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Deciphering Dynamical 
nonlinearities in Short time Series 
Using Recurrent neural networks
Radhakrishnan nagarajan

Surrogate testing techniques have been used widely to investigate the presence of dynamical 
nonlinearities, an essential ingredient of deterministic chaotic processes. traditional surrogate testing 
subscribes to statistical hypothesis testing and investigates potential differences in discriminant 
statistics between the given empirical sample and its surrogate counterparts. the choice and estimation 
of the discriminant statistics can be challenging across short time series. Also, conclusion based on a 
single empirical sample is an inherent limitation. the present study proposes a recurrent neural network 
classification framework that uses the raw time series obviating the need for discriminant statistic 
while accommodating multiple time series realizations for enhanced generalizability of the findings. 
the results are demonstrated on short time series with lengths (L = 32, 64, 128) from continuous 
and discrete dynamical systems in chaotic regimes, nonlinear transform of linearly correlated noise 
and experimental data. Accuracy of the classifier is shown to be markedly higher than ≫50% for the 
processes in chaotic regimes whereas those of nonlinearly correlated noise were around ~50% similar 
to that of random guess from a one-sample binomial test. these results are promising and elucidate 
the usefulness of the proposed framework in identifying potential dynamical nonlinearities from short 
experimental time series.

Time series data can be realized by discretizing a continuous process in amplitude and time. Discretization in 
amplitude is a result of quantization whereas discretization in time can be achieved using an optimal sampling 
frequency (e.g. Nyquist rate)1 for certain class of processes. Understanding the correlation structure is fun-
damental to time series analysis and can provide critical insights into its generative mechanism. On a related 
note, optimal parameters of a linearly correlated processes such as auto-regressive process can be estimated 
faithfully from their auto-correlation function (Yule-Walker equations)1. Auto-correlation in turn is related to 
their power-spectral density representing the distribution of the power across the various frequencies by the 
Wiener-Khintchine theorem1. Parametric as well as non-parametric approaches have been used widely for spec-
tral estimation. Of interest is to note that non-parametric approaches such as subspace decomposition (Pisarenko 
Harmonic Decomposition)1 estimate the dominant frequencies by eigen-decomposition of the corresponding 
Toeplitz matrix whose elements are essentially the auto-correlation function. On the other hand, correlation 
signatures in a given time series need not necessarily be linear. Nonlinear correlations can arise as a result of 
static nonlinearities as well as dynamical nonlinearities. Static nonlinearities are often attributed to the transfer 
function of a measurement device (e.g. sensor) that maps an analog or continuous process onto digital data. In 
contrast, dynamical nonlinearities such as those from nonlinear deterministic systems are a result of nonlin-
ear coupling and can exhibit a wide-range of intricate behaviors including deterministic chaos2–8. Identifying 
chaos can be helpful in developing suitable approaches for their control9,10. Chaos has also been shown to have 
a wide-range of applications11. Break down in dynamical nonlinearities have also been shown to discriminate 
health and disease3. It is important to note that spectral analysis while useful for investigating narrow-band pro-
cesses can be singularly unhelpful in adequately describing chaotic processes as they exhibit a broad-band spec-
trum similar to that of noise12. On a related note, linear filtering used widely to minimize the effect of noise have 
been shown to introduce marked distortion of the phase-space geometry of time series from chaotic systems13. 
Takens embedding procedure14,15 provided an elegant way to reconstruct the multi-dimensional phase-space rep-
resentation of nonlinear dynamical systems from their univariate time series representation using an appropriate 
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time delay and embedding dimension15,16. It was perhaps one of the primary drivers in investigating the presence 
of deterministic chaos from time series realizations. Subsequently, an array of approaches with ability to provide 
insight into the generative mechanism behind a given time series under the broad theme “surrogate testing” were 
proposed. Surrogate testing is similar to statistical resampling techniques17 and used widely to investigate the 
presence of dynamical nonlinearities in experimental time series18–25. On a related note, dynamical nonlinearities 
are an essential ingredient of deterministic chaotic processes. There have been several noteworthy contributions 
to surrogate testing from the statistical physics community26–33 summarized in recent reviews27,34.

