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Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China, 3Medical School of
Chinese PLA, Beijing, China
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical

clinical syndrome with high morbidity and mortality that poses a major

challenge in critical care medicine. The development of ALI/ARDS involves

excessive inflammatory response, and macrophage autophagy plays an

important role in regulating the inflammatory response in ALI/ARDS. In this

paper, we review the effects of autophagy in regulating macrophage function,

discuss the roles of macrophage autophagy in ALI/ARDS, and highlight drugs

and other interventions that canmodulate macrophage autophagy in ALI/ARDS

to improve the understanding of the mechanism of macrophage autophagy in

ALI/ARDS and provide new ideas and further research directions for the

treatment of ALI/ARDS.
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1 Introduction

1.1 ALI/ARDS

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) was first

proposed by Ashbaugh and colleagues in 1967 (1). Until 1994, ALI/ARDS was

clinically defined as follows based on the definition put forward at the American-

European consensus conference (2): patients with acute severe hypoxemia (ALI is

diagnosed when PaO2/FiO2 > 200 mmHg and < 300 mmHg; the criteria for ARDS

are met when PaO2/FiO2 < 200mmHg); chest radiography shows bilateral diffuse

pulmonary infiltration; absence of increased pulmonary artery wedge pressure; and no

clinical manifestation of left atrial hypertension. Subsequently, after the Berlin definition

was proposed in 2012, the diagnostic criteria of ARDS were updated as follows (3): acute

onset; chest imaging suggests bilateral infiltration that cannot be fully explained by

exudation; lung lobar/lung collapse or nodules; respiratory failure that cannot be
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explicated by left heart failure or fluid overload; and when the

minimum positive end expiratory pressure is 5 cm H2O, PaO2/

FiO2 < 300 mmHg.

ALI/ARDS is a complex critical illness with the following

main pathophysiological features: decreased pulmonary

compliance; increased intrapulmonary shunt and physiological

dead space; ventilation-perfusion imbalance; pulmonary edema

caused by fluid exudation in the alveolar space; and increased

alveolar capillary permeability. These features are caused by

multiple non-cardiogenic intrapulmonary and extrapulmonary

pathogenic factors (4). The main clinical manifestations of ALI/

ARDS are the progressive exacerbation of intractable hypoxemia

and hypoxic respiratory failure (5). The various causes of ALI/

ARDS include aspiration, severe pneumonia, toxic inhalation,

sepsis, trauma, fatty embolism, pancreatitis, and blood

transfusion (6). The main feature of ALI/ARDS is diffuse

alveolar damage, which is primarily caused by the necrosis and

dysfunction of a large number of alveolar capillary endothelial

cells and epithelial cells followed by the formation of a hyaline

membrane and finally the establishment of intracapillary

thrombosis (Figure 1) (7–9).

ALI/ARDS is an acute inflammatory reaction of the alveoli and

pulmonary parenchyma accompanied by infiltration by

inflammatory cells (e.g., neutrophils and macrophages) and
Frontiers in Immunology 02
alveolar hemorrhage. Neutrophils, which are the most abundant

natural immune cells in human blood, play a key role in the

pathogenesis of ALI/ARDS. After activation, neutrophils can release

harmful mediators including cytokines, proteases, reactive oxygen

species, and matrix metalloproteinases, leading to further damage

(10–12). Some cytokines including IL-1, IL-6, IL-8, and TNF-a are

pro-inflammatory factors that may aggravate lung injury.

In an international, multicenter, prospective cohort study on

ARDS patients in intensive care units (ICUs) in 50 countries,

Bellani et al. reported that the ICU incidence of ARDS was

10.4%, with 23.4% of ARDS patients requiring mechanical

ventilation (13). In a prospective multicenter longitudinal

study conducted in mainland China in 2020, Huang et al.

reported that the prevalence of mild and severe ARDS patients

was 9.7% and 47.4%, respectively (14). At present, there is no

specific treatment for ALI/ARDS. The therapeutic approaches

currently applied for ALI/ARDS include restrictive fluid

management, mechanical ventilation, drugs including

glucocorticoids and inhaled pulmonary vasodilators, and

extracorporeal membrane oxygenation and other supportive

treatments (4, 15, 16). Mechanical ventilation therapy for ALI/

ARDS may involve pulmonary protective ventilation and prone

position ventilation (17, 18). However, long-term mechanical

ventilation treatment may lead to ventilator-associated events
FIGURE 1

Pathological features of ALI/ARDS. The pathology of ALI/ARDS is characterized by diffuse alveolar capillary endothelial cells and epithelial cells
necrosis, increased permeability of the pulmonary capillary endothelial cells and alveolar epithelial cell barriers, accumulation of protein rivh
edema fluid, extensive pulmonary hemorrhagic changes and alveolar hyaline membrane and intracapillary thrombosis.
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during prolonged hospital stays, increasing the risk of death (19).

Although much progress has been made in the supportive

treatment for ALI/ARDS, the mortality of ALI/ARDS patients

remains high (35%–46%) (13). Even convalescent ARDS

patients may have functional disabilities such as muscle

weakness and fatigue after hospital discharge (20). Some

patients may suffer from long-term neurocognitive

impairment, psychological diseases such as depression or

anxiety, and pulmonary insufficiency, leading to decreased

quality of life (21, 22). Thus, ALI/ARDS is an urgent problem

in the field of respiratory critical illness, and innovative

mechanisms and therapies to alter the development and

outcome of ALI/ARDS are urgently needed.
1.2 Autophagy

Autophagy is a process of self-degradation that involves

damage to organelles such as the mitochondria and endoplasmic

reticulum, various pathogens, and abnormal proteins.

Autophagy mainly occurs in eukaryotic cells and is generally

considered to be the major adaptive response to maintain cell

and tissue homeostasis under various stress states. Autophagy is

closely associated with a variety of human diseases (23).

Autophagy is an important mechanism by which cells adapt to

changes in the external environment, maintain homeostasis in

the internal environment, and resist invasion by foreign

pathogens. There are three primary forms of autophagy (24),

chaperone-mediated autophagy, microautophagy, and

macroautophagy, with macroautophagy being the most

common (Figure 2). In all three of these autophagy forms,

damaged organelles or proteins are transported to the

lysosomes for degradation and recycling. In microautophagy,

the lysosomes directly encapsulate cytosolic components and

transport them to the lumen of cytolytic organelles (25). In

chaperone-mediated autophagy, the substrate reaches the

lysosomal cavity directly through the protein translocation

complex on the lysosomal membrane, independent of the

capsule membrane or membrane invagination (26, 27). During

macroautophagy, the cytoplasm and organelles are isolated in

double-membrane vesicles, which transport the contents to

lysosomes or vacuoles for degradation and recycling (28).

