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In this work, we present the first steps toward the creation of a new neurorobotics

model of Parkinson’s Disease (PD) that embeds, for the first time in a real robot,

a well-established computational model of PD. PD mostly affects the modulation of

movement in humans. The number of people suffering from this neurodegenerative

disease is set to double in the next 15 years and there is still no cure. With the new

model we were capable to further explore the dynamics of the disease using a humanoid

robot. Results show that the embedded model under both conditions, healthy and

parkinsonian, was capable of performing a simple behavioural task with different levels of

motor disturbance. We believe that this neurorobotics model is a stepping stone to the

development of more sophisticated models that could eventually test and inform new PD

therapies and help to reduce and replace animals in research.

Keywords: neurorobotics, basal ganglia, motor control, Parkinson’s disease, motor cortex, robot controller

1. INTRODUCTION

This paper describes the first steps toward the creation of a novel neurorobotics model of
Parkinson’s Disease (PD)1. PD is characterised by a disruption of the Basal Ganglia (BG) circuitry,
which is composed of a set of nuclei linked to the thalamus and cortex in our brain. PD affects the
modulation of movement (Bear et al., 1996; Jankovic, 2008) apart from other symptoms (Girotti
et al., 1986; Goodarzi and Ismail, 2017). This neurodegenerative disease affects more than 3% of
people over 65 years old, with figures set to double in the next 15 years (Dorsey et al., 2007; Rizek
et al., 2016). There is still no cure, and therapies rely heavily on a few incomplete computational
models of PD, which were created based on animal models (Humphries et al., 2018).

Computational models developed to date often neglect the behavioural effects of physical bodies
interacting with the environment, such as sensorimotor regularities. Apart from that, due to
experimental limitations, the data used to tune these models are normally from only a couple of
relevant brain regions, collected in different behavioural contexts, possibly from various animal
lineages and vivaria. As a consequence, it is largely neglected that animal sensorimotor mechanisms
and PD symptoms result from self-organised dynamic processes. The misinterpretation of these
processes, which emerge out of the brain-body-environment interactions, might undermine PD
computation models’ fidelity.

1This work is part of a multidisciplinary project, the Neuro4PD: Neurorobotics Model of Parkinson’s Disease. Its

main goal is to gain further insights into the mechanisms of PD by combining neuroscience, machine learning and

robotics expertise from Brazil and the UK. The project is funded by the Newton Fund and Royal Society in the UK

(https://www.macs.hw.ac.uk/neuro4pd/).
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In this paper, we embed a biophysically plausible
computational model specifically tuned for the 6-
hydroxydopamine rat model of PD in a real humanoid robot
that is engaged in a simple behavioural task. The computational
model represented by the basal ganglia-thalamus-cortex
system has been fully tuned and validated with published data
(Izhikevich and Edelman, 2008; Van Albada and Robinson, 2009;
Robinson and Kim, 2012; Kerr et al., 2013; Kumaravelu et al.,
2016). We also created a sensorimotor loop with biologically
informed constraints that can modulate human’s body inherent
oscillatory phenomena (i.e., central oscillators; Burkhard
et al., 2002). This is an important step toward advancing our
knowledge about PD beyond that obtained from anatomical and
physiological studies (Lang and Lozano, 1998; Kalia and Lang,
2015). The main contributions of this paper are: (i) an embedded
computational composite model of PD in a real humanoid robot
and (ii) the reproduction of abnormal PD motor stimulation
based on cortical dynamics via the modulation of central
oscillators. We expect new insights into PD by future studies
conducted using our proposed model.

This paper is organised as follows: section 2 introduces the
Basal Ganglia-Thalamus-Cortex system focusing on its main
motor pathways. Section 3 presents the main computational
models of PD. Section 4 discusses related works on neurorobotics
approaches to neurodegenerative diseases. Section 5 proposes a
novel neurorobotics model of PD. Section 6 presents themethods
and experimental setup, including the humanoid robot used.
Section 6 shows the results and section 7 presents the discussion.
Section 8 draws conclusions and proposes future work.

2. THE BASAL
GANGLIA-THALAMUS-CORTEX SYSTEM

The basal ganglia (BG) circuitry is a set of interconnected nuclei
including the Striatum (caudade and putamen), Globus Pallidus
pars interna and pars externa (GPi and GPe), SubThalamic
Nucleus (STN), and Substantia Nigra pars reticulata and pars
compacta (SNr and SNc; Figure 1). Together with the thalamus
(Haber and Calzavara, 2009) and cerebral cortex, they form
the Basal Ganglia-Thalamus-Cortex System (BG-T-C System),
a highly organised network formed by parallel sensorimotor,
associative, and limbic loops, involved, respectively, with
movement control, cognition, and processing of reward and
emotions (Obeso et al., 2008; Redgrave et al., 2010; Galvan et al.,
2015).

2.1. The Sensorimotor Loop
Movements in our body are controlled by a sensorimotor
loop (SML), which is comprised by somatotopically organised2

excitatory projections from cortical motor areas and primary
somatosensory cortex to the BG input nuclei (Striatum and
STN). Those in turn project to the motor regions of other BG
nuclei. The BG output nuclei (GPi and SNr) then project to
the Ventroanterior (VA) and Ventrolateral (VL) thalamic nuclei,

2Somatotopic organisation means that each part of our body corresponds to a

specific location within a structure in the central nervous system.

which then project back to the motor regions of the cortex
(Obeso et al., 2008). These connections within the sensorimotor
loop are mediated by neurons that establish either excitatory
or inhibitory synapses, which are mediated, respectively, by the
neurotransmitters glutamate and Gamma-AminoButyric Acid
(GABA) (Figure 2).

About 90% of Striatum cells are Medium Spiny Neurons
(MSNs), which are GABAergic inhibitory cells that receive
excitatory glutamatergic projections from the cortex and
thalamus. The MSN projections form 2 distinct circuits, called
direct and indirect pathways (Obeso et al., 2008; Lanciego et al.,
2012; Figure 2A).

The MSNs from the direct pathway project directly to the
BG output nuclei (GPi/SNr), while the MSNs from the indirect
pathway project to the GPe. GPe is a BG nucleus containing
GABAergic inhibitory neurons that project to the GPi/SNr
directly and indirectly via the STN. In addition to GABAergic
projections arriving from GPe, the STN receives excitatory
glutamatergic projections directly from the cerebral cortex. This
circuit is often called the hyperdirect pathway (Nambu et al., 2002;
Figure 2A).

The STN is mainly composed of glutamatergic neurons that
send excitatory projections to BG output nuclei (GPi/SNr).
Both BG output nuclei (GPi and SNr) contain inhibitory
GABAergic neurons that fire tonically (i.e., with a sustained firing
frequency), inhibiting the VA/VL thalamic nuclei. The direct
pathway facilitates movement by inhibiting the tonic activity
of GPi/SNr, inducing a pause on their neuronal firing. The
indirect and hyperdirect pathways, on the other hand, inhibit
movement by increasing the tonic inhibitory activity of the BG
inhibitory outputs.

2.2. The Parkinsonian Conditions
Dopamine (DA) is another neurotransmitter involved in the
sensorimotor loop. DA Projections from SNc to striatum
modulate the activity of the direct and indirect pathways by
regulating MSN excitability (Figure 2B). Specifically, dopamine
excites MSN neurons in the direct pathway and inhibits MSN
neurons in the indirect pathway. The combined effect of DA on
direct and indirect pathways, therefore, leads to a decrease in
GPi/SNr activity, decreasing the inhibition of the thalamocortical
projection neurons. Therefore, the main effect of DA release in
Striatum is movement facilitation.

In PD, there is a progressive degeneration of SNc DA neurons.
The depletion of striatal DA leads to a functional imbalance of
BG circuitry, with enhanced activation of the indirect pathway
and decreased activation of the direct pathway, resulting in an
increase in GPi/SNr activity that hampers movement execution
(Surmeier et al., 2014). In addition to these changes in firing rates,
the parkinsonian conditions is also characterised by changes in
firing patterns within each nucleus and amongst the structures
of the BG-T-C system, such as increased synchrony between
neighboring neurons, increased bursting activity and enhanced
beta oscillatory activity (Galvan et al., 2015).
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FIGURE 1 | Illustration of the basal ganglia highlighting the location of each nucleus within the human brain.

2.3. Tremor Symptom
The origin and mechanisms of motor symptoms of Parkinson’s
Disease (PD) are still under great dispute (McGregor and Nelson,
2019). In particular, there are several hypotheses for the origin
of symptoms that are related to motor impairments but there is
no consensus so far (Dovzhenok and Rubchinsky, 2012; Helmich
et al., 2013). Most likely, a myriad of network interactions
lead to motor disruptions that are observed in PD, including
structures beyond the basal ganglia networks like the cerebellum.
Traditionally, it is assumed that the basal ganglia and cerebellum
are anatomically separated but interfaced via cortical networks.
Please refer to Mori et al. (2016) for a more comprehensive
discussion on the role of other structures.

