenosides include Re, Rg1, Rg2, and Rh1;
the oleanane-type ginsenosides mainly includes Ro [6]. These
classifications are shown in Figure 1. The biological activities
of ginsenosides are influenced by the numbers and locations
of sugar molecules, the hydroxyl moieties of the dammarane
skeleton, and the stereoisomeric position at C-20 [7]. Research
has reported that 20(R)-Rg3 shows more potent antioxidant
stress activity than 20(S)-Rg3 according to the different stereo-
isomeric positions at C-20 [8]; in addition, 20(S)-Rg2 can
reduce intracellular UV-B-induced reactive oxygen species
(ROS) production and shows more potent antioxidant activity
than 20(R)-Rg2 [9]. Studies have also found that the secondary
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metabolite derivatives of ginsenosides after transformation,
referred to as rare ginsenosides, have stronger biological activ-
ity than the parent compounds [10]. Although the content of
these saponins is low, the compounds exhibit unique pharma-
cological activities. For example, ginsenoside compound K
(CK) is an active ginsenoside metabolite of Rb1, Rb2, and Rc
that is produced by the intestinal flora after oral administration
and can alleviate the cognitive dysfunction associated with
vascular dementia in rats [11].

Various ginsenosides can play critical roles in inhibiting
oxidative stress, preventing oxidative injury, and protecting cells
[12, 13]. However, most of the studies in the literature have
focused only on a single signaling pathway, and some relevant
studies and reviews do not appear sufficient or comprehensive.
Previous reports have tended to review the antioxidant activities
of ginsenosides from the perspectives of reducing disease-
related symptoms (such as regulating mitochondrial energy
metabolism, improving insulin resistance, and reducing com-
plications) [14, 15] and preventing chronic diseases related to
oxidative stress (such as diabetes, cancer, and cardiovascular
diseases) [16]. However, there have been few reviews about
ginsenosides’molecular mechanisms and targets against oxida-
tive stress injury. This review summarizes existing studies on
the antioxidant effects, mechanisms, and potential molecular
targets of ginsenosides to provide a theoretical basis for the
further development of natural antioxidants from ginsenosides.

2. Overview of Oxidative Stress

Paniker et al. first proposed the concept of oxidative stress in
1970 when studying the role of glutathione reductase deficiency
on the hexose monophosphate shunt pathway under oxidative
stress [17]. Oxidative stress is an imbalance between oxidation
and antioxidant systems caused by excessive production of
ROS or diminished cellular antioxidant activity. Oxidative
stress can not only damage macromolecules but also lead to
various health disorders, such as atherosclerosis, cancer, neuro-
degenerative diseases, diabetes mellitus, and obesity [18–22].
Because mitochondria are the primary sources of superoxide
free radicals, many previous studies have consideredmitochon-
dria the prominent target organelles for oxidative stress [23,
24]. However, at present, oxidative stress is considered a com-
plex biochemical process involving multiple target organelles,
such as mitochondria, the Golgi apparatus (GA), the endoplas-
mic reticulum, and other organelles (Figure 2). When oxidative
stress occurs, these organelles can elicit adaptive responses that
may protect cells from oxidative injury and restore the oxida-
tion/antioxidant balance [25–27].

Mitochondria are both significant sites of oxygen con-
sumption and the main targets of ROS. The mitochondrial
respiratory chain is one of the primary sources of ROS in cells.
When oxidative stress injury occurs, mitochondrial dysfunc-
tion enhances ROS production, and the damage induced by
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Figure 1: Structures of main ginsenosides. The figure shows the molecular structure of 20(R)-ginsenosides and 20(S)-ginsenosides. The
main difference between them that is R1, R2, and R3 form a glycoside position (glc: β-d-glucopyranoside; ara (pyr): arabinopyranoside;
ara (fur): furanoside; xyl: xylose group; rha: rhamnose).
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ROS accumulation can directly or indirectly contribute to mito-
chondrial dysfunction [28]. The balance of mitochondrial
fusion and fission determines mitochondrial morphology and
function. Mitochondrial fission is mainly driven by dynamin-
related protein 1 (Drp1) and mitochondrial fission protein 1
(Fis1), which primarily mediate mitochondrial division [29].
Mitochondrial fusion is primarily regulated by mitofusins 1
and 2 (Mfn1 and Mfn2) and optic atrophy 1 (Opa1), which
have been found to mediate fusion of the outer and inner mem-
branes of mitochondria, respectively [30, 31]. When cells are
stimulated by oxidative stress, activation of mitochondrial fis-
sion triggers the upregulation of genes associated with BCL2-
associated X protein (Bax) and cytochrome C (Cytc), which
leads to the fragmentation of mitochondria [32]. Decreased
expression of mitochondrial fusion proteins is accompanied
by reductions inmitochondrialmembrane potential, mitochon-
drial DNA, and mitochondrial respiratory function, thus caus-
ing apoptosis [33].

Endoplasmic reticulum stress (ERS) is caused by the accu-
mulation of misfolded and unfolded proteins in the endoplas-
mic reticulum (ER) due to disruption of protein processing in
the endoplasmic reticulum by pathological factors such as
cerebral ischemia-reperfusion injury and oxidative stress [34].
Oxidative stress and ERS interact to induce protein misfolding,
leading to ROS production. Overproduction of ROS can disturb
the redox homeostasis of the endoplasmic reticulum, disrupt
disulfide bond formation, and aggravate protein misfolding
and aggregation [35]. In addition, ERS can cause the accumula-
tion of the unfolded protein response (UPR) and disrupt the
normal function of the endoplasmic reticulum [36]. When
ERS occurs, the balance of endoplasmic reticulum homeostasis
is broken, and glucose-regulated protein 78 (GRP78), a trans-

membrane protein located in the endoplasmic reticulummem-
brane, elicits the activation of the UPR and causes a range of
ERS responses [37]. The activation of ERS can further influence
the release and activation of downstream proapoptotic proteins,
such as C/EBP homologous protein (CHOP), cysteinyl aspar-
tate specific proteinase-12 (caspase-12), and Bax, and inhibit
the expression of the antiapoptotic protein Bcl-2, ultimately
leading to apoptosis [38].

