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Gene signatures of drug resistance predict patient survival in
colorectal cancer
Y Zheng1,2, J Zhou3 and Y Tong1,4

Different combinations of 5-fluorouracil (5-FU), oxaliplatin, irinotecan and other newly developed agents have been used to treat
colorectal cancer. Despite the advent of new treatment regimens, the 5-year survival rate for metastatic colorectal cancer remains
low (~10%). Knowing the drug sensitivity of a given tumor for a particular agent could significantly impact decision making and
treatment planning. Biomarkers are proven to be successful in characterizing patients into different response groups. Using survival
prediction analysis, we have identified three independent gene signatures, which are associated with sensitivity of colorectal cancer
cells to 5-FU, oxaliplatin or irinotecan. On the basis of the three gene signatures, three score systems were developed to stratify
patients from sensitive to resistance. These score systems exhibited robustness in stratify patients in two independent clinical
studies. Patients with high scores in all three drugs exhibited the lowest survival.
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INTRODUCTION
Colorectal cancer is the third most common cancer in the world and
the second leading cause of cancer-related death in the western
world.1,2 Around a quarter of colorectal cancer patients are incurable
at diagnosis and half of the patients who undergo potentially
curative surgery will ultimately develop metastatic disease.
In many cases, chemotherapy is used in treating colorectal

cancer, which aims to slow tumor growth, shrink tumor size and
reduce the likelihood of metastasis development. The standard
treatment for advanced colorectal cancer is based on the
administration of fluoropyrimidines (5-fluorouracil (5-FU) or
capecitabine) combined with oxaliplatin, the topoisomerase I
(TOP1) inhibitor CPT-11 (Irinotecan) and the monoclonal anti-
bodies cetuximab, bevacizumab or panitunumab.2,3 Although
most patients with advanced colorectal cancer are initially
responsive to the combined chemotherapy treatment, they later
experience disease relapse due to eventual tumor recurrence and
emergence of drug-resistant tumor cells.
Gaining insight of the mechanisms underlying drug resistance is

important to develop more effective therapeutic approaches.2

Human cancers may be resistant to therapy at the time of drug
presentation (innate drug resistance). Some cancers become
resistant after an initial response (acquired drug resistance). Both
innate and acquired drug resistance involve multiple mechanisms,
such as altering drug metabolite potency, increasing drug efflux or
decreasing drug toxicity or inhibiting cell death.4 In colorectal
cancer, higher level of thymidylate synthase were found
associated with tumor insensitivity to 5-FU-based therapy.5

Similarly, higher levels of TOP1 is correlated with greater
sensitivity of colon tumors to camptothecin derivatives compared
with normal colonic mucosa.5 Glucuronidation, involved in
xenobiotic detoxification, regulates innate resistance to TOP1
inhibitors in colon cell lines and tumors.6 The resistance to
oxaliplatin involves decreased drug accumulation, increased

detoxification and repair, enhanced tolerance to damage, altera-
tion in pathways involved in cell cycle kinetics and apoptosis
inactivation.7 In addition, overexpression of specific drug trans-
porters (ABCB1/P-gp, lung resistance-related protein or multidrug
resistance-related protein) was shown by flow cytometry and
fluorescence microscopy to occur in human colon adenocarci-
noma cell lines resistant to TOP1 inhibitors. Despite the
mechanisms identified, implication of these biomarkers in clinic
was not confirmed. The only clinically used biomarker is K-ras.
Patients harboring a K-ras mutation are excluded from being
treated with epidermal growth factor receptor antibodies, as they
are less likely to benefit from epidermal growth factor receptor-
targeted treatment.8

Microarray technology has been widely used in biomarker
discovery and clinical outcome prediction.9,10 We analyzed
microarray data derived from colon cancer cells resistant to
oxaliplatin, SN38 (the active metabolite of irinotecan) and 5-FU,
respectively. In order to prioritize the genes regulating cancer cell
response to these anti-cancer drugs, we combined microarray
data of drug resistance with data of patient survival. Three gene
signatures were identified for these three respective drugs. Score
systems were developed for each drug based on the gene
signatures. The score systems were able to stratify cancer patients
into high- or poor-survival groups.