Autophagosome formation is a key step in autophagy and

phagocytosis (Figure 2). During autophagy, isolation

membranes are formed. The isolation membranes then

nucleate, expand, and close to sequester cytoplasmic cargo.

The isolation membranes with sequestered cargo then mature

into autophagosomes, which are transported to the lysosomes,

where they fuse with lysosomes or vacuoles. The contents of the

autophagosomes are dissolved by various hydrolases contained

in the lysosomes, and the degradation products are recycled for

different cellular purposes (29, 30).
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Autophagy involves proteins encoded by a series of related

genes. Autophagosome formation is regulated by yeast Atg-

related proteins (31, 32). The formation process of Atg12-Atg5-

Atg16L promotes the formation of autophagosomes. First,

ubiquitin-like protein Atg12 bonds with the lysine residue in

Atg5 and then connects to Atg16L under catalysis by Atg10 to

form the Atg12-Atg5-Atg16L complex, which is located on the

outer surface of the isolation membrane to promote the

extension and expansion of autophagy vesicles (33–35). LC3, a

mammalian homologue of yeast Atg8p, is a crucial autophagy

component and has been used as a specific marker of autophagy.

A f t e r i nduc ing au tophagy , LC3 I comb ine s w i t h

phosphatidylethanolamine to form LC3II, which targets

autophagic membranes. LC3II is stably retained on the

autophagic membranes (36–39). Therefore, changes in LC3

localization have been used to measure autophagy.
1.3 Macrophages

Eile Metchnikoff first discovered macrophages in the late

19th century while observing the phagocytosis of pathogens

during tissue inflammation (40). Macrophages are thought to be

derived from bone marrow-derived monocytes, and these

monocytes continue to be recruited into tissues and

differentiate into tissue-resident macrophages (41, 42).

However, numerous tissue-resident macrophages such as brain

microglia, live Kupffer cells, cardic macrophages, large

peritoneal macrophages and alveolar macrophages do not

come from bone marrow-derived monocytes; instead, they are

derived from embryonic yolk sac or fetal liver (43–48).

Macrophages, which may have self-renewal potential similar to

stem cells, remove pathogens and foreign bodies and proliferate

in response to inflammation and other stimuli (49–51).

The innate immune system is the body ‘s first line of defense

against external stimuli and includes macrophages, neutrophils,

dendritic cells and natural killer cells. Autophagy has been proved to

be closely related to the innate immune system and can alleviate

excessive inflammatory responses (52, 53). Macrophages are

important innate immune cells in the human body. The

functions of macrophages include phagocytosis, antigen

presentation, immune defense and immunomodulation, and the

maintenance of tissue homeostasis (54–57). Macrophages are an

important part of innate immunity, which is characterized by

diversity and plasticity (58, 59). Macrophages can be divided into

two polarization types: classically activated M1 macrophages and

alternatively activated M2 macrophages (60). Macrophage

polarization plays an important role in the development and

regression of inflammation. M1 macrophages mainly secrete pro-

inflammatory factors as part of the defensive immune response,

while M2 macrophages principally secrete anti-inflammatory

factors to promote tissue repair (60, 61).
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Pulmonary macrophages exist for long time periods in the

lungs, where they regulate the local pulmonary inflammatory

microenvironment. Depending on anatomical location and

function, the lung contains two different subpopulations of

macrophages: alveolar macrophages (AMs) present in the

alveolar lumen and interstitial macrophages (IMs) present in

the interstitium (62, 63). AMs are the important innate immune

cells and are located in the distal lung parenchyma of the alveolar

cavity. These cells the first line of defense against foreign

invasion, can initiate pulmonary immune response, and play a

key role in maintaining the homeostasis of the pulmonary

immune system (62, 63). AMs, including tissue-resident

alveolar macrophages (TR-AMs) and monocyte-derived

alveolar macrophages (Mo-AMs), have unique characteristics

in both steady-state and diseases states (64, 65). TR-AMs play an
Frontiers in Immunology 04
important role in the removal of dead alveolar cells and excess

alveolar surfactant (66, 67). In addition, TR-AMs are also

sentineal cells that maintain immune homeostasis and play a

crucial role in the regulation of pulmonary inflammation (68).

TR-AMs can rapidly activate and release a variety of cytokines

and chemokines after the onset of inflammation, because their

surfaces contain various pathogen recognition receptors (68).

Meanwhile, TR-AMs can also secrete a series of anti-

inflammatory factors to promote inflammation regression and

tissue repair (69). Moreover, TR-AMs also play a role in

suppressing allergen-induced airway inflammation (70).

Mo-AMs are more susceptible to the lung microenvironment,

and when injury occurs, monocytes reassemble in the alveolar

lumen and differentiate into macrophages that cause tissue damage

by releasing cytokines (71, 72). Thus Mo-AMs may be associated
FIGURE 2

Process and classification of autophagy. Mitochondria and other organelles in the cytoplasm are firstly encapsulated by vesicles called “isolation
membranes”, which gradually close to form a bilayer membrane structure, namely autophagosome. The outer membrane of autophagosome
fuses with lysosome to form autolysosome, the contents and intima of autolysosome are degraded by enzymes in lysosomes. There are three
main forms of autophagy, chaperone-mediated autophagy, microautophagy and macroautophagy, among which macroautophagy is the most
common. Microautophagy directly wraps the substrate to be degraded into the lysosome for degradation through invagination or protrusion of
the lysosomal membrane. In chaperone-mediated autophagy, a specific protein is involved, and the molecular chaperone recognizes the target
protein through a specific structural domain and transports it into the lysosome for degradation. In macroautophagy, the autophaosome is
required to wrap the substrate to be degraded.
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with the cytokine storm in severe infections. Lastly, Some

researchers have identified two types of IMs, Lyve1loMHCIIhi

IMs and Lyve1hiMHCIIloIMs. Lyve1loMHCIIhi IMs are mainly

involved in inflammation and antigen presentation, while

Lyve1hiMHCIIloIMs are mainly involved in wound healing and

tissue repair (73).

These three types of macrophages interact with each other

and together play a key role in immune surveillance and

maintenance of immune homeostasis in the lung (74, 75).
2 Autophagy and macrophages

2.1 Autophagy regulates macrophage
phagocytosis and antigen presentation

Macrophages, which are the key cells involved in immune

response in vivo, are responsible for recognizing and clearing

pathogens via phagocytosis. Macrophages and other immune

cells use pattern recognition receptors to recognize invading

pathogens by binding to pathogen-associated molecular

patterns (76).