Essential ingredients of classical surrogate testing include (a) an empirical time series sample, (b) null hypoth-
esis, (c) discriminant statistic or dynamical invariant, (d) surrogate generation algorithm and (e) a statistical test. 
The empirical sample has traditionally been a single time series realization from the given system of interest. 
The null hypothesis assumes the generative mechanism of the given empirical sample. Surrogate algorithms are 
designed to generate time series realizations (i.e. surrogates) from the given empirical sample retaining critical 
properties that align with the null hypothesis. For these reasons, surrogates are also regarded as constrained 
randomized realizations27,35. Several surrogate generation algorithms have been proposed in literature. These 
include (a) Random Shuffled Surrogates, (b) Phase-Randomized Surrogates (Fourier Transform Surrogates, 
FT)26, (c) Amplitude Adjusted Fourier Transform Surrogates (AAFT) and (d) Iterated Amplitude Adjusted 
Fourier Transform (IAAFT)26–28. Each of these surrogate algorithms addresses a particular null hypothesis. 
Random shuffled surrogate investigates whether the given empirical sample is uncorrelated noise and retains 
the probability distribution of the empirical sample in the surrogate realization destroying the correlation in the 
empirical sample. Thus any discriminant statistic sensitive to the correlation in the given data can be used as a 
discriminant statistic. FT surrogates preserve the power-spectrum of the given empirical sample in the surro-
gate realizations by constrained randomization of the phases. As noted earlier, preserving the power-spectrum 
is sufficient to determine the optimal parameters of linearly correlated processes. FT surrogates can be used 
to investigate the presence of nonlinear correlation in the given empirical sample but does not provide insight 
into the nature of nonlinearity. Thus any discriminant statistic sensitive to nonlinear correlations is a reasonable 
choice for FT surrogates. Subsequently, AAFT surrogates26 were proposed in order to address the null hypoth-
esis that the given process is a static, invertible nonlinear transform of a linearly correlated noise by following a 
phase-randomization and rank ordering procedure. IAAFT surrogates28 has been shown to preserve the spectrum 
as well as the probability distribution of the given empirical sample in the surrogate realization while overcoming 
the flatness bias prevalent in AAFT surrogates. The primary objective of IAAFT surrogates was to identify poten-
tial dynamical nonlinearities in the given time series. Thus any discriminant statistic sensitive to dynamical non-
linearities (e.g. dynamical invariants) can be used for AAFT and IAAFT surrogates. Several additional surrogate 
algorithms have also been proposed since then34. However, surrogates in the present study are generated using 
the IAAFT surrogates. Finally, parametric and non-parametric statistical tests were proposed to assess significant 
difference in the discriminant statistic estimates between the empirical sample and the surrogate counterparts27.

Traditional surrogate testing approaches while helpful have inherent limitations. They primarily rely on sta-
tistical comparison of discriminant statistic estimates on a single representative sample (i.e. empirical sample) 
to those obtained on their corresponding surrogate realizations, Fig. 1a. While the choice of empirical sample 
can be attributed to implicit ergodic assumptions36, generating long time series so as to enable robust estimation 
of dynamical invariants and discriminant statistics can be especially challenging in experimental settings as it 
demands controlling a number of factors. Experimental time series such as those from physiological systems have 
been especially known to exhibit variations between subjects within a given disease group or cohort. These in turn 
encourages accommodating multiple realizations as opposed to a single empirical sample in the surrogate testing 
framework for enhanced generalizability of the findings. In such a scenario, each realization can be paired with 
the corresponding surrogate realization, Fig. 1b. As in the case of single empirical sample, if the multiple time 
series realizations are sufficiently long then it might be possible to statistically compare the distribution of discri-
minant statistic estimates on the given cohort to those estimated on its paired surrogate realizations addressing 
the null hypothesis that there is no significant difference in the discriminant estimates between the cohort and 
its surrogate counterpart, Fig. 1b. The present study takes a different tack to the classical surrogate testing. Its 
significance can be attributed to the following reasons. (a) The present study proposes a binary classification 
framework that uses a simple recurrent neural network with the raw time series as the input obviating the need to 
choose or estimate discriminant statistics or dynamical invariants. This is especially helpful across small lengths 
such as those discussed in the present study (L = 32, 64, 128) where estimation of discriminant statistics37 can be 
challenging and unreliable. (b) It poses the classical statistical surrogate testing Fig. 1a,b, as a binary classification 
problem, Fig. 1c, using recurrent neural networks (RNN), Fig. 2, where the two classes of interest correspond 
to the multiple time series realizations from a given cohort and their corresponding IAAFT surrogate counter-
parts. Generalizability of the proposed approach is established by demonstrating the classifier performance on 
an independent validation data. (c) The results are demonstrated on short time series of lengths (L = 32, 64, 128) 
generated by nonlinear deterministic processes in chaotic regimes, nonlinear transforms of linearly correlated 
noise with varying parameters as well as experimental time series data.

