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Abstract: Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this
family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central
step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members
began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER
contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling
mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation
of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching
consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins
mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell
death/survival decisions as well as the non-apoptotic process of cell migration.
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1. Introduction

Apoptosis is a form of regulated cell death by which complex multicellular organisms
orchestrate the regulated removal of unwanted or damaged cells. It is well established
that apoptosis plays critical roles in development, tissue homeostasis and the response to
cellular stress [1]. Aberrations in the apoptotic program contribute to the aetiology of a
broad range of human pathologies including cancer and neurodegenerative diseases [2,3].

Mitochondria play a central role in apoptosis execution. Actually, these genuine
intracellular powerhouses contain in their intermembrane space (IMS) several cytotoxic
proteins including Omi, SMAC/Diablo, and cytochrome c [4–8]. Following cellular stress
and apoptosis induction, the outer mitochondrial membrane (OMM) is permeabilized,
leading to their release into the cytosol and subsequent activation of cysteine-aspartic
proteases, called caspases [4].

This mitochondrial outer membrane permeabilization (MOMP) is under the tight
control of the Bcl-2 family of proteins [9]. Initially discovered within the chromosomal
translocations of follicular lymphomas, the Bcl-2 proteins (an acronym for B-cell lymphoma
2 gene) are considered as one of the main MOMP regulators [10–14]. These intracellu-
lar proteins possess one or up to four conserved sequences called Bcl-2 homology (BH)
domains or motifs [14,15]. As MOMP regulators, they are divided into three groups: mul-
tidomain pro-apoptotic Bax-like, which have pore-forming activity and induce MOMP,
multidomain anti-apoptotic Bcl-2-like, which bind to Bax-like thus repressing MOMP, and
pro-apoptotic BH3-only proteins. Structurally, Bax-like and Bcl-2-like family members are
related as they possess four BH motifs (BH1 to 4). The sequence spanning between BH1
to BH3 organizes into the canonical BH3-binding groove where a BH3 motif can bind. In
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this regard, BH3-only proteins are considered pro-apoptotic as interaction between their
BH3 motifs and the BH3-binding groove results in activation of Bax-like or repression of
Bcl-2-like proteins, shifting the balance towards MOMP [14,16].

Bcl2-related genes are found only in multicellular animals and thus they are referred
to as markers of multicellularity, evolutionarily selected to regulate apoptotic cell removal
in development and sustain tissue homeostasis in metazoans [17,18]. This was first demon-
strated in C. elegans in which the Bcl-2 homolog CED-9 was mutated. Loss-of-function
of the ced9 gene resulted in widespread death of embryonic cells [19,20]. Subsequent
observations in knockout (KO) mice for bcl2 homologs solidified their critical role in apop-
tosis regulation [21–23]. However, more recent experiments have demonstrated that Bcl-2
family members are actually multifunctional proteins involved in non-MOMP related
processes [24–28]. Indeed, many Bcl-2-related proteins have a C-terminal hydrophobic
transmembrane (TM) motif allowing them to be anchored not only to mitochondria but
also to the endoplasmic reticulum (ER) [29–33]. At the level of these internal membranes,
Bcl-2 family members dynamically control the exchange of Ca2+ ions [34–37].

Ca2+ ions are important secondary messengers participating in many cellular func-
tions [38]. Ca2+ is able to enhance mitochondrial bioenergetics by promoting the activities
of pyruvate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydroge-
nase [39]. In contrast, mitochondrial Ca2+ is also required for the efficient execution of
apoptosis, while Ca2+ overload induces the opening of the elusive mitochondrial perme-
ability transition pore (mPTP), leading to necrotic cell death [40,41]. The role of Ca2+ in the
balance between life and death underlies the need for tight regulation of mitochondrial Ca2+

pools. Bcl-2 family of proteins participates in this process through direct interactions with
various intracellular Ca2+ transporters or channels, which have profound consequences
for mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Here, we
review the role of Bcl-2 proteins in mitochondrial Ca2+ homeostasis and how this regulation
orchestrates not only survival/death decisions but also non-apoptotic processes like cell
migration.