Autophagy affects phagocytosis by macrophages. Thus, a

decline in autophagy function will affect macrophage

phagocytosis. One study has Ganesan et al. reported that

Salmonella typhimurium prevented autophagy by activating

mammalian target of rapamycin (mTOR; the main autophagy

inhibitor) in macrophages, which affected the phagocytosis

ability of macrophages and led to a decline in S. typhimurium

clearance (77). Mi et al. found infection with Listeria

monocytogenes increased the mortality and level of serum

pro-inflammatory factors in p38-regulated/activated protein

kinase-deficient mice (78); the phagocytosis and bactericidal

activity of macrophages in the mice were severely impaired,

which may be associated with defects in autophagy induction.

Moreover, Zhai et al. found that Mycobacterium tuberculosis

could escape macrophage immune recognition and phagocytosis

by inhibiting autophagy, resulting in latent infection (79).

Autophagy can also enhance the phagocytic function of

macrophages. For instance, ABT-263, an inhibitor of the anti-

apoptotic protein Bcl-2, enhances the bacterial phagocytosis of

macrophages in aged mice by inducing beclin-1-dependent

autophagy, which protects against sepsis (80). Xu et al.

reported that autophagy promotes the phagocytosis of

macrophages in Treponema pallidum via the nod-like receptor

family domain containing 3 (NLRP3) inflammasome, the

authors also found that macrophage phagocytosis was

attenuated when transfecting siRNA targeting NLRP3 (81).

LC3-associated phagocytosis is an unconventional autophagy-

dependent process in macrophages. Inomata et al. demonstrated

that macrophage LC3-associated phagocytosis is an immune

defense mechanism against Streptococcus pneumoniae (82).
Frontiers in Immunology 05
While this defense could eliminate S. pneumoniae infection

and regulate inflammation, it diminished with host age.

Macrophages can initiate and regulate the immune response.

After engulfing pathogens and processing their antigens,

macrophages migrate toward the T cells and stimulate them to

resist microbial infection (83, 84). Activated macrophages

express high levels of antigen-presenting molecules such as

MHCI and MHCII on their surfaces (85). The MHC class II

antigen presentation of macrophages is important for the

recruitment of CD4+ helper T cells, which play an important

role in the occurrence and development of cellular and humoral

immune responses (86–89).

CCL-34, a TLR activator, can induce macrophage autophagy

via the TLR4-NF-kB pathway, increase antigen processing,

increase the antigen presentation of bone marrow-derived

macrophages, induce the proliferation of antigen-specific CD4

+T cells, and induce the production of activated T cell-related

cytokines, IFN-g and IL-2 (90). Zhang et al. reported that

treatment with LPS increased the ratio of CD4+ to CD8+ T

cells along with the expression levels of LCII and Beclin-1 in

peritoneal macrophages (91). These findings indicate that

macrophage autophagy plays a crucial role in regulating

immune function in septic mice, and the mechanism may

involve inflammation and macrophage antigen presentation.

Inducing macrophage autophagy can facilitate the clearance

of pathogens in vivo. IFN-r can stimulate monocyte-derived

macrophages in patients with cystic fibrosis, induce its

autophagy, and increase antigen presentation, resulting in the

enhanced clearance of Burkhloeria cenocepacia and a

significantly reduction in bacterial load (92). Sengupta et al.

demonstrated that rapamycin can promote macrophage

autophagy to effectively eliminate Plasmodium during malaria

infection (93). The enhanced autophagy improved the antigen

presentation of spleen macrophages and strengthened T cell

response. In contrast, the inhibition of autophagy may lead to

bacterial immune escape. For example, the inhibition of

autophagy by Mycobacterium tuberculosis PE_PGRS proteins

decreased the presentation of MHCII-class restricted antigen,

which provided immune escape for bacteria (94).
2.2 Autophagy regulates macrophage
polarization

Macrophages, as heterogeneous cells, have a highly plastic

response to various microenvironmental stimuli. Macrophages are

polarized to the M1 phenotype in response to microbial stimuli

such as lipopolysaccharide (LPS) Th1-related cytokines such as

IFN-g and TNF-a, activation of M2 macrophages is usually

induced by IL-4, IL-13 and TGF-b (95–97). M1 macrophages

release various pro-inflammatory factors and harmful mediators

while clear pathogenic microorganisms, thereby aggravating tissue
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damage (98). M2 macrophages can release anti-inflammatory

cytokines and inhibit the production of pro-inflammatory

mediators, and remove apoptotic neutrophils from

inflammatory sites to promote the repair of injury (98).

Autophagy, as a key component of cellular reprogramming,

can facilitate the transition of macrophages from one phenotypic

state to another (99). The degree of tissue inflammation caused

by innate immune response depends largely on the balance

between pro-inflammatory M1 and anti-inflammatory M2

macrophages. The immune homeostasis of the tissue

microenvironment can be sustained by maintaining the

balance of M1 and M2 macrophages in order to effectively

avoid excessive inflammatory responses that cause

tissue damage.

Autophagy regulates the inflammatory response by

modulating M1/M2 macrophage phenotypic polarization.

Autophagy can induce macrophages to polarize into the anti-

inflammatory M2 phenotype. Docosahexanenoic acid is a kind

of polyunsaturated fatty acid with anti-inflammatory effect on

chronic inflammatory diseases and plays a key role in various

inflammatory diseases including cardiovascular diseases and

diabetes (100, 101). It can induce autophagy and enhance the

expression of M2 macrophage markers (102). Laminaria

japonica polysaccharide is one of the major natural active

ingredients in Laminaria japonica, which can resist

hyperglycemia, hypertension, hyperlipidemia and insulin

resistance (103). Laminaria japonica polysaccharide decreased

the expressions of M1 macrophage markers, increased the

expressions of M2 macrophage markers, and reduced the

degree of atherosclerosis damage in mice fed high-fat diets by

enhancing the autophagic flux of macrophages, and this effect

could be blocked by the autophagy inhibitor 3-methyladenine

(3-MA) (104). In addition, TLR2-dependent autophagy can

induce M2 macrophage polarization, regulate the NF-kB

signaling pathway, and inhibit pro-inflammatory activity

(105). High mobility group protein box 1 (HMGB1) is a

member of the high mobility group protein family, and as the

most characterized damage-associated molecular pattern

(DAMP), it can trigger inflammation, innate and adaptive

immune responses, and also tissue repair after injury (106,

107). In addition, hepatocellular carcinoma-derived high

mobility group box 1 (HMGB1) can drive M2 macrophage

polarization through TLR2-dependent autophagy (108). While

blockade of HMGB1 reduced the accumulation of tumor-

associated M2 macrophages and inhibited the growth of

hepatocellular carcinoma in mice (108). Feeding with a high-

fat diet can inhibit macrophage autophagy in mice. Macrophage

au tophagy defic i ency may be the founda t i on o f

the inflammatory disease state, resulting in increased pro-

inflammatory M1 macrophages and decreased anti-

inflammatory M2 macrophages (109). Liu et al. demonstrated

that autophagy deficiency enhanced the expressions of the pro-

inflammatory mediators IL-1 b, IL-6, and TNF-a and promoted
Frontiers in Immunology 06
M1macrophage polarization, which was manifested by increases

in the expressions of surface markers iNOS and MCP1 and

exacerbated acute liver injury (110).