Parkinson’s tremor symptom is an involuntary motion, in
particular on the upper limbs, with frequency of 4–6 Hz
and high amplitude along a voluntary movement or at rest
(Guyton and Hall, 2001; Haeri et al., 2005). A few previous
works hypothesize that the dopamine depletion in the BG-T-
C system may lead to the occurrence of the tremor symptom
(Dovzhenok and Rubchinsky, 2012; Helmich et al., 2012;
Cagnan et al., 2014). However, recent evidences from clinical,
neuroimaging and postmortem studies link essential tremor to
cerebellar dysfunction (Louis et al., 2006; Mirdamadi, 2016;
Louis, 2018; Louis and Faust, 2020). The authors hypothesize
that the cerebellum influenced by dopamine depletion may also
contribute to the enhancement of the tremor. Nonetheless, the
origin of the symptom is yet a mystery.

According to Burkhard et al. (2002), there are central
oscillators that are composed of oscillatory components
involving neuronal networks capable of generating a naturally
occurring neural oscillation. These central oscillators synchronise
cerebral function in brains under both conditions (healthy and
parkinsonian). However, it is not very clear which structures
of the brain are involved in the generation of these oscillatory
patterns. Although the physiological function of those structures

are yet unknown, the authors consider them to be directly related
to motor control and tremor iythn PD. Based on experiments
with healthy subjects executing voluntarily simulated tremor
and data from pathological tremors recorded from patients with
PD and essential tremor, the authors noticed the influence of the
central oscillators on motor tasks.

Based on PD patients with electrode implantation, Du
et al. (2018) observed evidences of oscillatory patterns in
different regions of the brain, like STN, GPi, and ventral
intermediate thalamus (Vim). They named the cells oscillatory
neurons and associated them to the tremor symptom. In a
different study, using a helmet-shaped 122-channel whole-
head neuromagnetometer (NeuromagTM), Pollok et al. (2004)
concluded that the same brain areas are involved in voluntary
tremor as in parkinsonian resting tremor. Based on the acquired
data, the authors considered that pathological tremors might
be based on a physiological pre-existing cerebral oscillatory
network. Unfortunately, more details on those oscillatory
neurons are yet unknown.

3. COMPUTATIONAL MODELS OF
PARKINSON’S DISEASE

At present, there are only a few computational models built
by different research groups to support distinct investigations
on motor and cognitive deficits of PD. In fact, neuroscientists
have been using them to improve their understanding of motor
symptoms associated to neural disorders like PD and many
others (Cohen et al., 2002; O’Donnell andWilt, 2006; Sarbaz et al.,
2007; Schroll and Hamker, 2013; Sanger, 2018; Pena et al., 2020).
In particular for PD, those models became an ally on a search
for new treatments and therapies (Humphries et al., 2018), and
also to enhance the efficacy of well-known treatments like Deep
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FIGURE 2 | Major pathways comprising the sensorimotor loop. (A) Schematic representation of the direct (left), indirect (centre) and hyperdirect (right) pathways. (B)

Combined representation of these pathways. STR, striatum; MSNd, medial spiny neurons of the direct pathway; MSNi, medial spiny neurons of the indirect pathway;

SNc, substantia nigra pars compacta; GPe, globus pallidus pars externa; GPi, globus pallidus pars interna; STN, subthalamic nucleus; VA/VL, ventroanterior and

ventrolateral thalamic nuclei.

Brain Stimulation (DBS) (Rubin and Terman, 2004; Humphries
and Gurney, 2012; Lu et al., 2020).

Some of the computational models of PD are built to support
hypothesis on the cause of motor impairments. For instance,
Pavlides et al. (2015) explains the proposed mechanisms for an
anomalous increase in beta oscillations within the BG nuclei.
Other models are built to investigate not the symptoms but the
origin of the disease, as presented in Muddapu et al. (2019).
The authors designed a model to explore the progressive and
inexorable loss of dopaminergic cells in the SNc. In some cases,
computational models of PD are designed inspired by the BG
nuclei alone (Gurney et al., 2004; Merrison-Hort et al., 2017)
while others build a more complex system incorporating the
entire sensorimotor loop (Kumaravelu et al., 2016) (Figure 2B).

Kumaravelu et al. (2016) is one of the very fewmodels that can
incorporate the behavioural effects of physical bodies interacting
with the environment. In other words, a model that replicates
some of the sensorimotor loop mechanisms discussed in section
2.1, which are observed in animals during behavioural tasks. This

computational model of PD focuses on the BG-T-C system of
rats (Figure 3). The entire model was tuned using a collection of
data from 6-OHDA lesioned rats. Their model also followed an
extensive validation, demonstrating that it can replicate a wealth
of experimental data.

The model is divided into brain regions: CorTeX (CTX),
Striatum (Str), SubThalamic Nucleus (STN), Globus
Pallidus externa (GPe), Globus Pallidus interna (GPi)3, and
THalamus (TH). Each region includes 10 single compartment
model neurons (Hodgkin-Huxley or Izhikevich neurons)
interconnected with synapses to form a functional network. All
model equations can be found in Kumaravelu et al. (2016). In
Figure 3A, the connections present the excitatory and inhibitory
relations between the CTX, BG, and TH. The well-know
pathways (direct, indirect, and hyperdirect) presented in Figure 2

can be reproduced by this model. In Figure 3B, a diagram shows
the synaptic connections between the CTX, BG, and TH. The

3Or, in the rat, the homologous entopeduncular nucleus, EP.
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FIGURE 3 | Schematic of the BG-T-C System computational model adapted from Kumaravelu et al. (2016). (A) Shows connections within the network. (B) Details of

synaptic connections within the network model. Each rcortical neuron receives excitatory input from one TH neuron and inhibitory input from four randomly selected

icortical neurons. Each icortical neuron receives excitatory input from four randomly selected rcortical neurons. Each dStr neuron receives excitatory input from one

rcortical neuron and inhibitory axonal collaterals from three randomly selected dStr neurons. Each idStr neuron receives excitatory input from one rcortical neuron and

inhibitory axonal collaterals from four randomly selected idStr neurons. Each STN neuron receives inhibitory input from two GPe neurons and excitatory input from two

rcortical neurons. Each GPe neuron receives inhibitory axonal collaterals from any two other GPe neurons and inhibitory input from all idStr neurons. Each GPi neuron

receives inhibitory input from two GPe neurons and inhibitory input from all dStr neurons. Some GPe/GPi neurons receive excitatory input from two STN neurons,

while others do not. Each TH neuron receives inhibitory input from one GPi neuron.

pattern exhibited by those synapses was designed based on prior
computational models (Rubin and Terman, 2004; So et al., 2012).

The two pathways that process signals through the BG have
opposite net effects on thalamic target structures. In Boison
and Masino (2016), the authors explain that the excitation
of the direct pathway has the net effect of exciting thalamic
neurons (which in turn make excitatory connections onto
cortical neurons) and excitation of the indirect pathway has the
net effect of inhibiting thalamic neurons (rendering them unable
to excite motor cortical neurons). In other words, the direct
pathway engages the movement behaviour while the indirect
pathway inhibits it.

4. NEUROROBOTICS AND NEURAL
DISORDERS

Neurorobotics is a field of research that focus on the embodiment
of neural systems, like computational models of biological
neural networks, in artificial software and machines. In 2005,
a robotic salamander was presented as one of the first models
designed to explore the interaction between brain, body and
environment (Ijspeert et al., 2005, 2007). This interaction brought
several discussions of the impact of external information on the
dynamics of those neural networks.

For the last few decades, neurorobots have been applied
to a wide range of domains (Kaplan, 2008; Krichmar, 2018;
Li et al., 2019). For instance, inspired on the action selection
mechanisms of the basal ganglia, Prescott et al. (2006) proposed
to embed a neuronal model in a mobile agent to control its
action selection during the performance of a robotic task. In a
different context, Edvardsen et al. (2020) incorporated classes of

neurons from hippocampus to design a navigation strategy in
cluttered environments. Some other works have focused on the
development of prosthetics to assist the locomotion of animals
(von Zitzewitz et al., 2016) and even on the improvement of
human-robot interaction by designing systems that control the
levels of awareness in humanoid robots (Lindberg et al., 2017;
Balkenius et al., 2018).

Brain-inspired models embedded in robots can be also an
important tool for supporting studies on neural disorders. For
instance, Yamashita and Tani (2012) investigated psychiatric
disease symptoms, including fictive perception, altered
sense of self, and unpredictable behaviour, by embedding a
neuronal model containing schizophrenia-like deficits in a
humanoid robot engaged in a task that demanded interaction
with the environment via object manipulation. Oota et al.
(2018) investigated early onset symptoms of abnormal motor
coordination in rats using a soft neurorobotics suit that provides
integrated cognitive and physical interventions. For further
discussion on neurorobotics models of neurological disorders,
please check the mini review by Pronin et al. (2021).