MATERIALS AND METHODS
Microarray data
Microarray data derived from oxaliplatin-resistant HCT116 (HCT116-Oxa),
5-FU-resistant HCT116 (HCT116-FU), SN38-resistant HCT116 (HCT116-SN)
and corresponding parent cell lines were downloaded from ArrayExpress
(E-MEXP-390 and E-MEXP-1171).11,12 The information of the cell lines were
described previously.11,12 Microarray data with patient survival information
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were obtained from Gene Expression Omnibus using accessing number
GSE17536 (training data set) and GSE14333 (validation data set).13,14

Gene expression analysis
Microarray files were processed using Robust Multi-array Average algorithm
and imported into Partek software.15 Principle Component Analysis and
sample clustering were used to inspect for the existence of batch effects,
outlier and errors. Batch effects were removed using software package
Partek. To determine differentially expressed genes, data were analyzed
using two-way analysis of variance. The differentially expressed genes
(Po0.005) were further subjected to Gene Ontology analysis. Pathway
analysis was performed using Ingenuity software (www.ingenuity.com). To
detect survival-related genes, univariate Cox regress analyses for the
differentially expressed genes were performed using Partek.

Development and validation of a drug-resistant score system
To generate a score system for drug resistance (Table 1), we subject the
candidate gene lists to BRB-arrayTools (developed by Dr Richard Simon
and BRB-ArrayTools Development Team) to calculate the regression
coefficient for each gene using the training data set. The drug-resistant
score is the sum of the product of the expression level of a gene and its
corresponding regression coefficient (drug-resistant score = sum of coeffi-
cient of Gene Gi × expression value of Gene Gi). The patients were
dichotomized into groups at high or low risk using the 50th percentile
(median). The coefficient derived from the training data set was directly
applied to the validation data set.

RESULTS
Differentially expressed genes derived from the 5-FU-resistant cell
line
Genes (363) (Po0.005) were found to be differentially expressed
between HCT116-FU and HCT116 parent cell lines. Hundred of
these genes are known to regulate drug resistance in cancer, with
32 upregulated and 68 downregulated. Upregulated genes
include IGF1R, NQO1, ABCC3, FOXO3, MLL, LGALS3, TOX, GNAS,
IGFBP4, AKR1C2, MSTN, SULF2 and EGR2. Downregulated genes
include CFLAR, FANCA, TRPM2, SLC19A1, RRM1, FOXA2, CASR, MTAP,
BACE1, ELOVL6, NF2, FBXW7, DPH5 and FOLR1.
Gene Ontology analysis (Figure 1a1) indicated that these 363

genes are enriched in functions involving metabolic process
(53.6%), growth (27.7%), pigmentation (12%), viral reproduction
(3.8%) and cell proliferation (2.3%). Ingenuity pathway analysis
indicated that the top five enriched signaling networks
(Figure 1a2) were cellular assembly and organization, cellular
movement, gastrointestinal disease; cell death, cellular develop-
ment, hematopoiesis; cellular growth and proliferation, protein
synthesis, cell cycle; cell-mediated immune response, cellular
development, cellular function and maintenance; and free radical
scavenging, cellular movement, gene expression. The core nodes
in the signaling networks include ERK1/2, NFKB complex, Akt, PI3K
complex and Ras (Supplementary Data 1, Figure 1).

Differentially expressed genes derived from the oxaliplatin-
resistant cell line
Genes (373) (Po0.005) were found to be differentially expressed
between HCT116-Oxa and HCT116 parent cell lines. Genes (104)
are known to regulate drug resistance in cancer, with 37
upregulated and 67 downregulated genes. Upregulated genes
are CD24, CD80, FANCD2, IL2, MMP2, HLF, CYP1B1, DGAT1, PRKCQ,
STAT5B, AKT3, RICTOR, CCKBR and FLT1. Downregulated genes
includes DHFR, DIABLO, EIF4E, PPP2CB, LYN, ADO, CD59, LDLR,
SMAD4, TYMS, ARNT, NR3C1, MINA, MTAP, WEE1, B2M, PRKAR1A,
MGST1, RAB18, HOXA9, MCAM, TUBB, ENO1, SMARCA4, BCL2L11,
ELP3, CREM, MERTK, CENPV and ARG2.
Gene Ontology analysis (Figure 1b1) indicated that these 373