2. Mitochondria-ER Contacts (MERCs): A Signalling Platform for Mitochondrial
Ca2+ Homeostasis

Mitochondria are dynamic intracellular organelles that can store and exchange with
the surrounding environment substantial amounts of Ca2+ ions [42]. As mitochondria
are encompassed by a double membrane, Ca2+ is required to cross both layers in order to
reach the matrix. The inner mitochondrial membrane (IMM) mitochondrial Ca2+ uniporter
(MCU) has a low affinity for Ca2+, with a Kd of 10 µM [43]. This therefore means that
mitochondria are unable to uptake Ca2+ directly from the cytosol, but rather require the
direct transfer of Ca2+ from other stores through membrane contact sites (MCS), in order
to be able to maintain their Ca2+ pools [44]. While lysosomes [45] can directly transfer
Ca2+ to mitochondria, the most understood pathway is the transfer of Ca2+ from the ER to
mitochondria at mitochondria-ER contacts (MERCs) [46]. Mitochondria engage in MCS
with the ER forming specialized structures known as MERCs or mitochondria-associated
ER membranes (MAMs). Around 20% of the mitochondrial surface is involved in ER con-
tacts, with average inter-organelle distances ranging around 10 to 50 nm [47,48]. MERCs
are formed and stabilized by tethering proteins, such as Mitofusin-2 (MFN2) [49] or PDZ
domain-containing 8 (PDZD8) [50] in mammals regulating the optimal distance between
both organelles. This mitochondria-ER interface is essential for several other processes in-
cluding the synthesis and exchange of lipids, autophagosome formation and mitochondrial
dynamics, thus providing a signalling platform to coordinate cell fate [51–53].

At the MERCs, a specialized subdomain exists to enable the efficient ER to mito-
chondria Ca2+ transfer. The ER-localized inositol 1,4,5-trisphosphate receptor (IP3R) and
OMM-localized voltage-dependent anion channel (VDAC) are bridged by the glucose
regulated protein-75 (GRP75), forming a tethering complex between both organelles [54,55].
Upon stimulation, the natural ligand IP3 binds to IP3R leading to opening of the channel
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and subsequent Ca2+ release into cytosol and mitochondria, through VDAC [54] (Figure 1).
Ca2+ transfer at the MERCs generates a high local concentration of Ca2+, called Ca2+ mi-
crodomains, enabling the MCU complex to uptake Ca2+ into the mitochondrial matrix [43].
The formation of this functional Ca2+ signalling platform at MERCs organizes all of the
appropriate machinery required to efficiently transfer Ca2+ from the ER to mitochondria.
The high local concentration of Ca2+ generated at this interface enables the IMM- and
MERCs-localized MCU [56] to allow the entry of Ca2+ into the matrix. The spatial organi-
zation and coordination of the ER-, OMM- and IMM-localized Ca2+ channels/receptors
are therefore crucial in order for mitochondria to efficiently uptake Ca2+.

Interestingly, biochemical subcellular fractionation studies have shown the presence
of the anti-apoptotic proteins Bcl-2 and Bcl-xL at MERCs at steady state [57], with the
recruitment of Bcl-2 to this specific interface, mediated by TOM20, being enhanced upon
apoptotic stimulations [58]. In addition, microscopy analyses revealed that the apoptosis
accelerator Bax is recruited to MERCs during tBid-induced apoptosis [59]. Upon mild stress
induced by thapsigargin in Chinese hamster ovary (CHO) cells, Bcl-xL can also translocate
specifically to MERCs promoting the increase of mitochondrial Ca2+ by regulating IP3R-
induced ER-Ca2+ release and cellular bioenergetics [60].

While the subcellular localization of Bcl-2 proteins at this ER-mitochondria interface
allows direct interaction with components of the Ca2+ homeostasis machinery, there is little
evidence showing that Bcl-2 proteins can directly regulate ER and mitochondria membranes
apposition. Recently, it has been shown that the pro-apoptotic member Bok was localized at
MERCs where it controls the optimal distance between the two membranes for an efficient
ER to mitochondria Ca2+ transfer to control cell death [61]. These results are in accordance
with recent evidence indicating that overexpression of both Mcl-1 and Bok TMs leads to an
increase of MERCs number and cell death [32]. An interaction between Bcl-2 and Bcl-xL
with GRP75 was also identified, and it may be plausible that this interaction could regulate
MERCs by controlling the IP3R-GRP75-VDAC tethering complex [62]. Together, these data
suggest that Bcl-2 proteins are not only localized to MERCs but could directly regulate
them to sustain efficient ER to mitochondria Ca2+ transfer (Figure 1).