Results
Accuracy of the binary classification framework was investigated across nonlinear deterministic, experimental 
time series and nonlinear transform of linearly correlated noise (Sec. Methods) with lengths (L = 32, 64, 128), 
Fig. 3. Only length (L = 128) was considered for the epileptic seizure in order to faithfully represent at least a few 
cycles of the seizure dynamics. Convergence of RNN training and validation loss for representative time series 
realizations is shown in Fig. 4. Accuracy of the test data as a function of the epochs for each of these time series 
are shown in Figs 5–7 respectively. Representative accuracies for each of these data sets chosen from the plateau 
region of the plots where the training and validation loss were consistently low are enclosed in Table 1.
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Figure 1. Classical surrogate testing approach on comparing the discriminant statistic estimate of a single 
empirical sample (black) to those obtained on their IAAFT surrogates (white) is shown in (a). Statistical 
hypothesis testing on comparing the discriminant statistic estimates of multiple realizations (shades of black) 
representing potential variation between them to those of its paired IAAFT surrogates (shades of white) is 
shown in (b). A binary classification framework using the raw time series from multiple realizations (shades 
of black) and those of its IAAFT surrogate counterpart (shades of white) is shown in (c). The dotted line in (c) 
represents the decision boundary of the classifier separating the multiple realizations (Class A) and its IAAFT 
surrogate counterparts (Class B). Performance and generalizability is subsequently demonstrated by the 
predictive ability of the classifier on an independent set of test samples.

Figure 2. RNN cell unrolled in time representing the mapping between the input It, state of the network St and 
the output Ot through Wo, Uo and bo is shown in (a). The activation function and the bias term are represented 
by σ and bo respectively. The labels of the empirical sample xt and the IAAFT surrogate realizations yt at time t 
are represented by 0 and 1 respectively. A typical RNN architecture comprising of multiple RNN Cells in the 
hidden layer along with the input and output layers is shown in (b).

https://doi.org/10.1038/s41598-019-50625-y
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nonlinear deterministic process. For time series generated from discrete and continuous nonlinear 
deterministic systems (Logistic, Henon, Lorenz and Rossler, Sec. Methods), the accuracy of the classifier showed 
a marked transition towards larger values from 0.5 as a function of the epochs, Fig. 5. A one-sample binomial 
test rejected the null that the accuracy was similar to that of random guess (0.5) at a significance level (α = 0.05), 
Table 1. These results were consistently observed across the three sample sizes (L = 32, 64, 128) and across the data 
sets demonstrating the classifiers ability to discern dynamical nonlinearities and their IAAFT surrogate counter-
parts. The number of neurons in the hidden layer of the RNN was fixed at (N = 10). The RNN parameters (Sec. 
Methods) were fixed across these data sets, Table 1.