The GA considered a “stress sensor” plays crucial roles in
Ca2+/Mn2+ homeostasis, sphingolipid metabolism, and anti-
oxidation. “GA stress” refers to GA-specific stress response
[27]. When Ca2+/Mn2+ homeostasis is imbalanced in GA,
the overload of intracellular Ca2+ can activate the expression
of the caspase family, leading to Golgi fragmentation and apo-
ptosis [39]. It has been reported that the GA can be affected
after cerebral ischemia-reperfusion, which may lead to abnor-
mal protein structure and lipid transport, thereby causing
physiological dysfunction of neurons [40]. The main patho-
physiological processes of GA injuries induced by oxidative
stress involve damage to GA tubulin induced by oxidative
stress, activation of apoptotic processes of the GA, such as
the caspase cascade reaction, and abnormal increases in Ca2+

leading to fragmentation of the GA [27]. Golgi phosphopro-
tein 3 (GOLPH3), the outer membrane protein of the Golgi
complex, is involved in many biological processes, including
vesicle trafficking, Golgi structure maintenance, and Golgi gly-
cosylation [41]. As a sensor of GA stress, GOLPH3 is rapidly
upregulated during oxidative stress and plays a crucial role
in GA stress [41]. Li et al. found that GOLPH3 is significantly
increased in N2A cells subjected to oxygen-glucose depriva-
tion and reperfusion (OGD/R), which promotes ROS produc-
tion and leads to apoptosis. In addition, silencing of GOLPH3

Ca2+ abnormal

Ca2+ abnormalApoptosis

Oxidative
stress

Cleavage of
GA structutal

Damage to microtubules

Ca2+ abnormal

Respiration

Mitochondrial DNA

Mitochondrial
membrane potential

Fragmented
Mitochondria

Figure 2: Schematic diagram of multiple damaged organelles induced by oxidative stress. The figure shows that oxidative stress can cause
apoptosis and the changes of mitochondria, GA, and ER after oxidative stress. Oxidative stress can lead to abnormal mitochondrial fusion
division, dysfunction of the endoplasmic reticulum, imbalance of Golgi Ca2+ homeostasis, and Golgi fragmentation.
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with shRNA significantly decreases the apoptosis rate of N2A
cells [42]. These findings suggest that oxidative stress in the
Golgi can be regulated by the expression of GOLPH3, affecting
ROS production.

3. Signaling Pathways of Oxidative Stress

During long-term evolution, cells have developed a series of
complex mechanisms to cope with oxidative stress involving
multiple signaling pathways. These mechanisms produce
heme oxygenase 1 (HO-1), glutathione S-transferase (GST),
superoxide dismutase (SOD), and other antioxidant sub-
stances, which reduce the cellular damage caused by ROS
and electrophiles and ultimately maintain the oxidation/anti-
oxidation balance (Figure 3).

3.1. Oxidative Stress and the Keap1/Nrf2/ARE Signaling
Pathway. When cells are subjected to redox imbalance, they
rapidly initiate a variety of antioxidant responses to restore
the balance of the redox state. The Kelch-like epoxy
chloropropane-related protein-1 (Keap1)/nuclear factor
erythroid 2-related factor 2 (Nrf2)/antioxidant response
element (ARE) signaling pathway plays a vital role in the
amelioration of oxidative stress (Figure 3) [43]. Nrf2 is a cru-
cial redox-sensitive transcription factor in the regulation of
multiple cellular antioxidative defenses against both endoge-
nous and exogenous oxidative stress inducers, such as oxi-
dants, exogenous chemical agents, and excessive supply of
nutrients/metabolites [44]. As an oxidative stress sensor,
Keap1 is inactivated by the oxidation of cysteine residues,
which results in the dissociation of Nrf2 from Keap1 [45].
Under normal conditions, Nrf2 is negatively regulated at
low levels and undergoes ubiquitin-proteasome degradation
through interaction with Keap1. Upon exposure to oxidative
stress, the phosphorylation of Nrf2 facilitates the dissocia-
tion of Nrf2 from Keap1. Once activated, Nrf2 translocates
into the nucleus and binds with the ARE, which promotes
the expression of various downstream antioxidant enzymes
and exerts antioxidant capacity accordingly [46, 47].

Nrf2 also plays an essential role in maintaining the struc-
tural and functional integrity of mitochondria. Under oxida-
tive stress, the activation of Nrf2 can counteract the increase
in the production of mitochondrial ROS andmaintain the reg-
ular function and structure of mitochondria by increasing the
activity of antioxidative enzymes, such as glutathione (GSH),
SOD, and GST [48, 49]. It has been reported that Nrf2-/- mice
are more sensitive to traumatic brain injury- (TBI-) induced
oxidative stress than wild-type mice [50]. Choi also found that
activation of the Nrf2 signaling pathway can inhibit H2O2-
induced ROS accumulation in human HaCaT keratinocytes,
thereby exerting anticytotoxic effects [51]. These experiments
indicate that the Nrf2 signaling pathway plays an essential role
in inhibiting oxidative stress.