In the next sections, we will describe how Bcl-2 proteins regulate Ca2+ transients at
the ER and mitochondrial interface to promote the uptake of mitochondrial Ca2+ required
for cell death and the complex process of cell migration.
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this interface, they control mitochondrial Ca2+ trafficking via the interaction with ER- and mitochondria-localized Ca2+ 

channels and transporters, which has an important implication in mitochondrial Ca2+-dependent processes. Through mi-

tochondrial Ca2+ pools regulation, Bcl-2 proteins control bioenergetics, ATP production and reactive oxygen species (ROS), 
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proteins Bcl-2, Bcl-xL, Mcl-1 and Nrh interact with IP3R to decrease ER-Ca2+ release into mitochondria to sustain mito-

chondrial bioenergetics and to protect from Ca2+-induced cell death. At the mitochondria, Bcl-2, Bcl-xL and Mcl-1 interact 

with VDACs to promote or inhibit mitochondrial Ca2+ uptake, depending on cell types and the cellular metabolic state. In 

contrast, the pro-apoptotic members Bax and Bax can also localize to the ER where they promote ER-Ca2+ release and cell 

death. Recently, ER-localized Bok has been shown to directly regulate MERCs number and to interact with IP3R promoting 

ER-Ca2+ release and mitochondrial Ca2+ uptake required for cell death. 

3. Regulation of Mitochondrial Ca2+ Uptake Machinery by Bcl-2 Family Proteins 
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Figure 1. Schematic representation of ER to mitochondria Ca2+ regulation by Bcl-2 proteins. Members of the Bcl-2 family
including pro- and anti-apoptotic proteins are found at the mitochondria-endoplasmic reticulum contacts (MERCs). At this
interface, they control mitochondrial Ca2+ trafficking via the interaction with ER- and mitochondria-localized Ca2+ channels
and transporters, which has an important implication in mitochondrial Ca2+-dependent processes. Through mitochondrial
Ca2+ pools regulation, Bcl-2 proteins control bioenergetics, ATP production and reactive oxygen species (ROS), thus
influencing cell fate decisions including apoptosis, cell survival and cell migration. At the ER, the anti-apoptotic proteins
Bcl-2, Bcl-xL, Mcl-1 and Nrh interact with IP3R to decrease ER-Ca2+ release into mitochondria to sustain mitochondrial
bioenergetics and to protect from Ca2+-induced cell death. At the mitochondria, Bcl-2, Bcl-xL and Mcl-1 interact with
VDACs to promote or inhibit mitochondrial Ca2+ uptake, depending on cell types and the cellular metabolic state. In
contrast, the pro-apoptotic members Bax and Bax can also localize to the ER where they promote ER-Ca2+ release and cell
death. Recently, ER-localized Bok has been shown to directly regulate MERCs number and to interact with IP3R promoting
ER-Ca2+ release and mitochondrial Ca2+ uptake required for cell death.