However, autophagy has also been found to induce

macrophage polarization to the M1 phenotype and inhibit M2

polarization. Advanced glycation end-products (AGEs) are a

group of modified molecular products formed by nonenzymatic

glycation reactions between carbonyl group of reducing sugars

and the free amino group of proteins, lipids or nucleic acids, the

formation and aggregation of AGEs can accelerate the

progression of diabetic macroangiopathy by increasing

intracellular oxidative stress (111, 112). Macrophage

autophagy induced by AGEs promoted M1 macrophage

polarization and hindered the healing of skin wounds (113).

Adipose stem cell-derived exosomes promoted M2 macrophage

polarization by inhibiting autophagy and significantly decreased

the cerebral injury area of infarction (114). Isoprenaline

promoted M2 macrophage polarization by downregulating

autophagy, while the autophagy inducer rapamycin inhibited

M2 polarization (115).

Zhao et al. reported that suppressing the mTOR signal

promoted macrophage autophagy and inhibited M2

polarization, and this effect was eliminated by an autophagy

inhibitor (116). In contrast, Zhang et al. found that inhibiting the

mTOR signal activated autophagy cascades, increased the

expressions of the macrophage surface markers Arg-1 and

CD206, promoted M2 macrophage polarization, and played a

protective role in atherosclerosis (117). These studies indicate

that autophagy can modulate the secretion of inflammatory

mediators and participate in the regulation of inflammatory

response by regulating the polarization of macrophages.
3 Macrophage autophagy and
ALI/ARDS

Autophagy plays different roles in the regulation of ALI/

ARDS. Macrophage autophagy mainly reduces pulmonary

inflammation and lung injury (Table 1). However, the effect of

autophagy is not always a positive one. For example,

macrophage autophagy has been shown to aggravate lung

injury in some animal models (Table 2).
3.1 Macrophage autophagy attenuates
ALI/ARDS

3.1.1 Macrophage autophagy reduces lung
injury by inhibiting the formation and activity
of the nod-like receptor family domain
containing 3 (NLRP3) inflammasome

The NLRP3 inflammasome is a multimeric cytosolic protein

complex that serves as a key cytosolic innate immune signal
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TABLE 1 Macrophage autophagy can reduce lung injury in animal models.

Authors Publication
time

Animal
type

Injury
model

Lung injury
score

Factors
regulating
autophagy

Regulation
pathway

Results Reference

Jia et al 2019 Feb BALB/c
mice

LPS-
induced
ALI

16
(Edema, alveolar and
interstitial
inflammation, alveolar
and interstitial
hemorrhage,
atelectasis, necrosis,
and hyaline
membrane formation
were each scored on a
0- to 4-point scale)

Autophagy
inducer-
rapamycin;
Enhanced
autophagy in
AMs.

Inhibition of
NLRP3
inflammasome
expression

LDH activity, total number of
leukocytes, as well as neutrophils,
macrophages and lymphocytes and
MPO activity was significantly
decreased in the rapamycin
treatment group than the LPS group.
Lung injury score was also decreased
after rapamycin treatment.

(118)

Peng et al 2021 Jan Male
C57BL/6
mice

MTDs-
induced
ALI

3.5
(Lung injury scores
were estimated by
Smith’s scoring
method, with a higher
score indicating more
severe injury)

Autophagy
inducer-
rapamycin;
Enhanced
autophagy in
AMs.

Inhibition of
NLRP3
inflammasome
activation.

Lung injury score, the proportion of
lung wet weight and the pulmonary
capillary permeability, and the
expression levels of IL-1b, TNF-a,
and IL-18 proteins in BALF were
decreased in the rapamycin
treatment group than in the MTD-
induced murine group.

(119)

Li et al 2021 Nov C57BL/6
mice

CLP-
induced
ALI

10
(The lung injury of
mice was assessed by
the scoring system,
which included the
five parameters as
follows: exudate,
neutrophil infiltration,
alveolar congestion,
proteinaceous debris,
and alveolar septal
thickening.)

Knockdown
of the
GGPPS1 gene;
Enhanced
autophagy in
AMs.
Autophagy
Inhibitor-
3-MA.

Induction of
NLRP3
inflammasome
inactivation.

The lung injury score of mice, the
lung wet/dry weight ratio, the PaO2/
FiO2 ratio, total protein content,
total cell and PMNs counts were
prominently increased in the CLP
group compared with the sham
group. 3-MA treatment further
aggravated the above indicators.
Silencing of GGPPS1 enhanced
macrophage autophagy and induced
the inactivation of NLRP3
inflammasome to relieve sepsis-
induced lung injury.

(120)

Fan et al 2016 Dec SD male
rats

Lung
ischemia-
reperfusion
injury

Not mentioned. Autophagy
inducer-
rapamycin;
Enhanced
autophagy in
AMs.

Reduction of
endoplasmic
reticulum
stress levels in
AMs

The percentage of TUNEL (+) cells
(apoptosis cells) and the MDA
activity was decreased in the
rapamycin group than the control
group, while the SOD levels were
increased in the rapamycin group
compared with the control group.

(121)

Liu et al. 2018 Dec Male SD
rats

LPS-
induced
ALI

14
(An ALI score was
generated based on
five independent
features observed from
HE images:
neutrophils in the
alveolar space,
neutrophils in the
interstitial space,
hyaline membranes,
proteinaceous debris
filling the airspaces,
and alveolar septal
thickening.)

Lipoxin A4
receptor
agonist BML-
111;
Enhanced
autophagy in
AMs.