3.2. Oxidative Stress and the PI3K/Akt/mTOR Signaling
Pathway. The phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (Akt) signaling pathway also plays an essential role
in the response to oxidative stress, which regulates the cell
cycle, proliferation, and apoptosis (Figure 3) [52]. When acti-

vated, PI3K catalyzes the production of phosphatidylinositol
3,4,5-triphosphate (PIP3), which binds to phosphorylated
Akt in the cytoplasm. The activation of Akt plays an essential
role in controlling apoptosis by increasing Bcl-2 expression
and decreasing Bax and caspase-3 expression [53]. In addition,
the PI3K/Akt signaling pathway might affect the activation of
the Nrf2 signaling cascade to promote the expression of
antioxidative enzymes [54]. It has been reported that the
activation of the PI3K/Akt/Nrf2 signaling pathway can play
an antioxidative role, inhibiting apoptosis and alleviating
ischemia-reperfusion injury. However, this protective effect
is antagonized by LY294002, an inhibitor of the PI3K/Akt
signaling pathway [55].

Mammalian target of rapamycin (mTOR), a crucial
serine-threonine protein kinase and a major downstream
component of the PI3K/Akt signaling pathway, can induce
and promote oxidative stress. It has been reported that overac-
tivation of mTOR leads to increased ROS production, while
inhibition of mTOR reduces the level of ROS [56]. In addition,
mTOR activation can significantly upregulate the expression
of the proapoptotic proteins Bax and Bad, which can trigger
apoptosis. Furthermore, rapamycin, an inhibitor of mTOR,
can protect cells against oxidative stress-induced damage by
inhibiting apoptosis [57, 58]. Park et al. proved that an abnor-
mal increase in mTOR could evoke severe oxidative stress,
neuroinflammation, and neuronal death in the hippocampus
in an animal model of transient ischemia (TI) established in
gerbils with high-fat diet- (HFD-) induced obesity [59].

3.3. Oxidative Stress and the Wnt/β-Catenin Signaling
Pathway. It is well known that the Wnt signaling pathway is
essential for many fundamental processes of embryonic devel-
opment and normal tissue homeostasis. The Wnt signaling
pathway can be divided into the canonical Wnt pathway
(known as theWnt/β-catenin signaling pathway) and the non-
canonical Wnt pathway (including the planar cell polarity
(PCP) pathway and the Wnt/Ca2+ pathway) (Figure 3) [60].
The Wnt/β-catenin signaling pathway is mainly composed of
the following proteins: β-catenin, glycogen synthase kinase-3
(GSK-3), and casein kinase 1 (CK1). Under normal physiolog-
ical conditions, β-catenin is phosphorylated by GSK-3β and
CK1, and phosphorylated β-catenin is targeted for ubiquitina-
tion and degradation by the E3-ubiquitin ligase complex.
When oxidative stress occurs, GSK-3β becomes inactivated
by phosphorylation, and β-catenin is not degraded; thus, the
Wnt/β-catenin signaling pathway is activated. Activeβ-catenin
translocates from the cytoplasm and accumulates in the
nucleus, where it binds to the DNA T-cell transcription fac-
tor/lymphatic enhancement transcription factor (TCF/LEF),
subsequently promoting the expression of Wnt downstream
target genes, such as cMyc, Cyclin D1, and axis inhibition pro-
tein 2 (Axin2) [61, 62].

Studies have shown that ethanol-induced oxidative stress
can influence mesenchymal stem cell lineage commitment in
the bone marrow through downregulation of Wnt/β-catenin
signaling pathway expression [63]. Experimental animal
models of global cerebral ischemia-reperfusion (GCI/R) have
demonstrated that activation of the Wnt/β-catenin signaling
pathway can decrease ROS production. Additionally, the
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antioxidant effect can be significantly eliminated by using the
Wnt signaling pathway inhibitor DDK1 [64].

3.4. Oxidative Stress and the NF-κB Signaling Pathway.Nuclear
factor-kappa B (NF-κB) is a nuclear transcription factor that
plays a critical role in regulating inflammatory responses, cell
proliferation, and apoptosis (Figure 3). The NF-κB family of
transcription factors consists of five members, including Rel
(cRel), p65 (Rel A, NF-κB3), Rel B, p50 (NF-κB1), and p52
(NF-κB2). The NF-κB heterodimer is made up primarily of
two subunits, p50 and p65. The activation of NF-κB is involved
in the phosphorylation and degradation of inhibitor of NF-κB
(IκB) and the release of the NF-κB p65-p50 dimer [65]. In
the resting state, NF-κB p50/p65 heterodimers reside inside
the cytoplasm in an inactive state and combine with IκB to
form a heterotrimer (p50/p65/IκB). When cells are stimulated
by NF-κB activators such as tumor necrosis factor-α (TNF-α)
and lipopolysaccharide (LPS), IκB is phosphorylated by IκB
kinase (IKK), which results in the degradation of IκB. The
dimer of NF-κB is thereby released and translocates into the
nucleus, where it can trigger the expression of inflammation-
related genes, such as cytokines/chemokines, immune recep-
tors, and cell adhesion molecules [66]. Some studies have
shown that doxorubicin (DOX)may increase the inflammatory
response in MPC-5 cells by activating the NF-κB signaling
pathway, and inhibition of NF-κB activity may alleviate inflam-
mation and oxidative damage [67]. Jin et al. also showed that
knockdown of NF-κB with siRNA can exert antioxidant activ-
ity and protect against sepsis-induced acute lung injury [68].