3. Regulation of Mitochondrial Ca2+ Uptake Machinery by Bcl-2 Family Proteins

The OMM is highly permeable to ions and low molecular weight molecules, due to
the presence of VDACs, whereas the IMM-localized MCU complex enables Ca2+ uptake
into the matrix [63–65]. Three VDAC isoforms are found in vertebrates (VDAC1–3), repre-
senting the most abundant proteins of the OMM [66]. They can adopt two conformational
stages: an open state, observed at low membrane potential (−10 mV to +10 mV), which
is permeable for cations and small anionic metabolites, and a closed state at high mito-
chondrial membrane potential exhibiting only cation permeability [67]. All three VDAC
isoforms are able to transfer Ca2+ ions through the OMM, however, functional implications
differ. For instance, VDAC1 allows the passage of the low-amplitude apoptotic Ca2+ sig-
nals following IP3R stimulation [68], whereas VDAC2 is involved in transfer of Ca2+ from
sarcoplasmic reticulum (SR) and in the rhythmicity of cardiomyocytes [69].
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Bcl-2 family members are mainly OMM-resident proteins, so they exert a control over
mitochondrial Ca2+ uptake mainly through the control of VDACs permeability (Figure 1),
however this regulation is still a matter of debate. The first evidence for the implication
of a Bcl-2 family member in VDAC permeability came from Craig Thompson’s lab in the
late 90s. Vander Heiden and collaborators demonstrated that following growth factor
deprivation, cells overexpressing Bcl-xL survive by sustaining ATP/ADP exchanges in
the mitochondria, suggesting that Bcl-xL maintains VDAC in an open state [36,70]. Sup-
porting this model, the dephosphorylation of the BH3-only protein Bad, which causes its
translocation to the OMM, disrupts the interaction between Bcl-xL and VDAC leading to
mitochondrial Ca2+ overload [71]. However, using liposomes embedded with purified
VDAC proteins, Shimizu and colleagues demonstrated that Bcl-xL binds to and inhibits
VDAC opening [72]. Interestingly, in this latter experimental system pro-apoptotic Bax and
Bak have the opposite effect and lead to VDAC opening [72].

More recently, the team of Chi Li demonstrated that bclx KO mouse embryonic fi-
broblasts (MEFs) uptake less Ca2+ into the mitochondria compared to control cells [73].
Notably, mitochondrial Ca2+ uptake was restored when KO MEFs were complemented
with exogenous Bcl-xL targeted to the mitochondria but not to the ER. It has then been
proposed that Bcl-xL promotes mitochondrial Ca2+ entry via direct interaction with the
VDAC1 and VDAC3 channels [74], and that its N-terminal BH4 motif was required for this
interaction and therefore Ca2+ regulation [57]. In this respect, a peptide corresponding to
the BH4 motif of Bcl-xL reduces agonist-induced mitochondrial Ca2+ uptake and protects
cells from apoptosis [57,75].

Actually, within the Bcl-2 family, VDACs participate in functional interactions with
Bcl-2 and Mcl-1 as well. Several studies have shown that Bcl-2 interacts with VDAC1
N-terminal α-helix, thereby leading to a reduction in mitochondrial Ca2+ uptake [76]. This
probably also requires the BH4 motif of Bcl-2 because peptides corresponding to this region
close VDAC and suppress pro-apoptotic stimuli [77]. In contrast, overexpression of Bcl-2
in neurons and myotubes has opposite effects, leading to an increase of mitochondrial
Ca2+ [78,79]. Finally, Mcl-1 has also been shown to directly interact with VDACs to promote
mitochondrial Ca2+ uptake and bioenergetics in a non-small cell carcinoma cell line [80].

The discrepancies regarding mitochondrial Ca2+ trafficking highlight the complex
interactions between anti-apoptotic Bcl-2 proteins and VDACs. Due to their role in cell sur-
vival and death, it can be hypothesized that under physiological conditions, anti-apoptotic
Bcl-2 members enhance mitochondrial Ca2+ uptake to regulate mitochondrial metabolism
and bioenergetics, whereas upon apoptotic stimulations they protect mitochondria from
deleterious massive Ca2+ overload by interacting with VDACs. This hypothesis is notably
supported by findings in the heart of transgenic mice describing that Bcl-2 decreases mito-
chondrial Ca2+ efflux via the Na+/Ca2+ exchanger, NCLX, to maintain mitochondrial ATP
production [81].