experimental time series. Experimental time series generated using Chua’s circuits (L = 32, 64, 128) and 
Santa Fe Laser Time Series (L = 32, 64, 128) in chaotic regimes (Sec. Methods) exhibited accuracies much greater 
than 0.5, Fig. 6, as observed in the case of the nonlinear deterministic processes, Fig. 5. A one-sample binomial 
test rejected the null hypothesis that the representative accuracy was similar to that of random guess (0.5) at a 
significance level (α = 0.05), Table 1. For the time series generated from Chua’s circuits and the Santa Fe laser 
time series, the number of neurons in the hidden layer of the RNN were chosen as 20 for (L = 32, 64) and 25 
for (L = 128), Table 1. All other parameters of the RNN were retained as discussed in (Sec. Methods). Three 
representative EEG signals of lengths (L = 128) during seizure from a recent study3 were reinvestigated using the 
proposed approach. Unlike Chua’s circuits and Santa Fe time series, it is important to note that the underlying 
process generating the EEG signals during seizures is unknown. However, several studies have investigated non-
linear dynamical aspects of seizures and the evolution of characteristic synchronization patterns accompanying 
seizures38,39. The accuracy of the classifier as a function of the epoch exhibited a marked transition from 0.5 for the 
EEG. A one-sample binomial test rejected the null that the representative accuracy was similar to that of random 
guess (0.5) at a significance level (α = 0.05), Table 1. The number of neurons in the hidden layer of the RNN was 
fixed at (N = 20) for the three EEG signals, Fig. 6. All other parameters of the RNN were retained as discussed in 
(Sec. Methods).

Figure 3. Representative time series realizations x(t) of length (L = 128) as a function of time t for nonlinear 
deterministic processes (top), nonlinear transform of correlated noise (middle) and experimental time series 
(bottom) is shown. The top row represents nonlinear deterministic processes in chaotic regimes (Logistic Map, 
Lorenz Attractor, Henon Map, Rossler Attractor). Middle row represents nonlinear transform of linearly 
correlated noise with parameters (α = 0.2, 0.4, 0.6 and 0.8). The bottom row represents time series realizations 
from experimental systems in chaotic regimes (Chua’s Circuits, Santa Fe Laser) and EEG data during epileptic 
seizure.
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nonlinear transform of linearly correlated noise. Time series generated from a static nonlinear trans-
form of linearly correlated noise28 (Sec. Methods) were investigated with varying process parameters (α = 0.2, 0.4, 
0.6, 0.8) in the stationary regime, Fig. 7. Unlike the case of nonlinear deterministic chaos, accuracy estimates from 

Figure 4. Training (solid line) and validation loss (dotted lines) of four representative time series (Logistic Map, 
Henon Map, EEG and Chua’s Circuits) with length (L = 128) as a function of the epochs is shown.

Figure 5. Accuracy of the classifier for the chaotic time series data generated for discrete and continuous 
dynamical systems (Logistic Map, Lorenz System, Henon Map, Rossler System) as a function of the number of 
epochs for lengths (L = 32, 64 and 128) is shown in each of the rows. The horizontal solid line corresponds to 
accuracy 50% characteristic of random guess and shown as a reference in each of the subplots.

https://doi.org/10.1038/s41598-019-50625-y
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the RNN classification framework did not show an appreciable change from that of random guess (0.5), Fig. 7 as 
expected, indicating that the properties of the given data are not significantly different from those of their IAAFT 
surrogate counterparts. A one-sample binomial test did not reject the null that the representative accuracy was 
similar to that of random guess (0.5) at a significance level (α = 0.05), Table 1. These results were consistent across 
the different process parameters α = . . . .( 0 2, 0 4, 0 6, 0 8) and lengths (L = 32, 64, 128). The number of neurons in 
the hidden layer of the RNN were fixed at (N = 10) similar to that of the nonlinear deterministic processes. Any 
further increase in the number of neurons in the hidden layer resulted in overfitting like behavior accompanied 

Time Series N = 32 N = 64 N = 128

Nonlinear Deterministic Processes

Logistic (10 neurons) 0.98* 0.97* 0.96*

Henon (10 neurons) 0.93* 0.96* 0.87*

Lorenz (10 neurons) 0.98* 0.98* 0.97*

Rossler (10 neurons) 0.94* 0.82* 0.83*

Experimental Time Series Data

Santa Fe Laser Time Series 0.94* (20 neurons) 0.84* (20 neurons) 0.91* (25 neurons)