genes were enriched in functions involving rhythmic process
(31.7%), viral reproduction (27.2%), cellular process (26.2%), cell

proliferation (7.7%) and metabolic process (6.1%). Ingenuity
analysis indicated that the top five enriched signaling networks
(Figure 1b2) were cellular assembly and organization, cell
morphology, cellular movement; cell cycle, lipid metabolism, small
molecule biochemistry; cell cycle, gene expression, cell-to-cell
signaling and interaction; cellular assembly and organization, DNA
replication, recombination, and repair, connective tissue disorders;
and RNA post-transcriptional modification, cell death, protein
synthesis. The core nodes in the signaling networks include PI3K
complex, ERK1/2, Akt and IL2 (Supplementary Data 1, Figure 2).

Differentially expressed genes derived from the SN38-resistant cell
line
Genes (692) (Po0.005) were found to be differentially expressed
between HCT116-SN and HCT116 parent cell lines. Genes (196) are
known to regulate drug resistance in cancer, with 108 upregulated
genes and 88 downregulated genes. Upregulated genes
include HBA1, SRC, ICAM1, CD44, ANXA8, APOE, TRH, GALE, CSF1R,
IGF1, NQO1, NCAM1, LOX, ERBB3, SAT1, LDLR, RET, GRP, NOS1, CDK1,
IGH and CASP10. Downregulated genes include IRS1, HPRT1, GAL,
VEGFA, CYP3A5, MSH3, MTR, GHR, CYP2B6, ZAK, MYB, LDLR, SOD2,
DTNB, NCOR1, NR3C1, GCLC, MINA, TFPI, LPP, ADAM17, MDM4, RIPK1
and AQP3.
Gene Ontology analysis (Figure 1c1) indicated that these 496

genes were enriched in functions involving cell proliferation
(39.7%), response to stimulus (16.1%), growth (15.9%), rhythmic
process (11%), viral reproduction (8.6%) and cellular process
(8.4%). Ingenuity analysis indicated that the top five enriched
signaling networks (Figure 1c2) were: cell death, cellular
compromise, antimicrobial response; cellular function and main-
tenance, molecular transport, cell signaling; gene expression, DNA
replication, recombination, and repair, cell-to-cell signaling and
interaction; cell cycle, reproductive system development and
function, cell-to-cell signaling and interaction; and cellular growth
and proliferation, skeletal and muscular system development and
function, lipid metabolism. The core nodes in the signaling
networks include NFKB complex, CACNA1A, SMARCA4, PI3K
complex and MAPK (Supplementary Data 1, Figures 3–5).

Difference between the three gene lists
There are limited overlaps between differentially expressed genes
derived from these three drug-resistant cell lines (Figure 2a). Only
one overlapping gene (ANO8) was found between the 134
upregulated genes derived from HCT116-FU and 361 upregulated
genes derived from HCT116-SN cells. Only two overlapping genes
(C15orf28 and FBXW2) were found between the 229 down-
regulated genes derived from HCT116-FU and 331 downregulated
genes derived from HCT116-SN cells. In the 143 upregulated
genes derived from HCT116-Oxa cells and 361 upregulated genes
derived from HCT116-SN cells, only two genes (LOC257358 and
C1orf61) overlap. Between the 230 downregulated genes derived
from HCT116-Oxa cells and 331 downregulated genes derived
from HCT116-SN cells, there were only five genes (MINA, CLASP2,
SFRS7, ZBTB20 and C2orf69). In the 134 upregulated genes derived
from HCT116-FU cells and 143 upregulated genes derived from
HCT116-Oxa cells, there was no overlapping gene. In the 229
downregulated genes derived from HCT116-FU cells and 230
downregulated genes derived from HCT116-Oxa cells, there
was only one overlapping gene (MTAP). Among these 11
overlapping genes, the functions of 4 genes are unknown,
including LOC257358, C1orf61, C15orf28 and C2orf69, whereas
the other 7 genes exhibited widespread functions. ZBTB20
exhibits RNA polymerase II core promoter proximal region
sequence-specific DNA-binding transcription factor activity
involved in negative regulation of transcription and DNA
binding.16 SFRS7 is a member of the serine/arginine-rich family
of pre-mRNA-splicing factors, which constitute part of the
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Table 1. Coefficient and weight of each gene for 5-FU, oxaliplatin and SN38