Most of those works search for a deeper understanding of

motor and cognitive symptoms by investigating the dynamics

of human and animal brains. However, neural models are yet

considerated to be abstraction since they can not replicate the

same level of complexity observed in real brains. The most
advanced projects modeling the biophysical characteristics of

human brain can only perform a reduced number of brain
cells (4 million point neurons and 31,000 detailed neurons) on
High Performance Computing (HPC) clusters (Chi, 2016;Makin,
2019). Besides, in order to build more realistic neural model,
live animals, like monkeys and rats, are used in experiments
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under specific scenario for data collection. In each experiment
with a single subject, the activity of only a few regions of the
brain can be collected. To acquire multiple data from different
regions, it would demand several invasive surgeries in the same
animal which is not ethical. Usually, models of specific regions
are built upon data from several animals and, in some cases,
even different species. Therefore, neural disorders are usually
built upon sophisticated but simplified computational models of
specific regions of the brain.

In a PD scope, to the best of our knowledge, sophisticated
computational models, such as the one proposed by Kumaravelu
et al. (2016), have never been embedded in a robot as a
mechanism to understand the pathology, for diagnosis, or even
to inform new treatments or therapies. Besides, Kumaravelu
et al. (2016) describe brain structures that are important for the
formation of sensorimotor loops, like BG, TH, and CTX.

Wang et al. (2010) designed computational models of
Huntington’s disease (HD) and PD based on leaky integrate-
and-fire neurons, and embedded them in a simple Lego robot
(Klassner and Anderson, 2003). By integrating the computational
models to the robot’s controller, they investigated an action
selection mechanism and compared the robot’s pattern in
changing behaviours. The computational models created are
composed of a BG type structure that is updated by sensory
information in order to select the robot’s behaviour (e.g.,
wandering, avoiding collision, and dancing; Wang et al., 2007,
2010). In comparison to the Kumaravelu et al. (2016) model, the
model from Wang et al. (2007, 2010) provides less biophysical
details of structures involved in HD and PD, which limits the
generalisation of neural and behavioural dynamics reported.

Using a completely different approach, Kulam et al. (2011)
implemented a model inspired only by the BG dynamics
to reproduce PD symptoms, like bradykinesia, in a robotic
arm. The authors used reinforcement learning to train their
model and reproduce the desired symptoms. But, they did
not use an artificial neural network with spiking neurons
to design the computational model of PD. The model was
implemented as a control system in which the dopamine signal
is related to the incremental changes in error between the target
position and the position of the end-effector of the arm. A
biophysical computational model of the BG nuclei was not
incorporated and, as a consequence, it may not be the most
adequate tool to support neuroscientists in their investigations
of PD.

To date and to the best of our knowledge, there are
no biologically plausible neurorobotics models capable
of reproducing characteristic symptoms of PD, like
bradykinesia/akinesia, tremor, and rigidity in real humanoid
robots. The majority of those aforementioned works concentrate
their investigations in either modeling the circuits of the brain or
building robotic devices based on simple neuroscience concepts
(Yamashita and Tani, 2012; Idei et al., 2017; Lewis and Cañamero,
2017). A true intersection between neuroscience and robotics
is yet to be unveiled. Our work presents the first steps toward
the creation of an embedded realistic computational model of
PD in a humanoid robot. This new neurorobotics model has
the potential to support researchers from different areas, like

biologists, physicists, and neuroscientists, which might help to
unravel the mysteries of PD.

5. NEURO4PD: NEUROROBOTICS MODEL
OF PARKINSON’S DISEASE

In this section, we introduce a new neurorobotics model of
PD that is comprised by a computational model of the disease,
a humanoid robot, and a dedicated sensorimotor loop. Here
we explain how the computational model of Kumaravelu et al.
(2016) adapted by Romano et al. (2020) was embedded in our
humanoid robot and how the devisedmodel can be easily adapted
to different behavioural tasks and applications.

5.1. The Computational Model
The chosen computational model of PD (Romano et al., 2020)
is capable of artificially reproducing the biophysical features
of the BG-T-C system, thus replicating the biological SML
mechanisms discussed in section 3. The model was adapted from
Kumaravelu et al. (2016) to an open-source Python package
to facilitate the development, simulation, and analysis of our
biological neuronal network using the NEURON simulator. The
equations (summarised in Supplementary Table 1) describing
the dynamics of each type of neuron were replicated without
any change. Romano et al. (2020) modelled the same three
conditions representing control (normal), 6-OHDA lesioned
(PD), and 6-OHDA lesioned plus STN DBS in rats. In this work,
we focused only on the healthy and parkinsonian conditions.
Kumaravelu et al. (2016) explained how the changes in the
synaptic conductance of specific neurons allowed them to
replicate the loss of striatal dopamine neurons. In short words,
the shift from healthy to PD conditions can be described as
follow: decreasing the maximal M-type potassium conductance
in direct and indirect MSN neurons (MSN firing dysfunction)
from 2.6 to 1.5 mS/cm2; decreasing the maximal corticostriatal
synaptic conductance (reduced sensitivity of direct MSN to
cortical inputs) from 0.07 to 0.026 mS/cm2; and increasing
the maximal GPe axonal collaterals synaptic conductance from
0.125 to 0.5 mS/cm2 (increase of GPe neuronal firing). More
details of the implementation of each condition can be found in
Kumaravelu et al. (2016).

To embed the computational model of PD in our humanoid
robot, we first had to create the desired robot sensorimotor loop.
Following the SML described in section 3, the robot should be
able to get inputs from its sensory signals, incorporate them
into the embedded computational model, and generate motor
commands, which in turn will lead to new sensory inputs, thus
closing the loop.

5.2. The Robot Sensorimotor Loop
It is clear from section 2.1, that the BG-T-C system and
its communication pathways allow mammalians to produce
motor responses based on sensory information thus giving rise
to a sensorimotor loop. Hence, the interplay between those
parts allows animals to make decisions based on internal and
external stimuli.

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2021 | Volume 15 | Article 640449

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pimentel et al. An Initial Neurorobotics Model of Parkinson’s Disease

One can also observe that the thalamus and the cortex form
a closely coupled system (Saalmann and Kastner, 2011), where
the thalamus transmits information from the environment to the
cortex, and the cortex sends the output from multiple processing
stages back to the thalamus. Based on this assumption, we
decided to stimulate the thalamus based on visual cues and to
read the output neuronal signals from the cortex to create our
sensorimotor loop.

Inspired by the existence of central oscillators (section 2.3), the
motor commands from cortical neurons are then combined and
modulated by this inherent oscillatory phenomena (Burkhard
et al., 2002). Similar modulation techniques have been observed
in neuronal activity in animals and humans. For instance,
Tomassini et al. (2017) investigated how the rhythm of different
neuronal signals may modulate the perceptions of animals;
and Ferguson and Cardin (2020) discussed how multiple input
streams of cognitive, sensory or motor origin may modulate
cortical gain. In our work, we investigated how the dynamics of
the cortical neurons from our BG-T-C system under both healthy
and parkinsonian condition may modulate the oscillatory signals
from the central oscillators that might be the cause of the tremor
symptom in PD patients. Hence, the final motor command
is a result of an emulated signal which is able to simulate
motor perturbation in the robot’s upper limbs movements in
parkisonian condition, as further explained on section 6.4.

Our robot sensorimotor loop has four complementary
modules (Figure 4): (i) the first module, Encoding Module (EM),
is responsible for encoding environmental input into the BG-T-
C system; (ii) the second module, Brain Module (BM), processes
the input information respecting the dynamics of the embedded
computational model of the brain; (iii) the third module,
Decoding Module (DM), decodes the brain dynamics into
motor stimulation; and (iv) the last module, Behavioural Module
(BeM), translates the sensory inputs, the motor stimulation,
and the oscillatory signals from the central oscillators into
robot commands. Implementation details of each module will
be discussed in section 6. The following subsections describe
the modules as a generic framework which can be implemented
in different ways without compromising the effectiveness of the
entire sensorimotor loop.

5.2.1. The Encoding Module
The encoding module focuses on the process of extracting
information from the environment to stimulate the thalamic
neurons in the BM. We designed the EM by transforming
visual cues perceived by the robot into thalamic stimulation. For
instance, if the robot detects a visual cue, a certain level of electric
stimuli is applied directly to thalamic neurons, which in turns
changes the dynamics of the entire brain module.

We used visual cues in our work, however, one can use any
other type of sensory information, like voice commands and
tactile inputs, or even a combination of those.

5.2.2. The Decoding Module
The Decoding Module (DM) decodes the dynamics of cortical
neurons of our embedded computational model into patterns
that will be later translated into poses that will form the trajectory

of the robot’s limbs. Those poses allow the robot to perform
pre-defined movements.

In this work, the DM extracts three features from the cortical
neurons in order to produce motor signals: the firing rate
(FR), the average of interspike intervals (ISIs), and the standard
deviation of ISIs. Depending on the purpose of the neurorobotics
model, any other set of features can be used. Also, different
regions of the brain and different type of neurons could be
more suitable.