4. Remote Control of Mitochondrial Ca2+ Signalling by ER-Based Bcl-2 Proteins

The ER is the major storage organelle for cellular Ca2+. ER-dependent Ca2+ release
controls basal cytosolic Ca2+ levels and mitochondrial Ca2+ uptake through the direct
transfer of Ca2+ ions at MERCs [42,48,82]. At the level of the ER, this occurs via the release
of Ca2+ through ER-Ca2+ channels. IP3Rs and ryanodine receptors (RyRs) are the two major
families of ER Ca2+ channels [83]. In vertebrates, there are three IP3R isoforms (IP3R1-3),
which are often co-expressed in most mammalian cell types. The three isoforms differ in
their affinity for the IP3 ligand; IP3R2 exhibiting the highest sensitivity while IP3R3 has the
weakest [84]. Interestingly, IP3R2 isoform is the most effective in delivering Ca2+ to the
mitochondria [55]. IP3, the natural ligand for IP3R, is produced upon G-protein coupled
receptor (GPCR) activation by ligands such as histamine or ATP at the plasma membrane.
GPCR activation leads to hydrolysis of phosphatidyl inositol-4,5-bisphosphate (PIP2) by
phospholipase C resulting in the production of IP3. IP3 then diffuses through the cell and
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binds to the IP3-binding domain of IP3R oligomers resulting in the opening of the Ca2+

channel, which subsequently allows Ca2+ flux into the cytosol and mitochondria [85,86].
Actually, many anti-apoptotic Bcl-2 proteins including Bcl-2, Bcl-xL, Mcl-1 and Nrh,

possess dual mitochondrial and ER localizations and are able to interact with IP3R [34,35,87]
(Figure 1). Although these interactions regulate IP3R-dependent Ca2+ release, the binding
sites and the functional consequences of this regulation are different. For instance, Bcl-2
is able to bind to the central modulatory and transducing domain II (MTD II) of IP3R,
which requires the N-terminal BH4 motif of Bcl-2 [34,88]. This interaction lowers Ca2+

release from the ER and inhibits the transfer of toxic Ca2+ insults to the mitochondria.
Conversely, Bcl-xL interacts with IP3R through its BH3-binding groove [89]. Indeed, Yang
and colleagues identified two new BH3-like helices in the IP3R C-terminus that are able to
bind to Bcl-xL with high affinity. This interaction leads to IP3R opening and subsequent
ER-Ca2+ release. Interestingly, the mode of action of Bcl-xL appears to be concentration-
dependent because increasing Bcl-xL levels lead to a secondary IP3R inhibition, which
occurs through the binding of Bcl-xL at the Bcl-2 interaction site in the MTDII domain [89].
Thus, the regulation of IP3R by Bcl-xL seems to be biphasic. At low levels, ER-based Bcl-xL
favors the release of Ca2+ ions from IP3R and transfer to the mitochondria thus enhancing
mitochondrial bioenergetics by activating the Ca2+-dependent dehydrogenases of the Krebs
cycle. In contrast, at high protein concentration levels, Bcl-xL inhibits IP3R-dependent
Ca2+ release and subsequent apoptosis initiation [89,90]. Of note, as described previously,
the BH4 motif of Bcl-xL does not interact with IP3R but preferentially binds to VDAC1,
controlling its permeability [57]. The difference between Bcl-2 and Bcl-xL BH4 motifs can be
explained by subtle differences in their respective amino acid compositions. Indeed, in the
BH4 motif of Bcl-2 a lysine residue at position 17 (Lys17) is critical for its interaction with
IP3R. The corresponding residue in Bcl-xL is an aspartate at position 11 (Asp11). Mutating
Lys17 into Asp in Bcl-2 leads to complete loss of IP3R binding capacity, whereas changing
of Asp11 into Lys in BH4 of Bcl-xL converts Bcl-xL into an IP3R binder and inhibitor [57].

Mcl-1 is another IP3R interactor shown to control mitochondrial Ca2+ uptake. Actually,
Mcl-1 and Bcl-xL seem to behave in a similar manner. Both proteins bind with comparable
affinities to the C-terminus of all three IP3R isoforms suggesting that Mcl-1, like Bcl-xL,
requires its BH3-binding groove to interact with IP3R channels [91]. In addition, the BH4
motif of Mcl-1 has a pronounced tropism for the OMM, where it inhibits mitochondrial
Ca2+ signalling [92].