3.5. Oxidative Stress and Other Signaling Pathways. The occur-
rence and development of oxidative stress are a very complex
process involving multiple signaling pathways. In addition to
the pathways mentioned above, other signaling pathways are
also involved in oxidative stress, such as the mitogen-activated
protein kinase (MAPK) signaling pathway and the transform-
ing growth factor-β1 (TGF-β1)/Smad signaling pathway. The
MAPK signaling pathway is involved in cell survival against
oxidative stress and plays an essential role in inflammatory
responses. The MAPK signaling pathway is a three-tiered
cascade reaction that consists of MAPK kinase kinases
(MAPKKKs), MAPK kinases (MAPKKs), and MAPKs [69].
The MAPK family is a family of serine/threonine kinases that
includes primarily c-Jun N-terminal kinase (JNK), P38, and
extracellular signal-regulated kinases (ERKs). When excessive
ROS accumulate, oxidative stress can activate theMAPK signal-
ing pathway, thereby enabling regulated transport of ERK, JNK,
and P38 from the cytoplasm to the nucleus; this promotes the
transcription and expression of related target genes, causing
DNA damage and ultimately leading to apoptosis [70]. In addi-
tion, ROS signaling events lead to activation of the TGF-β1/
Smad signaling pathway [71]. During oxidative stress, TGF-
β1 increases the generation of ROS and inhibits the activity of
antioxidant enzymes, leading to redox imbalance. ROS, in turn,
can also activate the expression of TGF-β1, and the activated
TGF-β1 receptor can stimulate the phosphorylation of the
Smad protein in the cytoplasm. The activated Smad2/3 protein
migrates to the nucleus, resulting in rapid accumulation of the
activated complexes, which further exacerbates the imbalance
of oxidative stress [72, 73].
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Figure 3: The schematic overview of major signaling pathways induced by oxidative stress. The overproduction of ROS leads to the
imbalance of oxidation/antioxidants, which causes various signaling pathways to regulate the process of oxidative stress. Activation of
Keap1/Nrf2/ARE and PI3K/Akt signaling pathways can induce the expression of antioxidants and play an antioxidative stress role. In
addition, mTOR, Wnt/β-catenin, and NF-κB signaling pathways are also involved in the process of oxidative stress, and inhibition of
these signaling pathways may play a protective role against oxidative stress.
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4. Roles of Ginsenosides and Different
Signaling Pathways in the Response to
Oxidative Stress

It has been reported that many ginsenoside monomers and
their metabolites have antioxidant effects or are potentially
involved in regulating many oxidative signaling pathways
related to oxidative stress, such as the Keap1/Nrf2/ARE signal-
ing pathway, PI3K/Akt signaling pathway, Wnt/β-catenin
signaling pathway, and NF-κB signaling pathway.

4.1. Ginsenosides Exert Antioxidant Effects through the Keap1/
Nrf2/ARE Signaling Pathway. Many studies have reported that
various ginsenoside monomers (such as ginsenosides Rg1,
Rb1, and Rh3) can exert antioxidant effects by activating the
Keap1/Nrf2/ARE signaling pathway. Ning et al. [74] found that
ginsenoside Rg1 can inhibit oxidative stress in the liver, as indi-
cated by a decrease in malondialdehyde (MDA) content in the
liver and increases in GSH, SOD, and catalase (CAT) content.
Ginsenoside Rg1 can also inhibit the liver inflammatory reac-
tion and reduce the expression of TNF-α, interleukin-1 beta
(IL-1β), IL-6, and COX-2, and its potential mechanism of
action may be related to the activation of the Nrf2 signaling
pathway. Chu et al. [75] found that ginsenoside Rg1 can activate
the Nrf2/ARE signaling pathway by inhibiting the expression of
miR-144, preventing neuronal injury induced by ischemia-
reperfusion in vivo and in vitro. Gao et al. [76] demonstrated
that ginsenoside Rg1 can protect mice with streptozotocin-
(STZ-) induced diabetes against inflammation and oxidative
stress by activating the Keap1/Nrf2 pathway. Li et al. [77]
confirmed that ginsenoside Rg1 can inhibit hypoxia/reoxygena-
tion- (H/R-) induced H9c2 cell apoptosis and increase the
expression of SOD, GSH, and glutathione peroxidase (GSH-
Px). The protective effect of ginsenoside Rg1 has been associ-
ated with the activation of the Nrf2/HO-1 pathway. Gao et al.
[78] found that ginsenoside Rg1 can significantly improve the
cell survival rate and reduce excessive ROS and apoptosis by
triggering the Nrf2/HO-1 pathway.

Dong et al. [79] demonstrated that ginsenoside Rb1 can
reduce the content of MDA and increase the level of GSH
and activate the Nrf2 signaling pathway, thereby enabling
the expression of downstream antioxidants, such as glutathi-
one cysteine ligase catalytic subunit (GCLC) and glutathione
cysteine ligase modulatory subunit (GCLM); these findings
suggest that ginsenoside Rb1 can alleviate diabetic retinopa-
thy by regulating the antioxidant function of the rat retina.
Jiang et al. [80] confirmed that ginsenoside Rb1 can reduce
lung injury in mice after intestinal ischemia-reperfusion by
reducing the levels of TNF-α and MDA and increasing the
expression of Nrf2 and HO-1. Liu et al. [81] found that
ginsenoside Rb1 can significantly increase the spinal cord
function score, reduce serum MDA content, increase SOD,
CAT, and GSH activity, and upregulate Nrf2/HO-1 expres-
sion in a spinal cord injury (SCI) rat model. Xu et al. [82]
demonstrated that ginsenoside Rh1 promotes proliferation,
inhibits apoptosis, and relieves oxidative stress in oxidized
low-density lipoprotein- (ox-LDL-) induced vascular endo-
thelial cells (VECs) by activating the Nrf2/HO-1 signaling
pathway. Zhang et al. [83] studied the effects of ginsenoside