Column ID Coefficient Weights
(wi)

Gene
symbol

Gene title HR 95% CI P-value

5-FU
201560_at 1.00 0.075 CLIC4 Chloride intracellular channel 4 2.72 1.48–4.99 1.3E-03
225681_at 0.60 0.268 CTHRC1 Collagen triple-helix repeat containing 1 1.82 1.24–2.67 2.2E-03
201852_x_at 0.96 0.138 COL3A1 Collagen, type III, alpha 1 2.61 1.4–4.86 2.6E-03
60474_at − 0.72 − 0.614 FERMT1 Fermitin family homolog 1 (Drosophila) 0.49 0.3–0.78 3.0E-03
226552_at 0.96 0.083 IER5L Immediate early response 5-like 2.62 1.36–5.01 3.8E-03
201508_at 0.81 0.062 IGFBP4 Insulin-like growth factor-binding protein 4 2.25 1.28–3.94 4.8E-03
219744_at − 3.61 − 0.019 FN3K Fructosamine 3 kinase 0.03 0.002–0.35 5.6E-03
227915_at − 2.23 − 0.027 ASB2 Ankyrin repeat and SOCS box-containing 2 0.11 0.02–0.54 6.9E-03
205249_at 0.66 0.151 EGR2 Early growth response 2 1.94 1.18–3.18 8.7E-03
205708_s_at − 1.06 − 0.111 TRPM2 Transient receptor potential cation channel,

subfamily M, member 2
0.35 0.15–0.77 9.3E-03

Probe set ID Coefficient Weights
(wi)

Gene
symbol

Gene title HR 95% CI P-value

Oxaliplatin
226497_s_at 1.50 0.435 FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth

factor/vascular permeability
4.50 2.49–8.13 5.9E-07

202436_s_at 0.48 0.233 CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 1.61 1.32–1.97 3.0E-06
205304_s_at 1.70 0.136 KCNJ8 Potassium inwardly-rectifying channel, subfamily J, member 8 5.46 2.5–11.94 2.1E-05
212607_at 1.00 0.001 AKT3 v-akt murine thymoma viral oncogene homolog 3 (protein

kinase B, gamma)
2.72 1.64–4.52 1.1E-04

204596_s_at 1.26 0.362 STC1 Stanniocalcin 1 3.51 1.81–6.84 2.2E-04
205003_at 0.90 0.216 DOCK4 Dedicator of cytokinesis 4 2.47 1.45–4.18 8.1E-04
202729_s_at 0.96 − 0.099 LTBP1 Latent-transforming growth factor beta-binding protein 1 2.60 1.47–4.6 1.0E-03
200984_s_at 1.28 0.106 CD59 CD59 molecule, complement regulatory protein 3.58 1.67–7.68 1.0E-03
217762_s_at 0.58 − 0.137 RAB31 RAB31, member RAS oncogene family 1.78 1.25–2.55 1.5E-03
207714_s_at 0.87 0.059 SERPINH1 Serpin peptidase inhibitor, clade H (heat shock protein 47),

member 1 (collagen bindin
2.38 1.39–4.05 1.5E-03

217763_s_at 0.54 − 0.143 RAB31 RAB31, member RAS oncogene family 1.72 1.2–2.46 3.1E-03
209087_x_at 1.35 0.123 MCAM Melanoma cell adhesion molecule 3.84 1.53–9.64 4.2E-03
226923_at − 1.58 − 0.207 SCFD2 sec1 family domain containing 2 0.21 0.07–0.63 5.3E-03
201420_s_at − 1.11 − 0.006 WDR77 WD repeat domain 77 0.33 0.15–0.72 5.7E-03
212045_at 1.57 0.039 GLG1 Golgi glycoprotein 1 4.82 1.58–14.72 5.8E-03
209209_s_at 0.52 0.110 FERMT2 Fermitin family homolog 2 (Drosophila) 1.68 1.15–2.44 6.6E-03
225946_at 0.53 0.038 RASSF8 Ras association (RalGDS/AF-6) domain family (N terminal)

member 8
1.71 1.16–2.52 7.0E-03

226314_at 1.54 0.030 CHST14 Carbohydrate (N-acetylgalactosamine 4–0) sulfotransferase 14 4.67 1.5–14.56 7.9E-03