5.2.3. The Behavioural Module
This module is responsible for generating motor commands
based on sensory inputs, motor stimulation and oscillatory
signals created by the central oscillators. As depicted in Figure 5,
the intensity or amplitude of the oscillatory pattern will be
modulated by the motor stimulation produced by the DM. This
gives rise to an “emulated signal,” which will adjust the poses
defined by the state machine. During the performance of the
motor tasks, each joint of the robot’s arm will be able to receive
updates of its state that might include some disturbance caused
by the modulation of the oscillatory signals, thus closing the
sensorimotor loop.

The BeM can reproduce all the robot’s expected behaviours
under both conditions of the embedded computational model,
e.g., heathy or parkinsonian. We combined pre-defined poses
with motor stimulation and an oscillatory pattern but different
techniques could be used to produce the robot’s trajectories. Also,
it is important to highlight, this module can be adapted to a
completely different behavioural task.

6. METHODS

In this section we provide implementation details of our
Neurorobotics model by presenting the behavioural task chosen
for the SML experiments, the experimental scenarios, the robot
architecture, and the software platforms used.

6.1. The Robot Architecture
The robot architecture chosen for the experiments was the
NAOT14 “torso only” robot (Gelin, 2018) (Figure 6A). NAO
torso has a set of sensor and actuators like cameras, tactile
sensors, and motors that allows the robot to move its upper
limbs and interact with the environment. It is fully open and
programmable and runs on NAOqi OS. Besides that, each arm
of the robot has five degrees-of-freedom allowing it to reproduce
several movements mimicking those of a human being.

We have implemented the four modules from our
Neurorobotics Model (section 5) using Python programming
language (Rossum, 1995) plus OpenCV (Bradski, 2000),
NetPyNE/NEURON (Hines and Carnevale, 2001; Dura-Bernal
et al., 2019), and ROS (Robot Operating System) (Cousins,
2010). The diagram in Figure 6B shows the connections
between those modules [Encoding Module (EM), Brain Module
(BM), Decoding Module (DM), Behavioural Module (BeM)]4

4Each module is available on a github repository (https://github.com/jhielson/

Initial_Neurorobotics_Model_of_PD) with commented material.
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FIGURE 4 | Full diagram showing the robot sensorimotor loop. The robot adjusts the sensory inputs from the environment through the Encoding Module (EM). The

sensory information is then propagated throughout the Brain Module (BM) affecting the dynamics of the cortical neurons which are used to adjust the robot’s

movements. The dynamics of cortical neurons are decoded to motor stimulation by the Decoding Module (DM), then it is used to modulate the oscillatory signal

received from the central oscillators inside the behavioural Module (BeM). The BeM then translates all these signals into motor commands with certain level of

disturbance.

FIGURE 5 | A diagram illustrating the modulation process between the motor stimulation produced by the DM and the oscillatory signal by the Central Oscillators. The

resulting signal is combined to the trajectory, defined by our state machine, to finally produce the movement on the robot’s arm.

within NAO robot. It is important to mention that any other
humanoid robot can be easily adjusted to this work if capable to
communicate to our modules through ROS.

6.2. Behavioural Robot Task
The behavioural task chosen to assess the sensorimotor loop
(section 2.1) consists of a simple visual/motor activity. Basically,
the robot performs two different behaviours in response to
distinct visual cues as illustrated in Figure 7A. If the robot senses
an object as a positive stimulus, it extends its right arm and opens
its hand to grasp the object. Otherwise, if the robot senses an
object as a negative stimulus, it moves its right arm closer to its
torso similar to a rejection behaviour.

The task was designed using simple movements that
simplify further analyses of the robot’s performances in both
conditions, healthy and parkinsonian. Movements are possible
by a continuous update of the robot’s motor trajectories control
with the desired motion. The motion was defined as destination
poses, which were pre-defined with specific joints’ angles. Here,
we opted for a discrete set of motor trajectories that result from
transitions of a state machine.

6.3. Experimental Scenarios
The experimental scenarios are composed of one humanoid
robot (NAOT14), three balls with different colours (yellow, purple
and green), and a computer to run ROS and NetPyNE/NEURON
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FIGURE 6 | In (A), technical illustration of NAOT14 robot indicating the position of sensors and actuators. (B) Shows a diagram illustrating the connections between

the modules [Encoding Module (EM), Brain Module (BM), Decoding Module (DM), Behavioural Module (BeM)] and NAO robot in the SML. The modules represent

different applications that complement each other during the task, and the arrows indicate the data flow. The Central Oscillators generate the oscillatory signals

mimicking the inherent oscillatory patterns that are related to motor control and may be linked to parkinsonian tremor. ROS was mainly used as a platform to support

communication between those elements and to interact with the robot by reading its sensors and sending commands to its actuators.

applications. We used the colour of the objects to trigger
two different behaviours: curiosity and rejection to interact
with an object (Nieuwboer et al., 2007) as presented
in Figure 7B.

In short words, the behaviour task designed to support this
work can be described as a sequence of interactions with the
coloured balls by the robot. The main idea was to exploit our
sensorimotor loop, which produces behavioural responses based
on visual stimuli. In this work, when the task is initialised,
the robot checks if there is any object ready to be sensed, as
presented on Figure 7C. A small mark in front of the robot
indicates the position where the objects are allocated so they
can be easily detected. After the recognition of each object,
the robot communicates the colour of the ball and, only then,
initiates the related behaviour, rejection, or curiosity. A negative
stimulus, indicated by the yellow or purple balls, produces the

rejection behaviour while a positive one, represented by the green
ball, produces the curiosity behaviour. After completing the last
iteration, the robot communicates the end of the task and moves
to its final pose.

In this work, we ran our experiments using only three
iterations by the following order: yellow, green and purple.
However, the number of iterations and the sequence of colours
of the balls can be adjusted a priori any experiment. During the
first 30 s of our experiment, the robot was initiated and none
of the objects presented. This period allowed the robot to bring
up all the sensors and actuators of the robot, and also to move
the arms to their initial position. Then, each ball was allocated
in front of the robot respecting the pre-defined sequence, which
was the yellow ball at 30 s, followed by a green ball at 55 s,
and a purple ball at 75 s after the beginning of the task. The
duration of the entire task was 90 s. The time between those
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FIGURE 7 | In (A), two different destination poses based on distinct visual stimulus. The first one, the robot senses the object as a positive stimulus. It then extends its

right arm and opens its hand to grasp the object. The second one, the robot senses the object as a negative stimulus and moves its right arm closer to its torso

similar to a rejection behaviour. (B) Shows behavioural responses based on visual information. On the top image, the robot sensed a positive stimulus and activated

the curiosity behaviour. On the bottom image, the robot sensed a negative stimulus and initiated the rejection behaviour. In (C), the composed image presents the

stage of the task when the robot senses each ball based on its colour: yellow, green, and purple.

events allowed the robot to react to the objects by producing the
expected behaviours.

6.3.1. Experimental Scenario 01 (Negative Stimulus):

Rejection Behaviour
If the robot detects either a purple or yellow ball, it refuses to play
and moves the right arm5 toward its torso avoiding contact to
the ball. In parallel, the robot communicates the decision of not
interacting with the ball and asks for a new one. After rejecting
the object, the robot moves back to its initial pose where it waits
for the next iteration.

6.3.2. Experimental Scenario 02 (Positive Stimulus):

Curiosity Behaviour
The green ball represents a positive stimulus and it triggers the
curiosity behaviour which is implemented as requesting the ball.
Since the NAO robot (T14) presents some physical limitations
that makes object grasping a challenge, it verbally asks someone
to put the green ball directly on its hand by moving the right
arm forward and opening the hands. Once the ball is grasped,
the robot moves the arm toward a small container and drops the
green ball in. Then, it moves back to the initial pose and waits for
a new ball to be placed on the mark.

5In this work, as a proof of concept, we focused on moving only the right arm. The

left arm was kept still so it does not compromise the experimental results.

6.4. Environment Integration: NEURON,
NetPyNE, and ROS
The computational model of PD embedded in the humanoid
robot was adapted from Kumaravelu et al. (2016) by Romano
et al. (2020) to make use of NetPyNE (Networks in Python
and NEURON), a tool which provides a simplified interface
to implement multiscale network models in the NEURON
simulation environment (Hines and Carnevale, 2001). The
simulator is a well-known tool that has been extensively
used by neuroscientists due to its high reliability in terms of
computational neuroscience.

The dynamics of the computational model brings a realism
that is fundamental for the purpose of this work. The Hodgkin

and Huxley, and Izhikevich neuron models allow the neurorobot

to reproducemost of the neurocomputational dynamical features

of specific neurons. For instance, the excitatory pattern from

cortical neurons also known as regular spiking (RS). In this way, it

is possible to generate equivalent patterns observed on real data,

collected from animal experimentation, in response to injected

pulses of DC current.
We decided to use the Robot Operating System (ROS) to

create a bridge between NetPyNE and the robot. ROS is a free and

open-source system that has grown out of a novel collaboration
between industry and academia (Cousins, 2010). It provides
mechanisms to communicate between different applications via
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topics and services. Thus, the model implemented on NetPyNE
could be simulated in NEURON and, in parallel, communicate
to other running packages besides the robot. In other to test
the entire environment integration, we used Webots simulator
(Michel, 2004) to run our experiments. Then, we moved to a
real robot.