Suppression of
MAPK1 and
MAPK8
signaling

The score of acute lung injury and
lung wet/dry weight ratio were
significantly higher in ALI rats than
in BML-111 + ALI rats, suggesting
that the prophylactic administration
of BML-111 robustly alleviated ALI-
associated lung injury.

(122)

Li et al. 2022 Jan C57bl/6J
male mice

CLP-
induced
ALI

10
(The severity of lung
damage was scored
according to bleeding,
alveolar hyperemia,

A novel H2S
donor-
GYY4137;
Enhanced

Inhibition of
mTOR signal
pathway.

The animals’ survival rate, the lung
injury score, the wet-to-dry lung
weight ratio and SOD/MDA levels
were significantly improved in GYY

(123)

(Continued)
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receptor to sense pathogens. After its activation, NLRP3

inflammasome can mediate the secretion of a variety of pro-

inflammatory cytokines to regulate inflammation-related disease

pathogenesis (129, 130). Macrophage autophagy can attenuate

pulmonary inflammatory response by inhibiting the formation

and activity of NLRP3 inflammasome (Figure 3).

In the LPS-induced ALI model, the autophagy inducer

rapamycin enhanced alveolar macrophage autophagy, inhibited

the expression of NLRP3 inflammasome, reduced leukocyte

infiltration, and decreased the secretion of inflammatory factors

IL-1b and IL-18 in both pulmonary tissue and bronchoalveolar

lavage fluid, which ameliorated the degree of lung injury (118).

Mitochondrial damage-associated molecular patterns (MTDs)

are a type of damage-associated molecular patterns (DMAPs) that

are released formmitochondrial rupture. MTDs can help trigger the

inflammatory response and tissue injury by activating the pattern

recognition receptors of immune cells (131). MTDs have been

reported to induce NLRP3 inflammasome activation, resulting in

severe inflammatory response in alveolarmacrophages. Rapamycin,

an autophagy inducer, can attenuate MTDs-induced inflammatory

response by enhancing macrophage autophagy, reducing caspase-1

activation, inhibiting NLRP3 inflammasome activation, and

suppressing the secretion of inflammatory cytokines such as IL-

1b and IL-18 (119). However, the inhibition of autophagy by 3-MA

exacerbated MTD-induced lung injury.
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Geranylgeranyl diphosphate synthase 1 (GGPPS1) plays an

important role in inflammation-related diseases (132). GGPPS1

expression was upregulated in the sepsis-induced mice lung

injury model, and the activation of autophagy and NLRP3

inflammasome was found in the lung tissue of cecal ligation

and puncture (CLP)-induced sepsis mice. The inhibition of

autophagy aggravated hypoxemia, alveolar inflammatory

response, and pulmonary edema; autophagy inhibition also

significantly increased the lung injury scores, the expressions

of inflammatory factors IL-1b and IL-18, and the expressions of

NLRP3 and caspase-1 proteins in mice lung tissues. The

knocking-down of GGPPS1 gene enhanced alveolar

macrophage autophagy, as evidenced by an increase in the

LCII/LCI ratio, decrease in p62 expression, and significant

reduction of the expression of NLRP3 protein. These findings

indicate that GGPPS1 knockdown can alleviate sepsis-induced

lung injury by promoting autophagy to induce NLRP3

inflammasome inactivation (120).

3.1.2 Macrophage autophagy reduces lung
injury by regulating endoplasmic reticulum
stress (ERS)

Intracellular homeostasis is disrupted when cells are

stimulated by strong stimuli such as nutrient deficiency,

calcium metabolic imbalance, and sustained oxidative stress.
TABLE 1 Continued

Authors Publication
time

Animal
type

Injury
model

Lung injury
score

Factors
regulating
autophagy

Regulation
pathway

Results Reference

neutrophil infiltration,
and alveolar
dilatation.)

autophagy in
AMs

treatment group compared with CLP
group.

Qu et al. 2019 Apr Male
BALB/c
mice

LPS-
induced
ALI

2.8
(According to the
degree of lung injury,
bleeding, edema,
exudation, necrosis,
congestion, neutrophil
infiltration, and
atelectasis, they were
evaluated on a scale of
0-4 points.)

Glycyrrhizic
acid;
Enhanced
autophagy in
AMs

Regulation of
PI3K/AKT/
mTOR
signaling
pathway

Lung weight coefficient, lung injury
score, the levels of TNF-a, IL-1b
were significantly decreased in GA
+LPS group than LPS group, and
these phenomena were reversed with
3-MA treatment.

(124)

Zhu et al. 2020 Sep C57BL/6J
mice

P.
aeruginosa-
induced
ALI

5
(The degree of cellular
infiltration was scored
using previously
described methods.
The index was
calculated by
multiplying severity
extent in 10 random
areas, with a
maximum possible
score of 9)

A novel
cobalquinone
B derivative-
CoB1;
Enhanced
autophagy in
AMs

Regulation of
AKT-mTOR
signaling
pathway.

The inflammation index, survival
rate, bacterial burdens and
inflammatory cytokines (TNF-a, IL-
6, and IL-1b) were significantly
decreased in PAO1+CoB1 group
than PAO1+PBS group.

(125)
fro
AMs, Alveolar macrophages; BALF, Bronchoalveolar lavage fluid; MTDs, Mitochondrial damage-associated molecular patterns; 3-MA, 3-Methyladenine; PAO1, The P. aeruginosa wild
type (WT) strain.
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Such stimuli lead to the initiation of a series of cellular self-

protective actions, including ERS. ERS refers to a perturbation of

endoplasmic reticulum homeostasis that leads to the

accumulation of unfolded or misfolded proteins in the

endoplasmic reticulum lumen. ERS initiates the participation

of unfolded proteins in the restoration of cellular proteostasis.

When ERS is continuously activated, it can amplify the

inflammatory response, induce cellular damage, lead to

apoptosis, and accelerate the development of diseases (133–

136). Fan et al. found that the autophagy promoter rapamycin

significantly increased the protein levels of autophagy-related

markers LC3, Beclin1, and HDAC6 and decreased the protein

levels of apoptosis-related marker caspase-3 and ERS markers

BIP, XBP-1, and CHOP in the early stage of lung ischemia-

reperfusion injury (121). These findings suggested that

autophagy could reduce the level of ERS in alveolar

macrophages and decrease apoptosis, thereby maintaining

local immune homeostasis in lung tissue to reduce lung

injury (Figure 3).