Rg1 on SCI and found that Rg1 could significantly increase
the contents of SOD and GSH and inhibit the production
of MDA, the potential mechanism of which may be that it
exerts antioxidant stress and anti-inflammatory effects by
activating Nrf2/HO-1 signaling pathway. Mei et al. [84]
found that ginsenoside Rg1 can reduce ROS and MDA con-
tents, restore SOD and GSH-Px activities, and thus inhibit
oxidative stress, the mechanism of which is related to the
activation of the Nrf2/HO-1 pathway.

Wang et al. [85] found that ginsenoside Rh3 can induce the
dissociation of Nrf2 from Keap1, promote the nuclear translo-
cation of Nrf2, and activate the expression of ARE and down-
stream antioxidant factors in OGD/R-induced endometrial
cell injury. Ginsenoside Re, as reported by Liu et al. [86], can
reduce ROS production induced by aβ, maintain mitochon-
drial function, and inhibit apoptosis. The potential mechanism
is related to the activation of the Nrf2 signaling pathway. Zeng
et al. [87] found that ginsenoside Rd can improve cardiac func-
tion, reduce the infarct area, and reduce the expression of lac-
tate dehydrogenase (LDH) and creatine kinase. Its molecular
mechanism of action against myocardial ischemia-reperfusion
injury may be partly related to increases in the expression of
Nrf2 and HO-1. Yang et al. [88] found that ginsenoside CK
can enhance memory function, reduce neuronal apoptosis,
increase SOD and GSH levels, reduce MDA content, inhibit
aβ expression, and activate the Keap1/Nrf2/HO-1 signaling
pathway in mice with scopolamine-induced memory impair-
ment. These findings suggest that ginsenoside CK has neuro-
protective and antioxidant effects via activation of the Keap1/
Nrf2/HO-1 signaling pathway. Zhao et al. [89] found that the
ginsenosides 20(S)-Rg3 and 20(R)-Rg3 could increase the cell
activity and the contents of GSH-Px, SOD, and CAT and
decrease activities of LDH, MDA, and ROS on H2O2-induced
H9C2 cells. Meanwhile, further studies showed that 20(S)-
Rg3 and 20(R)-Rg3 could prevent H2O2-induced oxidative
stress injury in H9C2 cells through activating the Keap-1/
Nrf2/HO-1 pathway.

4.2. Ginsenosides Exert Antioxidant Stress through the PI3K/
Akt Signaling Pathway. In addition to the above effects, ginse-
nosides also exert antioxidant effects by activating the down-
stream Nrf2 pathway via the PI3K/Akt signaling pathway.
Chen et al. [90] found that ginsenoside Rb1 can reduce the
expression of TNF-α, IL-1β, IL-6, and MDA in the intestinal
tract and increase the expression of SOD, suggesting that gin-
senoside Rb1 can attenuate intestinal ischemia-reperfusion-
induced inflammation and oxidative stress by activating the
PI3K/Akt/Nrf2 signaling pathway. Zhuang et al. [91] studied
the antifatigue effect of ginsenoside Rb1 in aged rats with post-
operative fatigue syndrome induced by major small intestinal
resection (MSIR). Their results showed that ginsenoside Rb1
significantly reduced ROS and MDA release and increased
SOD activity in the skeletal muscle of the rats. At the same
time, ginsenoside Rb1 increased the mRNA expression of
Akt2 and Nrf2, upregulated the phosphorylation of Akt, and
promoted the nuclear translocation of Nrf2. Hwang and Jeong
[92] found that pretreatment of SH-SY5Y cells with Rb1 sig-
nificantly reduced 6-hydroxydopamine- (6-OHDA-) induced
caspase-3 activation by activating the PI3K/Akt/Nrf2 signaling

6 Oxidative Medicine and Cellular Longevity



pathway. In an experiment in which ginsenoside Rg3 was used
to inhibit cardiotoxicity induced by adriamycin (ADM),Wang
et al. [93] confirmed that Rg3 can attenuate the reduction in
the ADM-induced ejection fraction, restore vascular function,
promote cell viability, and suppress oxidative damage and
apoptosis. Its antioxidant mechanism may be related to the
activation of the Akt and Nrf2-ARE pathways. Chen et al.
[90] verified that ginsenoside Rb1 can ameliorate intestinal
ischemia-reperfusion injury, reduce MDA content, increase
SOD levels, and inhibit oxidative stress and the inflammatory
response. The molecular mechanismmay involve activation of
the PI3K/Akt/Nrf2 pathway to improve intestinal ischemia-
reperfusion injury. Wortmannin, an inhibitor of PI3K, can
inhibit PI3K, which eliminates the protective effect of ginseno-
side Rb1. Xiong et al. [94] found that ginsenoside Rk1 signifi-
cantly improved cell viability, reduced the apoptotic rate, and
increased the activity levels of SOD, CAT, and GSH-Px in
H2O2-induced PIG1 cell injury model. These data demon-
strated that Rk1protects human melanocytes from H2O2-
induced oxidative injury via regulation of the PI3K/AKT/
Nrf2/HO-1 pathway.