An outsider of this Bcl-2-IP3R interaction group is the Bcl-2 homolog Nrh (also referred
to as Bcl-B or BCL2L10). In breast cancer (BC) cells, Nrh is exclusively found at the ER
where it is able to interact with the N-terminal IP3 binding domain of the IP3R1 via its
BH4 motif [87]. This interaction prevents IP3R1 opening, which in turn dampens the
unfolded protein response (UPR). Actually, the UPR is an adaptive reaction that prevents
the accumulation of misfolded proteins in the ER lumen to maintain cell viability. If
stressful conditions persist, the UPR can prime cells for cell death through the activation
of the BH3-only protein Bim [93,94]. The UPR is often suppressed in tumor cells in order
to promote protein synthesis and cell survival. In this regard, Nrh expression in BC cells
inhibits the UPR and induces drug resistance, whereas Nrh silencing makes BC cells more
sensitive to drugs currently used in chemotherapy [87]. Interestingly, at MERCs, Nrh and
IRBIT, another IP3 binding domain protein, exert an additive inhibitory effect over IP3R
at resting states [95]. However, upon apoptotic stress, IRBIT is dephosphorylated, thus
inhibiting Nrh and leading to Ca2+ accumulation in the mitochondria and subsequent
apoptosis [95].

Finally, Bcl-2 proteins have also been proposed to interact with other ER-Ca2+ chan-
nels [96]. Both Bcl-2 and Bcl-xL can interact with the ryanodine receptor (Ryr) via their
BH4 domains and decrease their activity [97,98]. Indeed, overexpression of Bcl-xL inhibits
caffeine-induced Ryr-dependent Ca2+ release into the mitochondria [98]. Together, by
direct interaction with ER-Ca2+ channels, Bcl-2 proteins tightly control ER to mitochondria
Ca2+ transfer required for cell fate decisions.
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5. Bridging the Gap between Mitochondria and ER during Cell Death and Survival

Mitochondrial Ca2+ plays a pivotal role in the balance between cell survival and cell
death events [99]. While a minimal amount of Ca2+ is required to maintain mitochondrial
bioenergetics and metabolism, larger and toxic mitochondrial Ca2+ levels have been pro-
posed to facilitate apoptosis [100] and to trigger mPTP opening [41]. As already described,
the anti-apoptotic Bcl-2 proteins are key executioners regarding the control of mitochon-
drial Ca2+ homeostasis as well as the cell death and survival balance. During apoptosis, the
number of mitochondria-ER contact sites increases [59,101], fostering mitochondrial Ca2+

uptake [59,95], which has been associated with IMM remodelling and OPA1-dependent
cristae reorganization, thus facilitating cytochrome c release and apoptosis [59]. Mito-
chondrial Ca2+ overload may also lead to IMM cardiolipin oxidation, increasing ROS
production and mPTP opening [102]. Due to their roles in ER to mitochondria Ca2+ fluxes
described above, anti-apoptotic Bcl-2 proteins have been widely shown to inhibit apoptosis
by decreasing ER-induced Ca2+ release or decreasing VDAC1-dependent Ca2+ uptake [103]
(Figure 1). In recent years, different peptides derived from their BH4 domain have been
developed and their effects have been characterized in different cancer cell models [104].
Such peptides are able to disrupt the interactions between IP3R and several Bcl-2 proteins
and impact on the apoptotic Ca2+ signals transfer to the mitochondria. For instance, a
BH4-domain-targeting peptide of Bcl-2, called Bcl-2/IP3 receptor disrupter-2 (BIRD-2), has
been shown to have cell death-inducing effects in different cancer cell lines [34,105–108].
Interestingly, such cell death has been shown to depend on ER-induced mitochondrial Ca2+

overload and caspase activation [109].
While the role of the pro-apoptotic proteins in basal mitochondrial Ca2+ homeosta-

sis has been less described, there is evidence supporting their contribution to the Ca2+-
dependent apoptotic process (Figure 1). Bok is the only multidomain pro-apoptotic member
which has been shown to interact with the IP3R coupling domain of both IP3R1 and IP3R2
via its BH4 domain [110,111]. This interaction has been initially reported to protect both
IP3Rs and unbound Bok from proteolysis and proteasomal-dependent degradation, respec-
tively, and to control mitochondrial morphology [112]; however, no ER or mitochondrial
Ca2+ defects were observed in these KO cell lines. Interestingly, a study has recently shown
that KO of Bok resulted in a deregulation of intracellular Ca2+ signalling [61]. Indeed,
these Bok KO MEFs harbored a reduction of Ca2+ transfer from ER to mitochondria and
of apoptosis [61]. This study also showed that Bok-KO induces a decrease of MERCs
number observed by microscopy, and a mislocalization and decrease of MERCs-resident
proteins [61], suggesting that Bok can directly control MERCs to maintain mitochondrial
Ca2+ pools and sustain cell viability. Rescue experiments with a Bok mutant unable to
interact with IP3R was shown to rescue the MERCs defect but not the mitochondrial Ca2+