In a lveo la r macrophages exposed to hypox ia-

reoxygenation injury, the pre-treatment of alveolar
Frontiers in Immunology 09
macrophages with the proteasome inhibitor MG132

increased the expression of the autophagy marker LC3,

suggesting that proteasome inhibitors an induce elevated

levels of autophagy in alveolar macrophages (137). MG132

also led to the significant downregulation of ERS markers

CHOP, BIP, and p-ERK and apoptosis-related protein

caspase3/7 activity. These results suggested that MG132

could reduce lung injury by inducing autophagy and

downregulating ERS in alveolar macrophages. Qian et al.

demonstrated that enhancing autophagy in alveolar

macrophages restored endoplasmic reticulum function in

LPS-induced ALI, thereby hindering disease progression (138).

3.1.3 Induction of macrophage autophagy by
regulating mitogen-activated protein kinase
(MAPK) pathway reduces lung injury

The MAPK signaling pathway regulates a variety of

cellular processes and involves three main kinases: MAPK

kinase kinase, MAPK kinase, and MAPK. The MAPK

signaling pathway plays important roles in the regulation of

cell growth, proliferation, differentiation, migration,
TABLE 2 Macrophage autophagy can aggravate lung injury in animal models.

Authors Publication
time

Animal
type

Injury
model

Lung injury score Factors
regulating
autophagy

Regulation
pathway

Results Reference

Hu et al. 2014 Jul C57BL/6
male mice

Intestinal
ischemia/
reperfusion
(IR)
-induced
lung injury.

2.5
(Lung injury was analyzed
by an experienced
investigator blinded for
absent, mild, moderate, or
severe injury (score 0–3)
based on the presence of
exudates, hyperemia and
congestion, neutrophilic
infiltrates, intra-alveolar
hemorrhage and debris,
and cellular hyperplasia.)

C5a bound to C5aR
to activate AMs
autophagy to
exacerbate lung
injury. Inhibition of
autophagy through
the autophagy
inhibitor 3-MA or
knockdown of the
autophagy protein
ATG5.

/ The pathological score
and inflammatory cell
infiltration was decreased
in IR+C5a anti-body
group than IR+C5a group.
The inflammatory
cytokines (TNF-a, IL-6,
and MCP-1) was
decreased in mice with
Atg5-deficiency in
macrophages than control
group.

(126)

Yang et al. 2018 Jul SPF
C57BL/6
male mice

CLP-
induced
ALI

9
(Sections were stained with
hematoxylin and eosin
stain. The total score was
calculated by adding up the
individual scores of each
category.)

Resveratrol (RSV);
Inhibited autophagy
in AMs.

Regulating the
VEGF-B
signaling
pathway to
inhibit the
expression of
C5aR

Lung injury score, MPO
activity, albumin levels in
BALF and levels of TNF-
a, IL-6, and IL-1b were
significantly reduced in
RSV group than CLP
group.

(127)

Liu et al. 2017 Apr Bama
minipigs

Lung I/R
injury

Not mentioned. HMGB1 and
HSP60 could
induce autophagy
in AMs to
exacerbate lung
injury. Inhibition of
autophagy by the
autophagy inhibitor
3-MA or
knockdown the
autophagy proteins
ATG7 and BECN1

Inhibition of
TRAF6
ubiquitination
and inhibition
of MAPK and
NF-kB
signaling
pathways.

Inflammatory cytokines
IL-1b, TNF and IL12 were
decreased in ATG
knockdown group than
the control group.

(128)
fro
AMs, Alveolar macrophages; HMGB1, High mobility group protein box 1; HSP60, Heat-shocked protein 60; TRAF6, TNF receptor-associated factor 6.
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apoptosis, and inflammation (139, 140). The MAPK signaling

pathway is also involved in the progression of ALI/ARDS (141,

142). Treatment with the lipoxin A4 receptor agonist BML-

111 increased the expressions of LC-II and Beclin1 and

decreased the expressions of SQSTM1 and p62 in alveolar

macrophages, suggesting that autophagy occurred in alveolar

macrophages, and in vivo experiments confirmed autophagy

reduced pulmonary histopathological damage and decreased

lung wet/dry weight ratio. The levels of pro-inflammatory

cytokines TNF-a and IL-6 in bronchoalveolar lavage fluid

were also significantly decreased (122). The enhancement

of autophagy was achieved via the suppression of the

MAPK1 and MAPK8 signaling pathways, suggesting that

BML-111 can induce autophagy in alveolar macrophages by

targeting the MAPK pathway to reduce lung injury

(Figure 3) (122).
Frontiers in Immunology 10
3.1.4 Induction of macrophage autophagy by
regulating mammalian target of rapamycin
(mTOR) signaling reduces lung injury

The mTOR signaling pathway regulates the cell cycle, cell

growth, and cell metabolism in physiological and pathological

settings; it also plays a crucial role in lung injury (143–145). In

an ALI model, LPS treatment significantly increased the

expressions of p-mTOR, p62, and Beclin1, decreased LCII/LCI

ratio expression, and enhanced the levels of inflammatory

factors in macrophages (123). However, these effects were

reversed after the administration of GYY4137, a novel H2S

donor, suggesting that GYY4137 can improve autophagy and

attenuate lung injury by blocking mTOR signaling (Figure 4).

mTOR is an important downstream target of the PI3K/AKT

pathway with negative regulation of autophagy. Qu et al.

demonstrated that treating macrophages with LPS increased
FIGURE 3

Macrophage autophagy reduces lung injury. Macrophage autophagy can reduce acute lung injury by inhibiting NLRP3 activity and endoplamic
reticulum stress (ERS), and several studies have demonstrated that activating macrophage autophagy by targeting MAPK signaling pathway and
mTOR signaling pathway can reduce lung injury.
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the LCII/LCI ratio and Beclin-1 level and decreased p62

expression, indicating the activation of autophagy. Autophagy

was further activated by treatment with glycyrrhizic acid (GA),

and GA was one of the most important bioactive components of

Glycyrrhiza uralensis with various effects such as

immumodulatory activity and anti-inflammatory function

(146). The protein levels of p-PI3K, p-AKT, and p-mTOR

were inhibited by GA treatment. The ability of GA to induce

autophagy in LPS-treated macrophages is at least partially

attributed to the modulation of the PI3K/AKT/mTOR

pathway (Figure 4). GA can reverse changes in pulmonary

histopathological features in vivo by enhancing autophagy; for

example, GA can reduce vascular congestion and bronchial wall

thickening and suppressing the production of pro-inflammatory

factors TNF-a and IL-1b, effects which can be reversed by 3-MA

(124). Another study found that autophagy induced by the use of
Frontiers in Immunology 11
a novel cobalquinone B derivative (CoB1) in mice alveolar

macrophages was associated with blocking the AKT-mTOR

signaling pathway, thereby enhancing bacterial clearance and

attenuating P. aeruginosa-induced lung injury (Figure 3) (125).
3.2 Macrophage autophagy aggravates
ALI/ARDS