Nan et al. [95] also confirmed that ginsenoside Rb1 can
ameliorate oxidative stress and apoptosis in methylglyoxal-
(MGO-) treated SH-SY5Y cells by activating the PI3K/Akt
signaling pathway. Li et al. [96] found that 20(R)-Rg3 could
inhibit the oxidative stress induced by D-gal in the liver and
kidney, increase the levels of SOD and CAT, and decrease
the levels of MDA and 4-hydroxynonenal (4-HNE). The anti-
oxidative stress effect of 20(R)-Rg3 is related to the activation
of the PI3K/AKT signaling pathway. Liu et al. [97] found that
ginsenoside Rg1 treatment alleviated high glucose-induced
oxidative stress by decreasing ROS generation, MDA, and
LDH accumulation and increasing the activities of SOD and
GSH-Px. The molecular mechanism of Rg1 is considered
related to the regulation of the PI3K/AKT/FOXO3 pathway.
Xie et al. [98] indicate that ginsenoside Re may ameliorate
high glucose-induced retinal angiogenesis and inhibit oxida-
tive stress, and its mechanism of action is associated with the
activation of the PI3K/AKT signaling pathway.

It has been confirmed that ginsenosides can also act on
the classical PI3K/Akt/mTOR signaling pathway and exert
antioxidant effects by downregulating the Akt/mTOR path-
way. Chen et al. [99] found that ginsenoside Rg1 improved
cognitive impairment induced by D-gal in mice by attenuat-
ing the senescence of neural stem cells. Rg1 also decreased
the level of oxidative stress, increasing the activity of SOD
and GSH-Px, in vivo and in vitro. Rg1 further reduced the
phosphorylation levels of Akt and mTOR. These findings
suggested that the ginsenoside Rg1-mediated attenuation of
cognitive impairment in mice and senescence in neural stem
cells (NSCs) induced by D-gal might have been related to a
reduction in oxidative stress and downregulation of the
Akt/mTOR signaling pathway.

4.3. Ginsenosides Exert Antioxidant Stress through the Wnt/
β-Catenin Signaling Pathway. Wnt signaling is closely
related to oxidative stress. Oxidative stress induced by vari-
ous factors inhibits the Wnt/β-Catenin signaling pathway.
Ginsenoside intervention can activate the Wnt/β-Catenin

signaling pathway and reduce the damage caused by oxidative
stress. Li et al. [100] explored the protective effect of ginsenoside
Rg1 on hematopoietic stem cells in a mouse model of D-gal-
induced aging. The results showed that Rg1 exerted antioxidant
stress by reducing the levels of ROS and MDA and increasing
the total antioxidant capacity (T-AOC) and the expression of
SOD and GSH-px. The mechanism might have been related
to the activation of the Wnt/β-catenin signaling pathway. Zu
et al. [101] found that ginsenoside Rg1 can inhibit intestinal
ischemia-reperfusion injury through a molecular mechanism
also related to activation of the Wnt/β-catenin signaling path-
way, inhibition of ROS, and suppression of apoptosis. Shao
et al. [102] found that ginsenoside Rb1 can significantly reduce
renal dysfunction, oxidative stress, and pathological changes in
rats with streptozotocin-induced diabetic nephropathy through
a mechanism related to the regulation of miR-350 expression
and further activation of the Wnt/β-catenin signaling pathway.
In conclusion, ginsenosides can play antioxidant roles by acti-
vating the Wnt/β-Catenin signaling pathway via upregulation
of SOD and GSH-Px expression, upregulation of T-AOC, and
downregulation of ROS and MDA levels.

4.4. Ginsenosides Exert Antioxidant Effects through the NF-κB
Signaling Pathway. The transcription factor NF-κB is widely
expressed and regulates various cellular processes, including
inflammation, immune response processes, cell proliferation,
and apoptosis [66]. During oxidative stress, activation of the
NF-κB signaling pathway can induce tissue damage. In recent
years, it has been reported that ginsenosides can protect tissue
from oxidative stress by inhibiting the NF-κB signaling path-
way [103]. Ye et al. [104] studied the effect of ginsenoside
Rg1 on rats with lung injury induced by hindlimb ischemia-
reperfusion. The results confirmed that Rg1 alleviated lung
injury by inhibiting the NF-κB/cyclooxygenase-2 (COX-2)
signaling pathway. Song et al. [105] found that ginsenoside
CK had a protective effect against diabetes-induced renal
injury. Ginsenoside CK inhibited diabetes-induced oxidative
stress by downregulating the expression of nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase and inhibiting
the NF-κB/p38 signaling pathway. Hou and Kim [106] used
H2O2 to establish a senescence model in human dermal fibro-
blasts and found that ginsenoside Rb1 enhanced dermal fibro-
blast differentiation in aging skin and promoted skin wound
healing by inhibiting the p38MAPK/MSK2/NF-κB pathway.
Chen et al. [107] studied the protective effect of ginsenoside
Rg3 on TNF-α-treated human nucleus pulposus cells (NPCs)
and found that Rg3 reduced ROS and MDA levels, increased
GSH-px and SOD expression, and inhibited apoptosis. The
mechanism may have been related to the blockade of the
NF-κB signaling pathway. Li et al. [108] found that 20(R)-gin-
senoside Rg3 ameliorated diabetic nephropathy in mice by
improving antioxidant activity and reducing renal inflamma-
tion. 20(R)-Rg3 reduced MDA levels and increased SOD and
CAT production through a mechanism related to inhibition
of the MAPK/NF-κB signaling pathway. Hou et al. [109] stud-
ied the effects of ginsenoside Rh2 on adriamycin-induced cell
senescence in breast cancer and normal epithelial cells and
confirmed that ginsenoside Rh2 reduced ROS production,
increased SOD expression, reduced oxidative stress, and

7Oxidative Medicine and Cellular Longevity



Table 1: Antioxidant stress effects of ginsenosides in vivo and in vitro.