Column ID Coefficient Weights
(wi)

Gene
symbol

Gene title HR 95% CI P-value

SN38
227123_at 1.71 0.379 RAB3B RAB3B, member RAS oncogene family 5.54 2.68–11.46 3.8E-06
211924_s_at 1.12 0.589 PLAUR Plasminogen activator, urokinase receptor 3.06 1.74–5.38 1.1E-04
203382_s_at 0.67 0.496 APOE Apolipoprotein E 1.96 1.38–2.78 1.7E-04
210512_s_at 1.34 1.256 VEGFA Vascular endothelial growth factor A 3.83 1.86–7.88 2.7E-04
220003_at − 2.91 − 0.681 LRRC36 Leucine-rich repeat containing 36 0.05 0.01–0.29 5.8E-04
202068_s_at 1.07 1.007 LDLR Low-density lipoprotein receptor 2.91 1.56–5.45 8.3E-04
206439_at 0.27 0.227 EPYC Epiphycan 1.31 1.11–1.53 1.1E-03
212119_at 1.43 − 0.259 RHOQ ras homolog gene family, member Q 4.18 1.75–9.99 1.3E-03
220987_s_at − 1.16 − 0.187 NUAK2 NUAK family, SNF1-like kinase, 2 0.31 0.15–0.64 1.5E-03
204298_s_at 0.46 − 0.371 LOX Lysyl oxidase 1.59 1.19–2.11 1.7E-03
1553984_s_at − 1.27 − 0.437 DTYMK Deoxythymidylate kinase (thymidylate kinase) 0.28 0.12–0.64 2.4E-03
214211_at 0.86 − 0.137 FTH1 Ferritin, heavy polypeptide 1 2.35 1.33–4.16 3.2E-03
204589_at 0.67 − 0.378 NUAK1 NUAK family, SNF1-like kinase, 1 1.96 1.23–3.15 5.1E-03
227610_at − 1.73 − 0.387 TSPAN11 Tetraspanin 11 0.18 0.05–0.62 6.7E-03
222696_at − 0.37 − 0.118 AXIN2 Axin 2 0.69 0.53–0.9 6.9E-03
227279_at 0.88 − 0.394 TCEAL3 Transcription elongation factor A (SII)-like 3 2.42 1.25–4.68 8.5E-03
1553396_a_at − 1.05 0.010 CCDC13 Coiled-coil domain containing 13 0.35 0.16–0.77 8.6E-03
224867_at − 1.11 − 0.953 C1orf151 Chromosome 1 open-reading frame 151 0.33 0.14–0.75 8.6E-03
200098_s_at − 1.55 −0.317 ANAPC5 Anaphase-promoting complex subunit 5 0.21 0.07–0.68 9.3E-03

Abbreviations: CI, confidence interval; 5-FU, 5-fluorouracil; HR, hazard ratio.
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Figure 1. (a1) The differentially expressed genes between 5-fluorouracil (5-FU)-resistant and control HCT116 cells were subjected to oncology
analysis. These genes can be categorized based on their functions into metabolic process (53.6%), growth (27.7%), pigmentation (12%), viral
reproduction (3.8%) and cell proliferation (2.3%). (a2) The differentially expressed genes between 5-FU-resistant and control HCT116 cells were
subjected to ingenuity pathway analysis and the top five enriched signaling networks were obtained. (b1) Gene Ontology analysis indicated that
these differentially expressed genes between oxaliplatin-resistant and control HCT116 cells were enriched in functions involving rhythmic process
(31.7%), viral reproduction (27.2%), cellular process (26.2%), cell proliferation (7.7%) and metabolic process (6.1%). (b2) The differentially expressed
genes between oxaliplatin-resistant and control HCT116 cells were subjected to ingenuity pathway analysis and the top five enriched signaling
networks were obtained. (c1) Gene Ontology analysis indicated that the differentially expressed genes between SN38-resistant and control HCT116
cells were enriched in functions involving cell proliferation (39.7%), response to stimulus (16.1%), growth (15.9%), rhythmic process (11%), viral
reproduction (8.6%) and cellular process (8.4%). (c2) The differentially expressed genes between SN38-resistant and control HCT116 cells were
subjected to ingenuity pathway analysis and the top five enriched signaling networks were obtained.
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spliceosome.17 CLASP2 exhibits microtubule plus-end binding and
galactoside 2-alpha-L-fucosyltransferase activity.18 MINA is a c-Myc
target gene that may have a role in cell proliferation or regulation
of cell growth.19 FBXW2 regulates chaperonin-mediated protein