   Chua’s Oscillator 0.82* (20 neurons) 0.92* (20 neurons) 0.98* (25 neurons)

   Epileptic Seizure 1 0.95* (20 neurons)

   Epileptic Seizure 2 0.95* (20 neurons)

   Epileptic Seizure 3 0.98* (20 neurons)

Nonlinearly Correlated Noise

(α = 0.2) (10 neurons) 0.53 0.48 0.52

(α = 0.4) (10 neurons) 0.49 0.50 0.51

(α = 0.6) (10 neurons) 0.51 0.46 0.49

(α = 0.8) (10 neurons) 0.49 0.53 0.50

Table 1. Classification accuracies for nonlinear deterministic processes in chaotic regimes, experimental time 
series and non-deterministic processes. Accuracy estimates that were statistically significant (α = 0.05) from 0.5 
in a one-sample binomial test are shown by asterisk.

Figure 6. Accuracy of the classifier for the experimental time series data generated from Chua’s circuits 
in chaotic regime (L = 32, 64, 128), Santa Fe Laser time series in chaotic regime (L = 32, 64, 128) and three 
representative EEG signals during seizure (L = 128) as a function of the epochs is shown. The number of 
neurons in the hidden layer for each of these cases is enclosed in Table 1. The horizontal solid line corresponds 
to accuracy 50% characteristic of random guess and shown as a reference in each of the subplots.
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by marked separation in the training and validation loss. All other parameters of the RNN were retained as dis-
cussed in (Sec. Methods).

Discussion
Several studies have successfully used surrogate testing techniques to discern static and dynamical nonlinearities 
such as those from deterministic chaotic systems. Their ability to provide insights into the generative mechanism 
from the given time series realization(s) is a primary reason for their widespread adoption across a spectrum of 
disciplines. Traditional surrogate testing while helpful has inherent limitations. It subscribes to statistical hypoth-
esis testing and investigates the separation of a chosen discriminant statistic or dynamical invariant between 
the given empirical sample and its surrogate counterpart. These discriminant statistic and dynamical invariants 
essentially capture certain facets of the given time series and their choice can be non-trivial with marked impact 
on the conclusions. Dynamical invariants and discriminant statistic estimation can be especially challenging 
across short time series such as those discussed in the present study. The proposed approach obviates the need to 
estimate discriminant statistics or dynamical invariants and uses the raw time series in the surrogate testing pro-
cedure. Conclusions based on traditional surrogate testing are also based on single realization or empirical sam-
ple. However, drawing conclusions based on a single realization can be a limitation from a practical standpoint. 
This is especially true with experimental data such as those from physiological systems and healthcare settings 
where variations are common within a given cohort. These in turn demand incorporation of multiple realizations 
for enhanced generalizability with potential to assist in clinical decision making. The proposed approach accom-
modates multiple realizations simultaneously and poses the traditional statistical hypothesis testing framework as 
a classification framework. For the nonlinear deterministic process, a marked increase in accuracy was observed 
as a function of epochs unlike that of the non-deterministic processes. Ideally, the error rate (i.e. 1 – accuracy) 
distribution may be positively skewed for large number of epochs for the nonlinear deterministic whereas that of 
non-deterministic process is expected to be relatively uniform.

Generating long stationary time series from experimental systems can be challenging as it demands controlling 
a number of factors for extended periods. The present study provides a suitable alternative by using multiple short 
time series realizations, hence expected to find wide applications across a number of settings. While the results pre-
sented in this study investigated the performance of a simple RNN with 10–20 neurons and a single hidden layer, the 
RNN hyperparameters in general will have to be tuned. The results presented showed a marked increase in accuracy 
across the dynamical nonlinearities generated from nonlinear deterministic processes in chaotic regimes. However, 
it is important to note that dynamical nonlinearities can arise across deterministic as well as non-deterministic set-
tings. The latter would include deterministic dynamical systems with dynamical and measurement noise. Therefore, 
conclusions on the presence of dynamical nonlinearities do not necessarily imply presence of deterministic chaos.