Disease model Cell line
Ginsenoside

type
Signal pathway Antioxidant biomarker Ref

CCl4-induced acute liver injury Without Rg1 Nrf2 MDA↓, GSH↑, SOD↑, CAT↑ [74]

tMCAO PC12 Rg1 Nrf2-ARE
ROS↓, HO-1↑, GCLC↑, GCLM↑, NQO-

1↑
[75]

Without
Hypoxia/

reoxygenation–
induced H9c2 cells

Rg1 Nrf2/HO-1 SOD↑, GSH↑, GSH-Px↑ [77]

Diabetic retinopathy in
streptozotocin-induced
diabetic rats

Without Rb1 Nrf2 MDA↓, GSH↑, GCLC↑, GCLM↑ [79]

Intestinal ischemia/reperfusion Without Rb1 Nrf2/HO-1 MDA↓, TNF-α↓, SOD↑, HO-1↑ [80]

Spinal cord injury Without Rb1 eNOS/Nrf2/HO-1 MDA↓, SOD↑, CAT↑, GSH↑ [81]

Without
Ox-LDL-treated

VECs
Rh1 Nrf2/HO-1 ROS↓, MDA↓, SOD↑ [82]

Rat SCI model Without Rg1 Nrf2/HO-1 MDA↓, SOD↑, GSH↑ [83]

SAE mouse model
Mouse neuron cells
and microglia BV2

cells
Rg1 Nrf2/HO-1 MDA↓, SOD↑, GSH-Px↑ [84]

Myocardial ischemia-
reperfusion

Without Rd Nrf2/HO-1 CK↓, LDH↓, HO-1↑ [87]

Without
H2O2-induced
H9C2 cells

20(S)-Rg3
and 20(R)-

Rg3
Keap1/Nrf2/HO-1 ROS↓, MDA↓, SOD↑, GSH-Px↑, CAT↑ [89]

Intestinal ischemia/reperfusion Without Rb1 PI3K/Akt/Nrf2 MDA↓, TNF-α↓, IL-1β↓, IL-6↓, SOD↑ [90]

Postoperative fatigue
syndrome

Without Rb1 PI3K/Akt/Nrf2 ROS↓, MDA↓, SOD↑ [91]

Without
6-OHDA-induced

SH-SY5Y
Rb1 PI3K/AKT/Nrf2 HO-1↑, caspase↓ [92]

Adriamycin-induced
cardiotoxicity

Endothelial Rg3 Nrf2-ARE ROS↓, MDA↓, SOD↑, eNOS↑ [93]

Without
H2O2- induced
melanocytes

Rk1
PI3K/AKT/Nrf2/

HO-1
SOD↑, GSH-Px↑, CAT↑ [94]

D-gal-induced in mice Without 20(R)-Rg3 PI3K/AKT MDA↓, 4-HNE↓, SOD↑, CAT↑ [96]

DN rat model
HG-induced HBZY-

1 cells
Rg1

PI3K/AKT/
FOXO3

ROS↓, MDA↓, SOD↑, GSH-Px↑ [97]

Without
Hyperglycaemia-

induced endothelial
cell

Re PI3K/AKT ROS↓, MDA↓, GSH-Px↑, CAT↑ [98]

D-gal-induced in mice NSCs Rg1 Akt/mTOR SOD↑, GSH-Px↑ [99]

Without
Hematopoietic stem

cell
Rg1 Wnt/β-catenin

ROS↓, MDA↓, SOD↑, GSH-Px↑, T-
AOC↑

[100]

Intestinal ischemia/reperfusion Without Rg1 Wnt/β-catenin ROS↓, MDA↓, SOD↑, GSH↑ [101]

Hind-limb IR Without Rg1 NF-κB MPO↑, SOD↑, CAT↑, NF-κB↓, COX-2↓ [104]

Diabetic nephropathy Without CK NF-κB ROS↓, IL-1β↓ [105]

Without
Human dermal

fibroblast
Rb1 NF-κB TGF-β↓, VEGF↑, p38↓ [106]

Without
TNF-α induced
human nucleus
pulposus cells

Rg3 NF-κB ROS↓, MDA↓, SOD↑, GSH-Px↑ [107]

Myocardial hypertrophy
model in rats

Ang II-induced
AC16 and HCM

cells
Rg3 NF-κB MDA↓, SOD↑ [110]

DN mice Without Rg5 MAPK ROS↓, MDA↓, SOD↑, GSH-Px↑ [111]
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inhibited the NF-κB signaling pathway in senescent cells.
Chen et al. [107] found that ginsenoside Rg3 can reduce
TNF-α-induced damage to human NPCs by blocking the
NF-κB signaling pathway. Ginsenoside Rg3 can also reduce
the production of ROS and MDA, increase the activity of
SOD andGSH-Px, and reduce the cell damage induced by oxi-
dative stress. Ren et al. [110] demonstrated that ginsenoside
Rg3 prevents angiotensin II- (Ang II-) induced myocardial
hypertrophy via inactivating NLRP3 inflammasome and oxi-
dative stress by modulating the NF-κB pathway. Zhu et al.
[111] investigated the effect of Rg5 on kidney injury of
C57BL/6 diabetic mice induced by high-fat diet and strepto-
zotocin, and the results showed that Rg5 decreased the pro-
duction of ROS and MDA, increased the activities of SOD
and GSH-Px, and inhibited the activation of NF-κB signaling
pathway.