The neurorobotics model embedded in the robot was designed
in subroutines that can be easily replaced without causing a chain
of changes. In this way, it is more suitable for updates in the
code and even new applications. For example, any module of the
SML can be substituted to adapt to a new application. They have
separate functionalities as described in section 5.2.

6.4.1. Encoding Module
During the task, the robot captures images in high frequency
by the camera attached to its head and transmits them to the
first module (EM). The position of the object and robot are
fixed for simplicity. The section of the images where the object
is expected is then selected and its colour identified using the
OpenCV library. Basically, we used hue values to group the pixels
of the cropped image based on different ranges of colours. Then,
the colour of the object is identified by checking the range which
contains the highest number of pixels.

This information is used as stimulus to activate thalamic
neurons in the BM. We defined two different levels of electrical
stimuli based on the robot’s behaviours (curiosity and rejection).
When the first scenario (section 6.2) is identified, the sensory
neural signal is set to its default stimulation, which is 1.2
mA (Kumaravelu et al., 2016). But, when the second scenario
is spotted, it is updated to 3.5 mA (over stimulation). The
stimulation is maintained until the robot detects a new object.

In this work, since the visual cues identified in this module
are also requested later by the BeM, we decided to propagate
them instead of the raw sensory inputs as presented in Figure 4.
However, in a different and more complex behavioural task, the
BeM might need access to the entire sensory inputs instead of
only the visual cues. That is why we decided to connect the
sensory inputs directly to the BeM in the diagram of the robot
sensorimotor loop, as illustrated on Figure 4.

6.4.2. Brain Module
Inside the BM, the stimuli received by the previous module
(EM) are applied directly to thalamic neurons by modifying
the stimulation parameters via commands of NetPyNE. These
stimuli rapidly propagates the information to the rest of the
network affecting the dynamics of the cortical neurons.

In this context, three features are extracted from cortical
neurons in order to produce the motor stimulation. The first
one is the average of the firing rate (FR) every trial (k). We
calculate it by integrating all the spikes from each cortical neuron
(nspikes) in a window of 1 s (T) and dividing it by the number of
neurons (nneurons).

FRk =
nspikes

Twindow

1

nneurons
(1)

By using this feature, we can analyse the frequency of spikes
produced by cortical neurons instead of focusing on individual
spikes. In parallel, we also use the average and standard deviation
of the interspike intervals (ISIs) as the second and third features.
We calculate the ISIs of one neuron (n) by checking the time (t)
between subsequent action potentials or spikes (i).

Tn
i = tni − tni−1 (2)

The average of ISIs of one neuron brings the probable timing
of spike, or the interval which a new spike is expected, and
the standard deviation of ISIs exploits its temporal coordination
or degree of synchrony. For both features, the average value
among the cortical neurons are calculated. All those properties
are combined as inputs to our DM.

¯ISIs =
1

N

1

I

N
∑

n=1

I
∑

i=1

Tn
i (3)

σISIs =

√

√

√

√

1

N

1

I

N
∑

i=1

I
∑

i=1

(Tn
i − ¯ISIs)2 (4)

Besides that, we used two different properties to evaluate our
model under “parkinsonian” conditions. First, it is known
that parkinsonian brains reveal higher synchronicity among
neighbouring neurons than healthy brains. And, this behaviour
causes a reduction of spike train variability. In order to evaluate
our model using this property, we extracted the spike trains of
cortical neurons after 10 simulations for each stationary thalamic
stimulation and calculated the Coefficient of Variance (CV). The
CV, also known as the neuronal variability, can be estimated
by using the normalised ISIs distributions. On other words, the
standard deviation of ISIs divided by its mean.

CV =
σISIs

¯ISIs
(5)

Basically, the ISIs distribution reveals if some intervals of time
are repeated more often. The repetition of those intervals helped
us to calculate the neuron variability and, as a consequence, to
evaluate the model. Another important property used in this
work was the pathological beta band activity (13–30 Hz). In order
to consider this property, we calculated the Power Spectrum
Density (PSD) of different group of neurons (e.g., cortical
neurons) using both conditions of the model. The parkinsonian
condition should produce an enhanced beta oscillation.

6.4.3. Decoding Module
The Decoding Module (DM), described in section 5.2, receives
signals corresponding to the dynamics of cortical neurons and
translates them into motor stimulation. The robot sensorimotor-
loop was designed to produce smooth movements on the robot’s
arm based on sensory information, therefore we built and trained
this module using data extracted from our computational model
under healthy condition only.
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Two different parts of this module were implemented. First,
we built and trained a Multi-Layer Perceptron (MLP) network to
produce the motor stimulation after three different inputs were
extracted from cortical neurons (average firing rate, average ISIs,
and standard deviation of ISIs). Then, we implemented a simple
smooth filter and a linear function to transform the output data
from our neural network in values that are suitable for the robot,
respecting the operational range in radians of the robot’s joints.

Based on that, a MLP neural network was designed and
trained as the main component of the DM. Overall, the motor
stimulation generated by this module depends only on the
dynamics of cortical neurons. Our MLP was trained using the
data extracted from the computational model under healthy
conditions only.

The main idea was to create a MLP that would inhibit
the central oscillators and thus simulate smooth (or healthy)
robot movements. The resultant movements could be seen
as our “ground truth,” i.e., the most accurate measurement
available of the robot’s smooth (or healthy) movements (Marvel
et al., 2012; Kondermann, 2013). Hence, without retraining
our MLP, we wanted to observe the intervention of the
central oscillators in the robot’s movements after activating the
parkinsonsian condition. In this way, when comparing healthy
and parkinsonian conditions, we expected that only the BG-T-C
dynamics would change.

Burkhard et al. (2002) state that “oscillatory networks generate
a naturally occurring resonance frequency that synchronizes
cerebral function, but through an unknown mechanism, they are
disinhibited or amplified so as to generate PD or ET tremors.”
Therefore, in our initial neurorobotics model, we are assuming
that an altered (PD) basal ganglia may interfere with motor
programmes (produced, for instance, by the cerebellum) by
disinhibiting oscillators that would otherwise not contribute to
motor disruption in a healthy condition.

In this way, we are not decoding motor commands from our
BG-T-C networks, we are instead mimicking the influence of
the BG-T-C network on ongoing networks of oscillators that
interfere with motor control but that haven’t been explicitly
modelled. Thus, in our initial model, in the healthy condition,
regardless of the sensory input, the BG-T-C network should
inhibit the influence of such oscillators (modulation values close
to 0). Then, in the parkinsonian condition, results could be seen
as emergent and non intuitive, because the MLP and all other
structures, apart from the BG-T-C network, remain exactly the
same. This enables us to study the effect of the parkinsonian
condition on the inhibition/disinhibition of the central oscillators
and its impact on motor behaviour.

In the MLP modelling, we selected the regression mode that
could set a predict numeric target instead of creating discrete
classes. We used a collection of data obtained after several
simulations of our computational model in healthy condition
to train the entire network. Since we do not want to reproduce
any abnormal movement on the robot in healthy condition, we
trained the network to produce output values equal to zero. This
would guarantee that the robot final motor commands translated
by the BeM would not be affected by the oscillatory phenomena
produced by the central oscillators.

The neural network chosen as our DM is composed of
three input neurons, two hidden layers with 9 and 6 neurons,
respectively, and one output neuron (Figure 8). All neurons
contain log-sigmoid transfer functions

logsig(n) = 1/(1+ exp(−n)) (6)

except by the output neuron which was designed with a
hyperbolic tangent sigmoid transfer function

tansig(n) = 2/(1+ exp(−2 ∗ n))− 1 (7)

so it could produce positive and negative outputs. Also, three
biases were used to adjust the input data n to our model. The
network was designed and trained using the Shallow Neural
Networks from the Deep Learning toolbox of MATLAB. We
used the Gradient descent backpropagation approach to train our
network with data collected from our BM after a few trials. The
weights generated after our training and the entire architecture
can be found in our repository within the DM application.

Two post-processing techniques, smoothing and
transformation, were necessary before conveying the motor
stimulation to the BeM. Since neural signals are known by their
intense oscillation, we decided to apply a mean filter to the
output of our MLP network. The designed filter consists of a
simple average of five consecutive values (ot , ot−1, · · · , ot−4).

ot =
1

5

4
∑

i=0

ot−i (8)

In this way, only after the fifth output, it is possible to produce the
motor stimulation. This was not an issue since the robot spent
a few seconds bringing all the packages up and setting itself to
its initial pose. Then, a linear mathematical transformation was
necessary to adjust those values to a suitable range for the robot’s
joints in radians.

mst = 15 ∗ abs(ot)− 0.0015 (9)

The two parameters of this linear function were manually
configured before running the experiments on the real robot.