Figure 7. Accuracy of the classifier for the time series data generated from static nonlinear transform of linearly 
correlated noise with parameters (α = 0.2, 0.4, 0.6, 0.8) as a function of the number of epochs for lengths 
(L = 32, 64 and 128) is shown in each of the rows. The number of neurons in the hidden layer for each of these 
cases (N = 10) is enclosed in Table 1. The horizontal solid line corresponds to accuracy 50% characteristic of 
random guess and shown as a reference in each of the subplots.
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Methods
Working principle of the iAAft Algorithm. The IAAFT algorithm28 is an iterative procedure that aims to 
retain the power-spectrum as well as the distribution of the given empirical sample in the surrogate realizations. 
As noted earlier, retaining the power-spectrum retains the linear characteristics of the time series. Rank ordering 
aspect of IAAFT is useful in retaining static, invertible nonlinearities but not the dynamical nonlinearities in the 
given empirical sample. The working principle of IAAFT is enclosed below for completeness, a detailed explana-
tion and implementation can be found in the following references24,27,28,34,40.

Let the given empirical sample be x{ }n .

Step 1: Generate a random shuffle x{ }n
i  of the given empirical sample x{ }n .

Step 2: Preserving the power spectrum in the surrogate.
Generate the Fourier transform of x{ }n  and x{ }n

i . Let the corresponding squared amplitudes be S{ }k
2  

and S{ }k
i2 respectively. Substitute S{ }k

i2  by S{ }k
2  and generate the inverse Fourier transform to obtain 

y{ }n .
Step 3: Preserving the distribution in the surrogate.

Rank order y{ }n  to have same distribution as x{ }n  resulting in the surrogate x{ }n
i 1+ .

Step 4:  Repeat Steps 2 and 3 so as to minimize the discrepancy in the spectrum between empirical sample 
and its surrogate.

nonlinear deterministic process. Time series were generated from discrete and continuous dynamical 
systems in chaotic regimes. Representative time series in chaotic regimes is shown in Fig. 5. Time series data for 
the continuous dynamical systems were generated using explicit Runge-Kutta (4, 5) implemented as a part of the 
MATLAB ode45 function41.

 (i) Logistic map in chaotic regime (r = 4.0)42,

= −+x rx x(1 )t t t1

 (ii) Henon map in chaotic regime (α = 1.4, β = 0.3)43,44,

α
β

= − +

=
+

+

x x y
y x

1t t t

t t

1
2

1

 (iii) Lorenz system in chaotic regime ( 10, 28, 8/3)σ ρ β= = = 45

dx
dt

y x

dy
dt

x z y

dz
dt

xy z

( )

( )

σ

ρ

β

= −

= − −

= −

 (iv) Rossler system in chaotic regime (α = 0.2, β = 0.2, γ = 5.7)46,

dx
dt

y z

dy
dt

x y

dz
dt

z x( )

α

β γ

= − −

= +

= + − .

experimental time series data. 

 (i) Chua’s Circuit
Chua’s circuit2,47 is a simple autonomous electric circuit and can be readily designed using resistors, 
capacitors, inductors and a nonlinear element. It is perhaps one of the most popular experimental evidence 
of deterministic chaos. An equivalent dimensionless model with parameters 

α β= . = = − = −m m( 15 6, 28, 8/7, 5/7)0 1  has also been proposed in literature to capture the 
behavior of the original circuit2,47.
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dx
dt

y x f x

dy
dt

x y z

dz
dt

y

( ( ))α

β

= − −

= − +

= −

where the piece-wise linear function = + . − + − −f x m x m m x x( ) 0 5( )( 1 1 )1 0 1 .
 (ii) Santa-Fe Laser Time Series

Several studies have provided compelling evidence of chaos across distinct laser systems48–50. The present 
study re-investigates Santa Fe Laser time series of 1000 samples derived from a Far-Infrared (FIR) laser in 
chaotic regime51,52.