4.5. Ginsenosides Exert Antioxidant Effects through Other
Signaling Pathways. In addition to the above signaling path-
ways, ginsenosides can also exert antioxidant effects by
influencing different signaling pathways. Zhou et al. [112]
reported that ginsenosides have a strong protective effect
on the cholinergic nervous system in rats with acute renal
failure (ARF) induced by myoglobin release. Their findings
confirmed that ginsenosides can reduce oxidative stress in
the kidneys that is related to the activation of the MAPK sig-
naling pathway. Chen et al. [113] found that in Parkinson’s
disease mice, ginsenoside Rg1 prevented loss of substantia
nigra neurons, inhibited decreases in GSH and T-SOD in
the substantia nigra, and inhibited phosphorylation of JNK
and c-Jun. Zhou et al. [114] found that ginsenoside Rb1
has a protective effect against endothelial cell injury induced
by TNF-α. Specifically, they confirmed that Rb1 can inhibit
the production of ROS and MDA induced by TNF-α;
increase the activity of SOD, CAT, and GSH-Px; and protect
endothelial cells from oxidative stress and inflammation
induced by TNF-α by inhibiting NF-κB, JNK, and p38. Cong
and Cheng [115] evaluated the neuroprotective effect of gin-
senoside Rd in a rat model of SCI and found that ginseno-
side Rd decreased MDA expression and increased GSH
and SOD expression. Ginsenoside Rd also improved motor

function, increased the survival rate of spinal cord neurons,
and reduced tissue injury by inhibiting the MAPK signaling
pathway. Zhang et al. [116] found that ginsenoside Rb1 can
reduce ROS production, inhibit the expression of NOX sub-
types NOX1 and NOX4, and downregulate the expression of
NADPH oxidase induced by diabetes mellitus (DM), and the
mechanism is related to the inhibition of the TGFβ1/Smad2/
3 pathway.

Combinations of various ginsenosides can enhance the
antioxidant effects of these compounds. The combination
of PPT and Rb1 or Rg1 has synergistic antioxidant activity,
and its mechanism is related to the activation of the Nrf2-
ARE signaling pathway [117]. In addition, combining ginse-
nosides with other active ingredients can lead to synergistic
effects, enhancing the antioxidant functions of the ginseno-
sides. For example, combining pumpkin polysaccharide with
ginsenoside Rg1 can significantly improve the activity of this
ginsenoside against H2O2-induced oxidative stress in cells,
reduce the levels of MDA in cells, and significantly reduce
lipid peroxidation damage in cells. By increasing the activity
of SOD, GST-px, and CAT in cells, pumpkin polysaccharide,
and ginsenoside Rg1 show good antioxidant activity and
ameliorate oxidative stress damage in cells. Du et al. [118]
studied the effects of the combined application of ginseno-
side Rg1 and astragaloside IV on oxidative stress in a rat
model of diabetic nephropathy. The results confirmed that
both ginsenoside Rg1 and astragaloside IV had antioxidant
effects. Their combined application enhanced T-AOC, possi-
bly via inhibition of TGF-beta 1/Smad cascade signaling.

5. Summary and Future Perspectives

Research on the effects of ginsenosides’ antioxidant stress has
made great progress in recent years. Based on the published lit-
erature, the main active components of ginseng play an impor-
tant role in protecting multiple organelles from oxidative stress,
which may be related to the regulation of various signaling
pathways, such as the Keap1/Nrf2/ARE, PI3K/Akt, Wnt/β-
catenin, NF-κB, and other signaling pathways (Table 1).
Although the antioxidant effects of ginsenosides and their
monomers have been widely reported, many potential

Table 1: Continued.

Disease model Cell line
Ginsenoside

type
Signal pathway Antioxidant biomarker Ref

Glycerol-induced acute renal
failure in rats

Without GS MAPK MDA↓, SOD↑ [112]

MPTP-induced Parkinson’s
disease mice

Without Rg1 JNK T-SOD↑, GSH↑ [113]

Without
TNF-α-induced
endothelial cell

injury
Rb1 NF-κB, JNK, p38 ROS↓, MDA↓, SOD↑, CAT↑, GSH-Px↑ [114]

Spinal cord injury rats Without Rd MAPK MDA↓, SOD↑, GSH↑, IL-1β↓, IL-1↓ [115]

Streptozotocin-induced mices Without Rb1 TGFβ1/Smad2/3 ROS↓, NOX1↓, NOX4↓ [116]

Diabetic nephropathy rats Without
Rg1 and

astragaloside
IV

TGF-β1/Smads MDA↓, CAT↑, GSH-Px↑, T-AOC↑ [118]
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mechanisms of antioxidant stress and the pharmacological
effects of ginsenosides have not been fully elucidated. The
majority of the existing research on the pharmacological effects
of ginsenosides was isolated and needs more in-depth and
extensive investigations. Second, most of the studies on the
pharmacological effects of ginsenosides focus on animal and/
or cellular levels, and associated evaluation of the clinical appli-
cations has rarely been performed. Therefore, it is necessary to
carry out such studies to verify the clinical efficacy of ginseno-
sides on antioxidant stress. In addition, further work is needed
to elucidate the underlying mechanism of action, pharmacoki-
netics, and pharmacodynamics of the main active ingredients
in ginsenosides, to provide more theoretical and experimental
bases for clinic interventions.
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