Autophagy in alveolar macrophages can exacerbate lung

injury by inducing self-apoptosis. In animal models of lung

injury, the complement activation product C5a has potent

biological activity and can directly activate inflammatory cells

such as neutrophils and macrophages to produce pro-

inflammatory cytokines and chemokines that are involved in

the progression of inflammatory diseases (147, 148). Sun et al.
FIGURE 4

Macrophage autophagy aggravates lung injury (1). In the mouse model of acute lung injury induced by intestial ischemia-referfusion injury,
complement C5a activated alveolar macrophages and bound to C5a receptors on their surface, leading to enhanced autophagy and induced
apoptosis of alveolar macrophages, which exacerbated lung injury (2). DAMPs such as HMGB1 and HSP60 released during acute lung injury
promoted uniquitination of TRAF6 by inducing autophagy of alveolar macrophages, and activated downstream MAPK and NF-kB signaling
pathways to aggravate lung injury. DAMPs, Damaged-associated molecular patterns; HMGB1, High mobility group protein box 1; HSP60, heat-
shock protein 60; TRAF6, TNF receptor associated factor 6.
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suggested that C5a produced during lung injury leads to

apoptosis in alveolar macrophages by degrading bcl-2 after

binding to C5a receptor (C5aR) (Figure 4) (149). In a mouse

model of intestinal ischemia-reperfusion-induced ALI,

complement C5a activated alveolar macrophages and bound to

its surface C5a receptor, leading to the upregulation of LC-11 in

alveolar macrophages, alveolar macrophage autophagy, and

apoptosis, thus disrupting the lung dynamic equilibrium, and

promoting the development of ALI/ARDS, while the injection of

autophagy inhibitor 3-MA or knockdown of autophagy protein

ATG5 in mice suppressed alveolar macrophage autophagy,

inhibited macrophage apoptosis, and reduced the degree of

lung injury (126). These phenomena suggest that the C5a-

mediated autophagy of alveolar macrophages can induce

macrophage apoptosis and thus promote the progression of

lung injury (116). Yang et al. reported that macrophage

autophagy levels were enhanced, and apoptosis was increased

in an LPS-induced lung injury model compared to the control

group (127). The treatment of alveolar macrophages with

resveratrol, a potent SIRT-1 activator, decreased the level of

autophagy, inhibited macrophage apoptosis, and significantly

decreased LPS-induced C5aR gene expression; rapamycin

reversed these effects (127). Qiu et al. reported that LPS-

induced lung injury in rats was associated with self-apoptosis

caused by the increased autophagy of alveolar macrophages;

meanwhile, hydrogen-rich saline reduced apoptosis by

inhibiting the autophagy of alveolar macrophages, thereby

attenuating lung injury (150).

TRAF6 is a multifunctional adaptor protein that plays an

important role in the induction of inflammatory response by

activating the NF-kB and MAPK signaling pathways (151, 152).

Alveolar macrophage autophagy can exacerbate lung injury by

inducing TRAF6 ubiquitination. Liu et al. found that the release

of damage-associated molecular patterns (DMAPs) such as

HMGB1 and heat shock protein 60 (HSP60) from alveolar

lavage fluid was significantly increased in lung ischemia-

reperfusion injury, and the application of recombinant

HMGB1 and HSP60 induced alveolar macrophage autophagy,

as confirmed by the conversion of LCI to LCII, the upregulation

of BECN1, and the degradation of SQSTM1, while the inhibition

of autophagy by 3-MA or the knockdown of autophagy-

associated proteins ATG7 and BECN1 in alveolar

macrophages inhibited TRAF6 ubiquitination. Besides, the

knockdown of ATG7 also decreased the phosphorylation levels

of MAPK and NF-kB signaling activation markers in alveolar

macrophages and significantly decreased the expressions of pro-

inflammatory cytokines. Therefore, these results indicate that

DAMPs released during lung injury can aggravate damage by

inducing alveolar macrophage autophagy, promoting the

ubiquitination of TRAF6, and activating the downstream

MAPK and NF-kB signaling pathways (Figure 4) (128).
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4 The modulation of macrophage
autophagy is a promising strategy
for reducing lung injury

Some drugs or interventions such as mesenchymal stem cells

(MSCs) and MSCs-derived exosomes can reduce lung injury by

regulating macrophage autophagy (153, 154). The G protein-

coupled receptor cannabinoid receptor 2 agonist HU308 has

been shown to enhance macrophage autophagy. In a mouse lung

injury model, Liu et al. reported that HU308 reduced alveolar

edema and inflammatory cell infiltration, alleviated hemorrhage

and necrosis in lung tissue, and downregulated inflammatory

factors, suggesting that HU308 can induce alveolar macrophage

autophagy to reduce lung injury (155). The study also showed

that inhibiting NLRP3 may be involved in the inhibitory effect of

inflammatory responses by autophagy induction through

cannabinoid receptor activation (155). Ying et al. reported that

the inhibition of macrophage autophagy exacerbated

inflammatory injury and inflammatory cytokine release, while

Astragaloside IV induced macrophage autophagy by inhibiting

the TLR4/NF-kB pathway, thereby reducing the inflammatory

response and lung injury (156). The administration of NF-kB
inhibitor further contributed to protein expression of autophagy,

this suggested that the TLR4/NF-kB signaling pathway

negatively regulates autophagy (156). Wang et al. found that

the SIRT6 activator UBCS039 enhanced autophagy and M2

polarization in macrophages of a sepsis-induced ALI model,

thereby reducing lung injury, while autophagy inhibitors

eliminated this effect (157).The results found that SIRT6

overexpression restrained mTOR pathway activation,

suggesting involvement of the mTOR pathway in SIRT6-

regulated macrophage autophagy and M2 polarization (157).

Yang et al. demonstrated that vitamin D induced macrophage

autophagy and restored anti-inflammatory M2 macrophages in

a silica-induced mice ALI model, thereby reducing inflammatory

cell infiltration and mitigating lung injury (158). Vitamin D

upregulated the Nrf2 signaling pathway, while depletion of

autophagy related protein diminished the effect of vitamin D

on regulating Nrf2 signaling pathway (158). Liu et al. reported

that Buformin inhibited NLRP3-mediated pyroptosis in sepsis-

induced lung injury by upregulating macrophage autophagy and

Nrf2 protein through an AMPK-dependent pathway (159). The

above results suggest that the modulation of macrophage

autophagy by drugs may become an important target for

mitigating lung injury.