6.4.4. Behavioural Module
The behavioural module selects the robot’s pre-defined
destination poses after translating sensory inputs, motor
stimulation and oscillatory signals to joints trajectories values.
Basically, the robot establishes when each movement should
be triggered by checking the visual cues from the sensory
inputs (positive and negative stimulus) during the task and
combining this information to a state machine (SM). Two
discrete destination poses are established to perform those
behaviours. They are used to generate different movements for
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FIGURE 8 | Illustration of the MLP neural network used as part of our DM. The network contains three input neurons which correspond to the properties extracted

from cortical neurons; three hidden layers with 3, 9, and 6 neurons, respectively; and one output neuron since we designed the network as a regression model.

Log-sigmoid and hyperbolic tangent sigmoid transfer functions were used as presented within the diagrams of the neurons.

the robot as presented in Figure 7. Then, the joints angles in
radians are adjusted based on the emulated signal (es) generated
after the modulation of the oscillatory signal (os) by the motor
stimulation (ms).

ost = sin(π t −
π

2
) (10)

est = mst ∗ ost (11)

Those operations are executed every second (1t = 1s) during the
performance of the task. The oscillatory signal generated from
our Central Oscillators was implemented as a sinusoidal wave
producing alternated peaks (high and low) at each iteration of
the motor loop. Since it is not yet very clear which structures of
the brain compose this oscillatory pattern we implemented it as
an isolated block of the robot sensorimotor loop (Figure 6).

The state machine (sm) selects the robot’s action taking
into account the oscillatory signal from the Central Oscillators
and each joint jk, k ∈ {1, 2, 3, 4}, of the arm is updated
closing the sensorimotor loop. All the four joints (RShoulderRoll,
RElbowRoll, RElbowYaw, RHand) are updated with the same
values from our emulated signal.

jkt = smt + est (12)

In this work, the motor stimulation is responsible to modulate
the oscillatory signals by either suppressing or enhancing the
oscillatory signal at each time step. Following findings from the
literature on motor modulation of oscillatory signals inherent
in the human brain (Burkhard et al., 2002), we designed the
system to suppress it under healthy conditions. As a consequence,
smooth movements can be executed by the robot throughout the
entire task. However, we can not anticipate the robot’s behaviour
under PD conditions. One can expect that once the parkinsonian
condition is on, the robot will not be able to modulate the
inherent oscillatory patterns anymore.

In Figure 9, the state machine designed for our behavioural
task is illustrated in a simplifiedway. There are five different states
which correspond to different moments of the behavioural task.
In the initial state, the robot moves its body to the initial pose

FIGURE 9 | A diagram illustrating the five states of the state machine

developed specifically to perform our behavioural task.

and asks someone to allocate one ball in front of him. Once a
ball is detected, the state is updated to state 1. In this state, the
robot process the sensory inputs in order to recognize the colour
of the ball. If the colour is recognised, the state 2 is activated
and the action related to the visual cue is executed. When the
action completes, the SM moves to State 3 which checks if the
number of repetitions has been completed. If it has not, the state
0 is activated again. Otherwise, the SM moves to state 4, which
moves its body to the final pose and concludes the task.

6.4.5. Module Integration
ROS provides integration with OpenCV, Netpyne/NEURON,
and many other frameworks, libraries, and packages. It is
modular and therefore highly versatile. In this work, it simplified
the communication between the modules described above. Each
module was considered as a different application or node running
in parallel during the entire performance of the task. The
messages carrying important data, like the sensory neural signal
and the motor stimulation, could be transmitted online via topics
and services. Besides that, the sensors and actuators of the robot
could be easily accessed in high frequency without compromising
the task and the dynamics of the BG-C-T system.

7. EXPERIMENTAL RESULTS

In this section, we present the experimental evaluations used to
assess our neurorobot while performing a simple behavioural
task in both conditions of the computational model, healthy
and parkinsonian. Analyses of motor perturbations under the
influence of the central oscillators were made to compare its
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intensity throughout the tasks and while the neurorobot was in
both conditions.

7.1. Robot Behaviour
Each robot behaviour corresponds to a combination of four
different joint angles of the right arm. The joints used
in our behavioural task are “RShoulderRoll,” “RElbowRoll,”
“RElbowYaw,” and “RHand.” Figure 10 shows the dynamics of
each joint during the performance of the entire task for both
conditions of the computational model. As described in section
6.2, there are two different experimental scenarios, the rejection
and curiosity behaviours. Those two scenarios produce different
movements and are represented by different activities in those
joints. Asmentioned previously, the robot acts a few seconds after
the recognition of the object. Because of that, there is a delay on
the change of the angles in all cases. Additionally, the interaction
with the robot was manually executed which caused reactions of
the robot to the same objects not exactly at the same instance
of time but yet close to the experimental scenario presented in
section 6.3.

In both conditions, one can notice the increase in the intensity
of the motor perturbation when the parkinsonian condition is
activated. The motor perturbation, which could be in a sense
analogous to the PD tremor symptom, is reproduced based on
subtle oscillations of the joint angles throughout the task. In
Figure 10, the dotted line for each joint indicates the tremor
pattern that is characteristic in patients diagnosed with PD.
However, the frequency and even the amplitude of the movement
had to be limited to avoid damaging the joints of the robot.
The frequency was adjusted to be the same as the control loop,
which is 1 Hz. In this way, every second, the robot could update
the joints’ angles based on the dynamics of the BeM without
compromising the motors. Also, the amplitude of the tremor
was constrained based on each joint operational range (SoftBank,
2006).

The trajectory of the arm goes through positive and negative
adjustments as already illustrated in Figure 10. During the first
30 s of the experiment, the robot did not interact with any
objects which allowed the arm to keep the same position or set
of angles. In Table 1, the values present the fluctuation of the arm
during this period of time. Since the same values produced by the
modulation process are incorporated to all the joints of the arm,
we can see that the standard deviation only differs between the
condition of the BM. Those two values highlight the disturbance
in the robot’s arm under parkinsonian conditions. By checking
those angles in radians, you could think they may not represent
a significant change in the trajectory of the robot’s arm. But, as
you can see in our experiment (https://youtu.be/KEa_2lG8V5s),
those extra angles in a joint were enough to create the abnormal
movements. Due an increase in the oscillation, themotors needed
to move from more distinct positions in the same period of
time which caused an increase of velocity and acceleration of the
motors.

7.1.1. Experimental Scenario 1: Rejection Behaviour
The scenario 1 was performed two times in this experiment.
First, when the yellow ball was presented to the robot. And, then,

when the purple ball replaced the green one. During the rejection
behaviour, the robot moves the right arm close to its torso for a
few seconds and, then, returns it to the initial pose. It is visible
the execution of this behaviour by the movements of the first two
joints in Figure 10 after the first stimulus. They rapidly increase
and maintain the angles for a few seconds. The “RElbowYaw”
slightly changes its angle and “RHand” keeps in zero whichmeans
close hands. When the second negative stimuli (purple ball) is
presented, it is possible to see the same behaviour but starting
from different states of the joints.

7.1.2. Experimental Scenario 2: Curiosity Behaviour
The second scenario has a completely different dynamics. The
robot moves its arm forward, open the hands and wait a few
seconds for someone to put the ball on its hand. Then, it grasps
and drops the ball into the small container. The self grasping
using NAO robot is an extra challenge out of the scope of this
work. The curiosity behaviour can be easily observed in Figure 10
after the positive stimulus. The first three joints indicate the
movement of the arm forward. The “RHand” opens the hand to
hold the object. And, the movement which permit the dropping
of the ball can be visualised by the “RElbowYaw” change of angle
at 70 s.

7.2. The Abnormal Motor Stimulation and
the Tremor Symptom
The computational model in parkinsonian condition is
characterised by the depletion of striatal DA. As explained
in section 3, it leads to a functional imbalance of BG circuitry
which hampers movement execution. In our experiments, after
embedding the model under those conditions in a humanoid
robot engaged in a behavioural task, the intensity of the tremor
symptom was enhanced.

In our SML, the DM module produces motor stimulation
responsible to modulate the oscillatory signal based only
on three different input data (average firing rate, average
of ISIs, and standard deviation of ISIs) extracted from
cortical neurons. For more details about the DM, please
consider reading section 6.4.3. Figure 11A shows those inputs
plotted after two experiments, one for each condition of the
model. The model under parkinsonian conditions produced
a higher average firing rate which means more spikes were
generated per second (1 Hz). Because of that, there was
a reduction in the average of ISIs. In other words, the
timing between spikes became shorter. Besides that, the
third graphic in Figure 11A shows a slight reduction in
synchronicity which means the spikes were generated in a
more aleatory manner. During the task, different objects were
presented to the robot which produced different levels of
excitation in the cortical neurons. For both conditions, the
firing rates increased after a positive stimulus which directly
produced a certain reduction on the interval between spikes.
However, the synchronicity of the neurons seemed to not be
affected much.

The distinguishable cortical dynamics allows our trained
network to produce different outputs based on the condition
of the model. Figure 11B shows the response of the MLP
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FIGURE 10 | Dynamics of four different joints of the right arm of the robot during the performance of the task. Both conditions of the computational model were

tested, healthy and parkinsonian. The oscillation under the parkinsonian condition indicates the production of the tremor symptom in the robot’s arm. A small window

was created in between 20 and 30 s of each graphic to zoom in on both signals.