phenotype [61]. Interestingly, restoring MERCs by an artificial tether, was insufficient to
recuse the Ca2+ defects induced by Bok loss [61]. These data suggest a specific and mutually
exclusive role of Bok in controlling IP3R-mediated Ca2+ release and MERCs number.

Although no direct interaction with ER-localized Ca2+ channels/receptors have been
reported, Bax and Bak can also localize to the ER where they control Ca2+-dependent
apoptosis [113–115]. Indeed, overexpression of Bax and Bak leads to an increase of ER-
Ca2+ release and mitochondrial Ca2+ levels accompanied by cytochrome c release and cell
death [113], suggesting that Bax/Bak at the ER can control ER to mitochondria Ca2+ fluxes.
In addition, Bax/Bak DKO MEFs have reduced ER-Ca2+ content, leading to decreased
mitochondrial Ca2+ uptake and apoptosis upon ER-Ca2+ stimulation [114]. Importantly,
re-expression of SERCA or ER-targeted Bax/Bak was able to restore ER-Ca2+ content and
efficient apoptosis, indicating that Bax and Bak directly control ER Ca2+ concentration [114].
Mechanistically, it has been proposed that this increased ER Ca2+ leak was associated to an
increase of Bcl-2-IP3R1 interaction and protein kinase A-dependent IP3R1 phosphorylation
in Bax and Bak DKO cells [116]. Other studies have confirmed the contribution of Bax
and Bak regarding ER-induced Ca2+ release and cell death regulation following different
cellular stresses [115,117]. Alternatively, reports have shown that Bax and Bak are able
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to permeabilize the ER membrane leading to the release of the ER lumen contents to the
cytosol [118,119]. Indeed, the oligomerization of Bax and Bak on the ER membrane could
lead to the formation of pores, similar to mitochondrial [120,121] and peroxisomal [122]
pore formations, which could potentially allow the passage of Ca2+ in the cytosol during
apoptosis. Finally, BH3 only proteins [123,124], including Bik [125], can also control
Bax/Bak-dependent ER-Ca2+ release to enhance mitochondrial Ca2+ uptake and cell death.
In hyperplastic cells, not only Bik disrupts the Bcl-2-IP3R complex to promote ER-Ca2+

release, but it can also activate and translocate Bak to the ER to form a complex with DAPK1
leading to an increase of MERCs and mitochondrial Ca2+ uptake, subsequently leading to
cell death [126].

The complex regulation of Ca2+ by Bcl-2 proteins reflects the critical and opposing
functions of Ca2+ about life and death decisions. Therefore, several modes of regulation
must exist to tightly control mitochondrial Ca2+ levels, depending on environmental
conditions.

6. Role of Bcl-2 Family Proteins in Ca2+-Dependent Cell Migration

Intracellular Ca2+ dynamics regulates many cellular processes including cytoskeleton
remodelling and cell migration [37]. Most of these regulations occur by modifying the
cytosolic Ca2+ signals, which has been reviewed extensively elsewhere [127,128]. The sig-
nificance of Bcl-2 family proteins in cell migration and invasion during embryonic develop-
ment and cancer progression, however, has only recently emerged.

Actually, the first evidence came from experiments conducted in the zebrafish model.
In this vertebrate, a highly divergent Bcl-2 homolog, called Bcl-wav (acronym for Bcl-2
homolog found in water-living anamniote vertebrates) was identified [28]. Bcl-wav is
a mitochondrial resident pro-apoptotic Bcl-2 homolog, the knockdown of which affects
convergence and extension (C&E) movements during zebrafish embryogenesis [28]. C&E
movements are critical for the establishment of the anterior-posterior and dorsoventral
embryonic axes. Bcl-wav orchestrates these morphogenic movements through the control
of intracellular Ca2+ trafficking. Indeed, bclwav knockdown was correlated with a decrease
in mitochondrial Ca2+ levels and concomitant increase of cytosolic Ca2+ levels [28]. At
the level of the mitochondria, Bcl-wav interacts with VDAC1 via its BH4 motif and en-
hances mitochondrial Ca2+ uptake thus controlling the kinetics of actin polymerization and
blastomeres migration. Interestingly, C&E movements seem to be strongly depended on
mitochondrial Ca2+ uptake since knockdown of mcu resulted in a similar phenotype [28].