MSCs and MSCs-derived exosomes also play key roles in

regulating macrophage autophagy to attenuate lung injury.

While moderate autophagy regulation is protective, over-active

autophagy can lead to apoptosis or necrosis (160). Wang et al.

found that oxygen glucose deprivation/restoration conditions
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resulted in a significant increase in the LC-II/LC-1 ratio and a

decrease in p62 expression in alveolar macrophages

accompanied by the upregulation of autophagy, while

pretreatment with bone marrow mesenchymal stem cells

(BMSCs) reduced macrophage autophagy and attenuated the

ischemia/reperfusion-induced inflammatory response in ALI

mice (153). BM-MSCs could modulate the autophagy of

macrophage via thephosphoinositide 3-kinase/protein kinase B

(PI3K/Akt) pathway and downstream signaling molecule heme

oxygenase-1 (HO-1) (153). In addition, Liu et al. reported that

the enrichment of miR-384-5p in BMSC-derived exosomes

attenuated LPS-induced alveolar macrophage autophagy stress

and alleviated LPS-induced alveolar macrophage apoptosis by

targeting Beclin-1, reduced pulmonary vascular permeability

and inflammatory response, and increased survival rate of ALI

rats within seven days (154). MSCs-derived exosomes could

alleviate LPS-induced ALI by reconstructing the miR-384-5p/

Beclin-1 pathway (154). The molecular mechanisms of exosomal

miRNA needs further investigation in the future.

However, the therapeutic intervention of targeted autophagy

is still challenging to some extent. Although the mechanism of

alveolar macrophage autophagy in ALI/ARDS have been

increasingly investigated in recent studies, the specific

mechanisms of macrophage autophagy remain unclear. At the

same time, autophagy plays a double-edged sword role in lung

injury. In addition to reducing lung injury, activation of

autophagy can also exacerbate lung injury in some preclinical

models, and therefore therapeutic measures targeting activation

or inhibition of autophagy can have a positive effect in reducing

ALI/ARDS caused by multiple etiologies. However, there are few

successful examples of autophagy interventions successfully

applied in clinical practice, and the application of therapies

that promote insufficient autophagy or inhit excessive autophagy

in clinical practice is still facing severe challenges, while how to

clarify the changes of autophagy markers in ARDS patients is

also a key point of carrying out clinical interventions targeting

the modulation of alveolar macrophage autophagy.

At present, there are few clinical studies related to the

treatment of ARDS patients by modulating autophagy, and

more preclinical studies are still needed to confirm the

potential beneficial role of regulating autophagy in ALI/ARDS.

However, we found that some studies have confirmed the role of

autophagy-related markers in the early identification and

prognostic assessment of ARDS patients. For example, one

study showed that the autophagy level of ARDS patients

caused by sepsis was significantly inhibited. Moreover, the

levels of autophagy-related proteins LC3II, Beclin-1, Rab7,

Lysosomal Associated Membrane Protein 2 (LAMP2) and p62

had good value in the diagnosis and prognosis of ARDS patients

due to sepsis (161). In addition, some investigators have found

that increased levels of circulating mitochondrial DNA and

activation of stimulator of interferon genes (STING) in

patients with ALI/ARDS caused by sepsis (162). As an
Frontiers in Immunology 13
intracellular DNA sensing pattern recognition receptor that

could cause damage to distant organs and lead to lysosomal

acidification dysfunction, leading to autophagy dysfunction

(163). Therefore, modulation of autophagy-related indicators

may become a potential therapeutic approach for ARDS

patients, and future clinical studies are still needed to

demonstrate the beneficial effects of interventions to modulate

autophagy in ARDS patients.
5 Conclusions

Autophagy is an important mechanism by which cells adapt

to changes in the external environment and maintain the

homeostasis of the internal environment. As a crucial

component of innate immunity, macrophages play a key role

in the regulation of inflammatory response and immune system

homeostasis. Autophagy can regulate the functions of

macrophages, including phagocytosis, antigen presentation,

and polarization, and macrophage autophagy can have both

positive and negative effects on the progression of ALI/ARDS.

On one hand, autophagy can have a protective effect by

removing harmful inflammatory factors from the body, thus

reducing lung injury. On the other hand, autophagy can

aggravate damage and lead to cell apoptosis, thus exacerbating

lung injury. The regulation of macrophage autophagy is thus

expected to be a promising approach for mitigating ALI/ARDS

and lays the foundation for the discovery of novel drugs. In

addition to regulatory measures targeting macrophage

autophagy, modulation of other immune cells such as

neutrophils and alveolar epithelial cell and endothelial cell

autophagy within the lung tissue is also essential to reduce the

symptoms of ALI/ARDS (164–167). Macrophage autophagy

may be regulated by drugs actually used in clinical practice.

For example, one study found that inhibition by corticosteroids

and statins of macrophage autophagy enhanced IL-10

production, resulting in the control of asthmatic inflammation

(168). In addition, another study found that simvastatin was

shown to ameliorate asthmatic symptoms via autophagy

augmentation (169). The autophagy of macrophages may be

inhibited in COVID-19 patients. and the release of inflammatory

cytokines caused by inhibition of macrophage autophagy may

aggravate the cytokine storm (170, 171). Therefore,

corticosteroids and statins may also play a role in COVID-19

by regulating macrophage autophagy. Vitamin D could also

promote the production of antibacterial and antiviral proteins by

macrophages, which inhibited the replication of viral particles

and promoted the clearance of viruses from cells through

autophagy (172, 173). Further studies on the action of these

drugs in SARS-CoV-2 infection are necessary. However, most of

the existing research findings come from animal and cellular

experiments; the clinical application of therapeutic measures

based on autophagy modulation remains a great challenge.
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A variety of current drugs that activate or inhibit autophagy

may lack specificity, such as low specificity for the target. For

example, rapamycin selectively inhibits mTORC1, but long-term

administration may promote the decomposition of mTORC2. It

has revealed that alveolar macrophages are the dominant innate

immune cells in the resolution of inflammation response and

tissue repair through the influence on other immune cell

populations in the lung. In addition, differences in the specificity

of autophagy modulators may exist in that they non-selectively

target a single cell type. Therefore, a full understanding of the

regulation of autophagy acting on different cell types could help to

develop modulators with better specificity. Finally, as there are

various cell types that have distinctive functions in the lung, how

to selectively target the autophagy process in a specific cell type

without affecting the others remains to be an important issue.
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