TABLE 1 | The fluctuation of the joints through the first 30 s of the experiment.

Joints Conditions Operational range (rad) Mean angle (rad) Standard deviation (rad)

RShoulderRoll H −2.0857 to 2.085 −0.7975 0.0145

PD −2.0857 to 2.085 −0.7958 0.1260

RElbowRoll H 0.0349 to 1.5446 0.8325 0.0145

PD 0.0349 to 1.5446 0.8342 0.1260

RElbowYaw H −2.0857 to 2.0857 0.2525 0.0145

PD −2.0857 to 2.0857 0.2542 0.1260

RHand H Open and Close 0.0025 0.0145

PD Open and Close 0.0042 0.1260

For each joint, it was calculated the mean and standard deviation of its angle in radians. The operational range is also given as a comparative of the robot’s maximum and minimum

capacity of motion.

network under both conditions. As it can be seen, abnormal
values emerged during the performance of the task under
parkinsonian condition. We performed a simple filtering process
on both output signals since neural activities are known by
their intense oscillation. In this way, the second graphic shows
clearly the different patterns that was generated. Under healthy
conditions, the signal oscillates around the value zero which
represents low motor stimulation. Meanwhile, the parkinsonian
condition brings slightly higher values. Then, we applied a
linear transformation as explained in section 6.4.3 to make the
motor stimulation suitable for the robot. The generated output

represents the motor stimulation in radians produced by the DM
during the performance of the task.

As the final step, the motor stimulation modulate the
oscillatory signal, generating the emulated signal (Figure 11C),
which then tune the angles of the joints defined by our state
machine. Basically, for every iteration of the motor loop, a motor
stimulus establish the intensity of the motor noise and the central
oscillators its signal before adjusting the trajectory of the robot’s
arm as observed in Figure 10. The tremor symptom is a response
from this modulation process between the motor stimulation and
the central oscillators.
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FIGURE 11 | In (A), inputs of the MLP network—average firing rate (Equation 1), average of ISIs (Equation 3), and standard deviation of ISIs (Equation 4) of cortical

neurons) during the performance of the task. Two experiments following the same sequence of balls (yellow, green, and purple) were executed, one for each condition

of the model. The variation of those stimulus can be easily observed in those graphics. (B) Shows the response of the trained MLP network (Figure 8) to the dynamic

of cortical neurons under both conditions of the model. A smoothing filter (Equation 8) is applied to the output of the MLP network in order to reduce the oscillation that

is common on neural signals. Then, a linear transformation (Equation 9) adjust the value to proper ranges allowing the disturbance to be visible during the execution of

the task without compromising the motors of the robot. In (C), the graphic shows the output of the modulation process which corresponds the emulated signal.
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8. DISCUSSION

In this section, we bring some discussions related to the model
dynamics, the response of the BG-T-C system to different
thalamic stimulation, and other important marks about our SML
and PD.

8.1. The Model Dynamics
In our experiments, the colour of the object used to interact
with the robot triggers different thalamic stimulus which directly
affect the dynamics of cortical neurons (Figure 12). When the
green ball is sensed by the robot after a negative or non stimulus
the cortical neurons intensify the spiking generation, and the
opposite happens when a negative stimuli is presented after a
positive one.

By simulating the entire network, we could analyse the
dynamics of the robot sensorimotor loop. In Figure 13, the link
between the average firing rates of neurons from TH and CTX
during the execution of our behavioural task is clear. Every
time neurons from TH become more excited, more glutamate
is released stimulating even more the motor cortex. And, when
TH is inhibited, a reduction of excitation on motor CTX can be
also observed. Some other features of the model could be also
recognised. For instance, after injecting extra DC current directly
to the membrane of the thalamic neurons, there was a significant
increase in the number of spikes per second in that region of the
brain. In this sense, an external current applied on TH, regardless
of the network being on healthy or parkinsonian condition,
contributes to an increase in thalamic firing rate (please refer
to section 2.5 from Kumaravelu et al., 2016 for the equations).
However, we emphasise that the firing rate in each region
results from nonlinear effects. Additionally, due to a cortical
network composite of inhibitory (Fast-Spiking Interneurons)
and excitatory (Regular-Spiking) neurons, the firing rates of the
cortical neurons were considerably lower than the ones from
TH. Finally, Kumaravelu et al. (2016) adjusted their model based
on data from rats, which shows a higher thalamic firing rate
compared to that from CTX. In fact, this is true for primates as
well (Van Albada and Robinson, 2009).

Since the initial state of the network does not incorporate
external stimulus to TH, a low firing rate is characteristic on both
conditions of the computational model. After the first stimuli
(experimental scenario 1), the CTX under both conditions kept
the average firing rate low since the object (yellow ball) was
not excitatory to the robot. It is important to mention that
the external stimulus are kept until a new object is placed in
front of the robot. Consequently, when the first positive stimulus
(experimental scenario 2) was presented, an abrupt increase
of the firing rate was detected. For a few seconds, the robot
interacted with the green ball, maintaining the high rate. Then,
the last object reduced the average firing rate to its initial low level
since the object (purple ball) was not excitatory to the robot.

8.2. The Thalamic Stimulation
Since the neurorobot depends on different thalamic stimulation
to perform the task, we decided to evaluate the injection of a set
of different DC currents on thalamic neurons in order to avoid

selecting one that could compromise the biological plausibility of
the entire computational model. Hence, we believe it is important
to elucidate the effect of different thalamic stimulation over
cortical neurons before discussing the results about the emerged
parkinsonian symptom in the robot.

Steriade et al. (1998) once investigated the interplay between
those neurons in in vivo after repetitive stimuli at around 10
Hz. Based on that, it is known that different thalamic stimuli
provoke different responses on cortical neurons. A recent work
made a similar experiment but in a PD scope. Tucker et al.
(2021) analysed how motor thalamic DBS alters cortical activity
by testing different stimulation frequencies, current amplitudes
and pulse widths in order to reduce motor symptoms in rats.
The authors observed an increase of spike frequencies of cortical
neurons after using DBS.

In this work, we tested different thalamic stimuli in our
BG-T-C circuitry. Figure 14 shows the cortical response to
the increase of thalamic stimulation. Since the computational
model was designed with excitatory projections from TH to
CTX, we expected a proportional increase of the average
firing rate in both conditions of the model. However, the
model demonstrated a non-linear proportionality within two
ranges of thalamic stimulation. For instance, a noticeable
peak indicates that the model changes the cortical dynamics
after reaching 3.2 mA. Then, it rapidly reduces the average
firing rate, reaching zero at 4.6 mA approximately. Besides
that, a slight increase of spikes can be observed when the
parkinsonian condition is activated for several ranges of
thalamic stimuli.

Based on that, we choose different pairs of DC currents
and ran some analyses. We selected values that could respect
PD features and generate distinguishable dynamics on cortical
neurons. We assessed the model following some PD features like
spike train variability of neighbouring neurons and anomalous
beta oscillation. Then, we decided to inject 1.2 mA of DC current
on thalamic neurons every time the robot sense a negative
stimulus and 3.5 mA for the positive stimulus.

In order to evaluate the variability, we built histograms of ISIs
of cortical neurons under different thalamic stimulation using
both conditions of the model. Figure 15A shows the resulting
non-symmetric distributions. The ISI values produced right-
skewed distributions that are characterised as having a higher
concentration on its left side of the curve and a longer tail on
the other side. The intervals with a higher concentration can be
visualised around 200 ms for the 1.2 mA scenario and 125 ms
for the 3.5 mA scenario. In both cases, under the parkinsonian
condition, the peaks indicate a clear reduction in variability.
On other words, the neurons produce more often spikes with
same intervals.

Another characteristic that can be observed from both
distributions is the increase of the number of ISIs. As exhibited
in Figure 14, 3.5 mA of thalamic current generates more
spikes on cortical neurons. As a consequence, it reveals more
intervals between spikes which obviously increases the number
of ISIs. Because of this feature, it can be observed that one
peak reach values close to 4,000 ISIs while the other goes
over 18,000. Despite this noticeable variation, the graphics
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FIGURE 12 | The membrane potential of a single cortical neuron after different stimulus being applied to thalamic neurons. In this experiment, we used the same

sequence of stimulus in both conditions of the model. The abrupt change of firing spikes can be easily observed in the graphics.

maintains the shape of the distributions in both scenarios
and conditions.

In order to quantify the variability, the normalised version of
the standard deviation of ISIs known as CVwas used. Figure 15B
makes evident the reduction of variability of cortical neurons
after activating the parkinsonian condition in both scenarios.
This feature relates to an increase of synchronicity between
neighbouring neurons.

The other PD feature investigated in this work was the
enhance of beta activity in the corticothalamic-basal ganglia
network. As it can be seen in Figure 15C, the beta band was
enhanced after activating the parkinsonian condition of the
model in both scenarios (under 1.2 and 3.5 mA of thalamic
stimulation). The peaks in both graphics show a significant
increase of activity.