The importance of the MCU-dependent Ca2+ transport was further emphasized in the
motility of cancer cells [129,130]. Indeed, mcu-silencing in highly invasive triple-negative
breast cancer (TNBC) cell lines resulted in altered F-actin cytoskeleton dynamics, cell polar-
ization loss and impairment of the focal adhesion proteins dynamics [129]. These processes
are mediated by the reduction of Ca2+-dependent Calpain and Rho-GTPases activities [129].
In addition, Tosatto and collaborators showed that the knockdown of mcu also resulted
in decreased cell motility and invasiveness as well as reduction of tumor growth [130].
However, they linked this phenotype to mitochondrial ROS (mtROS) production and
downregulation of hypoxia-inducible factor-1α (HIF-1α) [130]. This suggests that mito-
chondrial Ca2+ uptake could probably control multiple downstream signalling pathways.
High mtROS production is detrimental for cell survival, however, in cancer cells sub-lethal
mtROS levels promote cell proliferation, migration and invasion [131,132]. In this respect,
several studies have demonstrated that Bcl-2 family members control cancer cell motility
via mtROS production, independently of their role in apoptosis [80,133,134]. For instance,
Mcl-1 was proposed to promote migration in non-small cell lung carcinoma though its
interaction with VDAC1 and 3 and its capacity to control mitochondrial Ca2+ homeosta-
sis [80]. Indeed, mcl1-silencing or treatment with peptides that suppress VDAC-based Ca2+

uptake led to reduced mtROS generation. Bcl-xL and Bcl-2 were also shown to act as accel-
erators of cell motility, invasiveness and metastasis spreading. As it is the case for Mcl-1,
mitochondrion-localized Bcl-xL, but not ER-based Bcl-xL, contributes to cell migration
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through the generation of reactive mtROS [133]. At the level of the mitochondria, Bcl-xL
binds to VDAC1 via its BH4 motif thus promoting Ca2+ entry and mtROS production.
Interestingly, one study linked this regulation with the effect of metalloprotease-processed
CD95L (cl-CD95L) on TNBC accelerated metastatic dissemination and poor patient prog-
nosis [134]. Actually, CD95-mediates Ca2+ release from the ER to mitochondria at MERCs.
In this particular case, mitochondria-targeted Bcl-xL and ER-targeted Bcl-2 were proposed
to increase Ca2+ transfer between the ER and the mitochondria, thus accelerating ATP
production and mtROS generation [134]. Interestingly in this case, the use of BH3-mimetics
was sufficient to decrease cell migration suggesting that these molecules may be useful not
only to kill tumor cells but also to prevent metastatic dissemination [134].

7. Conclusions

The role of Bcl-2 family of proteins in the initiation of apoptosis has been well studied,
which has led to our current understanding of how cells integrate stress signals at the
level of the mitochondria, leading to initiation of the death program. The role of Ca2+ in
mediating cell death decisions has also been emphasized, but recent evidence support
additional functions for mitochondrial Ca2+ on top of mitochondrial bioenergetics and cell
death. With their capacity to be localized at the mitochondria-ER interface and to interact
with keys channels or receptors on both ER and mitochondrial membranes, Bcl-2 proteins
have emerged as key regulators of intracellular and mitochondrial Ca2+ homeostasis, and
subsequently to several other processes such as cell migration. Due to this connection,
numerous studies are currently directly targeting Bcl-2-IP3R or Bcl-2-VDAC interactions to
modulate Ca2+ signalling and to control cell fate in different types of cancer cell models.
Together, future studies identifying precisely how mitochondrial Ca2+ is regulated by Bcl-2
proteins may identify new strategies for therapeutic intervention.
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