 (iii) Epileptic Seizure Time Series

Electroencephalograms (EEG) signals recorded during epileptic seizure have been argued to exhibit patterns 
characteristic of nonlinear dynamical processes. Three representative EEG samples from seizure subjects reported 
in a recent study3 were re-investigated using the proposed classification framework. As recommended in the orig-
inal study3, the three EEG signals were pre-processed using a 4th order low-pass Butterworth filter1 to minimize 
the impact of noise and impose the high-frequency cut-off at 40 Hz. In order to capture a few cycles of the EEG 
waveform only samples with length (N = 128) were investigated.

nonlinear transform of linearly correlated noise. 

α= + =−x x y x x; ;t t t t t t1

The above example was motivated by a recent study28. The process xt is a linearly correlated noise where t is 
zero-mean, unit variance normally distributed uncorrelated noise with yt representing a static nonlinear trans-
form of xt. Several choices of the process parameters (α = 0.2, 0.4, 0.6, 0.8) were investigated in the present study. 
Representative time series data generated by nonlinear transform of linearly correlated noise with process param-
eters (α = 0.2, 0.4, 0.6, 0.8) is shown in Fig. 3.

Surrogate testing using a recurrent neural network. Data. The time series realizations was fixed at 
(N = 1000) across all the data sets. Time series of three different lengths (L = 32, 64, 128) were investigated. For 
the experimental data sets in the present study, (N = 1000) realizations was generated by randomly choosing a 
sequence of time points of length (L = 32, 64, 128) from the given data. Representative samples of the various time 
series are shown in Fig. 3.

RNN. RNN architectures by very design are ideal for prediction and classification of sequence data. RNN cell 
unfolded in time53,54 and a typical RNN architecture comprising of multiple RNN cells in the hidden layer is 
shown in Fig. 2. In the present study, the input and output of the RNN were the time series realizations and their 
corresponding labels respectively. The time series realizations (N = 1000) was split into training samples (75%) 
and test samples (25%). Since each time series realization was paired to its IAAFT surrogate counterpart, the 
classes were balanced by very design justifying the choice of accuracy as a classifier performance measure in 
the present study. RNN parameters were chosen after experimentation55. RNN was implemented using Keras 
high-level neural network API with Tensorflow backend53,54 and Adam optimizer (ADAM)56 (learning rate 
0.0001, batch size 16 and binary cross-entropy loss) for the data sets in the present study. The number of neurons 
for the synthetic data sets generated from nonlinear dynamical systems, was chosen as (N = 10), Table 1. For the 
nonlinearly correlated noise, the number of neurons was also fixed at (N = 10), Table 1. For the experimental 
time series data, the number of hidden neurons varied and enclosed in Table 1. Neurons in the hidden layer were 
accompanied by rectified linear unit (ReLU) activation function whereas those in the output layer had sigmoid 
activation function. RNN learning curves were inspected during the training phase for potential overfitting. The 
validation split in the training phase was set at 30%, implying the last 30% of the training data were used as inter-
nal validation in computing the accuracy and loss curves as a function of the epoch. The training and validation 
loss as a function of the epoch for representative nonlinear deterministic processes and experimental time series 
are shown in Fig. 4. As can be observed for each of these cases, the training and validation loss simultaneously 
transitioned to markedly lower values with increasing epochs. While certain RNN applications do encourage hav-
ing a validation loss lower than that of the training loss, the present study estimated the accuracies (Table 1) at the 
epoch where the training and validation loss were simultaneously low, Fig. 4. A smoothing window of five sam-
ples was used to generate the learning curves, Fig. 4, and accuracy profiles, Figs 5–7, as a function of the epochs.

Data Availability
The experimental data sets used in present study are publicly available and the corresponding references are pro-
vided. The equations to the synthetic data sets are provided as a part of the manuscript. All implementations and 
figures were done in MATLAB. RNN implementation was accomplished using the open-source package Keras. 
The surrogate generation algorithms have been implemented as a part of the (TISEAN: TIme SEries ANalysis) 
package MATLAB package (MATS: Measures of Analysis of Time Series). The references to these packages and 
the experimental data are included in the manuscript.
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