8.3. Final Considerations
The embodiment of autonomous neural systems that are based
on the structure of animal brains is yet a young field. However,
it has already brought important discussions on neural models
and their applications. It permits the conduction of experiments
in a repeatable manner without bringing any ethical constraint.
As discussed in section 4, only a few works have embedded
computational models of neural disorders in robots. We could
observe that the majority of the researches in neurorobotics focus
on common robotics problems, like navigation and decision-
making, instead of building tools to support neuroscientists with
their findings on neural disorders.

In this work, we embedded a composite model of the BG-
T-C system in a real humanoid robot to perform movements
based on sensory information. The realistic biophysical model
allowed the robot to replicate the interplay between neurons
from different regions of the brain during the performance of
the task without demanding a high computational power. With
our neurorobot, we could stimulate thalamic neurons and analyse
its response over the entire model using different approaches,
like mean firing rate, spike train variability, and even beta
oscillation activity. Several experiments were executed without
compromising our robot and the model. We choose thalamic
neurons to be injected with external DC currents since they
control the flow of information that are transmitted to cortical
neurons. However, some other works have decided to explore
other regions of the brain (Kim et al., 2017; Mulcahy et al., 2020).
In our experiments, the robot was able to sense the environment,
process the information and act respecting the same dynamics
observed on data sets from animal’s brains.

When activated the “parkinsonian” condition, one of the
PD symptoms was reproduced during the performance of the
task. The combination of different frameworks and libraries
made possible to embed the PD model in a robot engaged in a
behavioural task. In this way, the sensory information collected
from the environment had an important role in our SML which
allowed the robot to take its action with incorporated motor
noise. Since this work represents the first step toward a realistic
neurorobotics model of PD, the main idea was to develop those
components in a modulated way, allowing future replacements.
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FIGURE 13 | Average firing rate comparison between neurons from CTX and TH during the performance of one entire task. The average firing rate is calculated every

second by integrating the spikes from those regions and dividing it by the number of neurons. Three different stimuli were presented to the robot in different moments

of the task. The sequence of the colour of the balls in both conditions were yellow (30 s), green (55 s), and purple (75 s). Each graphic shows the exact moment of the

transition from a negative to a positive stimuli and vice versa. In those cases, the firing rate rapidly increases and decreases, respectively. The first stimulus maintain

the low firing rate since it does not bring any curiosity for the robot. Note that thalamic neurons have a higher firing rate compared to cortical neurons.

FIGURE 14 | Effect of different thalamic stimulation over cortical neurons. For

each thalamic stimulation, we calculated the average firing rate of cortical

neurons during an entire experiment and its standard deviation.

Five different modules were created. Simple updates can
be made on each module and, even, a complete different
implementation. However, the communication betweenmodules

must be respected in order to maintain the data flow through
our SML. ROS made possible not only the communication
between those applications but also the interaction with the
robot’s hardware.

It is important to highlight that for both conditions, healthy
and parkinsonian, the entire SML used was the same except
by the conditions applied to the BM, and the motor stimuli
generated was constantly used to modulate the oscillatory signal
to incorporate different intensities of motor tremor in the
robot motion. However, the parkinsonian condition produces
values that cause more perturbation to the robot’s upper limbs
movement, while the healthy condition produces minimum-
variance trajectory or unnoticeable tremor similar to what
happens in healthy animals (Harris and Wolpert, 1998). Hence,
the major change between the conditions of our neurorobotics
model is the amplitude of the tremor.

This research produced a novel tool that can be used in
several contexts, not only PD. The computational model of PD
represent the biophysical state of an entire SML. Each module
designed within this loop can be modified and adapted to
different scenarios and even completely different applications.
Neuroscientists could generate new hypotheses relate to other
neural disorder that is involved to the BG-T-C system. And,
even use the model to understand the dynamics of those neurons
respecting the different motor pathways.
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FIGURE 15 | In (A), histograms of ISIs from simulations under different thalamic stimulation (1.2 and 3.5 mA) in both conditions of the model. The range for each

histogram was adapted since a higher thalamic stimulation increases the neuronal activity from CTX, producing even more spikes. A higher concentration of the same

intervals between spikes indicate the reduction of variability when the parkinsonian condition is activated in both scenarios. (B) Shows the coefficient of Variance of

cortical neurons after two thalamic stimulation. The variability was tested in both scenarios for both conditions of the model. The box plots show a reduction of

variability when the parkinsonian condition is activated. It also shows a bigger concentration of ISI values. (C) Exhibits Power Spectrum Density (PSD) of cortical

neurons under 1.2 and 3.5 mA of thalamic stimulation. Both conditions of the model were tested. The green area indicates the beta band range (13–30 Hz). The

peaks within the range shows the enhance in beta activity detected after activating the parkinsonian condition.

Prescott et al. (2006) once questioned which would be
the most suitable interpretation of the inputs and output of
computational models of the brain. Authors explain that is
common to associate “sensory” signals as input and “motor”
signals as output of those models but it might be not the

most appropriate representation. We are searching for a more
biologically plausible mechanism to coordinate movements
in a robot.

In neuroscience, some works investigate the mechanical
properties of muscles (Harris and Wolpert, 1998). They bring
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interesting research questions like how trajectories of arm
movements can be performed smoothly and how much control
the central nervous system has in this scenario. By using the same
theory of control systems, we assume there is an autonomous
mechanism responsible for optimising the integration of those
movements. For instance, a mechanism capable of generating the
correct amount of stimulus for each muscle in small instances of
time during the entire trajectory. In this context, we will adapt
our SML to new behavioural tasks that will allow us to focus
more on the motion of the arm. The BM will be evolved with
new components, a novel DM will be designed and implemented
allowing the reproduction of the motor pathways between brain
and muscles, and a new BeM will allow the execution of more
complex tasks.

Another point that is important to discuss is the level of
realism of the humanoid robots used in our experiments. Since
a more realistic DM will be built, it will be important to move
the experiments to a more complex scenario where the robot
can reproduce movements that resemble more humans. In this
way, we will use the iCub robot instead of keeping using the
NAO robot for the upcoming experiments. Movements that are
commonly used in therapy sessions with PD patients will be
replicated by the iCub robot. And this task will allow us to asses
our model by comparing its movements to data collected from
real patients under same activities.

Finally, the origin of the PD tremor symptom is yet elusive.
Many hypotheses have been created by different research groups
but no consensus is in sight. By finding how this neural disorder
is triggered and developed, it improves the chances of 1 day
finding the cure. Here, we investigated the BG-C-T system
and observed the cortical neurons dynamics through different
thalamic stimulation and different conditions of the model. The
emerged symptom was a result of a combination of different
properties extracted from cortical neurons and the oscillatory
signal. It might be a naive approach initially. But this is only our
first step toward the PD neurorobotics model. We understand
the complexity of this problem and we hope that our research
outcome might become a new tool for neuroscientists in their
further works.

9. CONCLUDING REMARKS AND FUTURE
WORK

In this work, we present an initial neurorobotics model of
Parkinson’s Disease (Neuro4PD). The proposed model showed
that it is possible to reproduce motor movements with different
levels of perturbation based mainly on the dynamics of the cortex
and the modulation of oscillatory phenomena inherent in the
human brain, both in healthy and parkinsonian conditions.

It was possible to observe that the perturbation on the
movement can be in a sense analogous to the tremor symptom,
that is characteristic on PD patients. Our behavioural task made
it possible for us to focus more on the aspects of PD instead of
motor control. However, the robot sensorimotor loop is yet a
simple representation of how the nervous system interacts with
the upper limbs.

The Neuro4PD is a neurorobotics model that represents a
new platform with a strong potential for numerous applications.
For instance, it can be used to shed light into PD research and
also to support investigation on the BG-C-T circuitry within
a sensorimotor loop. Other models could also be incorporated
to the circuitry allowing others functionalities to be studied.
Moreover, a representation of the cerebellum and amygdala
could be linked to the model in order to incorporate the
concept of memory. As a consequence, even more complex
behavioural tasks could be explored in this context and also other
neural disorders.

Future work involves moving to a computational model of
the brain that is more closer to the human brain in terms of
anatomy and features of PD. In this work, we used a model that
was built using data from a rat brain after an unilateral infusion of
the neurotoxin 6-hydroxydopamine (6-OHDA). There are some
similarities within the sensorimotor loop of rats and humans
but better representations can be found on other species. For
instance, primates sharemore genetic similarities to humans. Not
only the anatomy of the brain but also the neuropathophysiology
of PD. We believe that a more realistic computational model of
the brain based on primates will improve the realism of our work
and increase the contributions to our community (Ranieri et al.,
2020).

Another natural follow-up to our work is to enhance motor
control by directly decoding motor commands from cortical
activity, possibly including different striatal inputs related to
action-selection mechanisms. This improved approach would
coexist with our current model, given that they relate to different
aspects of motor control.

Overall, by further understanding the interplay between
neural dynamics, physical embodiment and environmental
factors, we believe that even more complex brain-based robots
could be developed unveiling new robot applications based on
recent neuroscience findings.
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