folding and Wnt signaling pathway and pluripotency.20 MTAP is
associated with metabolic pathways and cysteine and methionine
metabolism, and exhibits S-methyl-5-thioadenosine phosphory-
lase activity and phosphorylase activity.21 ANO8 is related to
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Figure 2. Venn diagram analysis. (a) Venn diagram of upregulated genes in 5-fluorouracil (5-FU), oxaliplatin or SN38-resistant HCT116 cells.
(b) Venn diagram of downregulated genes in 5-FU, oxaliplatin or SN38-resistant HCT116 cells.

Figure 3. Kaplan–Meier curves were drawn for conditions as follows. (a) Patients in the training data set were dichotomized into high (H_FU)
and low (L_FU) drug-resistant groups based on the resistance score of 5-fluorouracil (5-FU) using the 50th percentile of the score as cutoff.
(b) Patients in the training data set were similarly dichotomized into high (H_Oxa) and low (L_Oxa) drug-resistant groups based on the
resistance score of oxaliplatin. (c) Patients in the training data set were similarly dichotomized into high (H_SN) and low (L_SN) drug resistance
groups based on the resistance score of SN38.
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stimuli-sensing channels and solute-carrier-mediated transmem-
brane transport, and possesses intracellular calcium-activated
chloride channel activity.22

Gene ontology analysis (Figure 1a) indicated that there are
different levels of enrichment in functions including metabolic
process (53.6% for HCT116-FU cells and 6.1% for HCT116-Oxa
cells), growth (28% for HCT116-FU cells and 15.9% for HCT116-SN
cells), viral reproduction (3.8% for HCT116-FU cells, 27% for
HCT116-Oxa cells and 8.6% for HCT116-SN cells), cell proliferation
(2.3% for HCT116-FU cells, 7.7% for HCT116-Oxa cells and 39% for
HCT116-SN cells), rhythmic process (32% for HCT116-Oxa cells and
11% for HCT116-SN cells) and cellular process (26% for HCT116-
Oxa cells and 8.4% for HCT116-SN cells). Network analysis
indicated that PI3K–Akt and MAPK–ERK pathways are altered in
all three drug-resistant cell lines and the NFKB pathway is altered
in HCT116-FU and HCT116-SN cells. However, the genes in each
signaling network are totally different between cells with different
drug resistance (Figures 1b and d).

Genes correlate to colorectal cancer patient survival
We analyzed the differentially expressed genes for their association
with patients’ survival. In the 363 differentially expressed genes
between HCT116-FU and its corresponding cell lines, 10 genes are
significantly associated with patient survival (Po0.01), with 6
positively associated and 4 negatively associated. The positively
correlated genes are CLIC4, CTHRC1, COL3A1, IER5L, IGFBP4 and

EGR2. The negatively correlated genes are FERMT1, FN3K, ASB2 and
TRPM2. In the 373 differentially expressed genes between HCT116-
Oxa and its corresponding cell lines, 18 are significantly associated
with patient survival (Po0.01), with 16 positively correlated and 2
negatively correlated. The positively correlated genes are FLT1,
CYP1B1, KCNJ8, AKT3, STC1, DOCK4, LTBP1, CD59, RAB31, SERPINH1,
MCAM, GLG1, FERMT2, RASSF8, CHST14 and NOG. The negatively
correlated genes are SCFD2 and WDR77. In the 692 differentially
expressed genes between HCT116-FU and its corresponding cell
lines, 19 are significantly associated with patient survival (Po0.01),
with 11 positively correlated and 8 negatively correlated. The
positively correlated genes include RAB3B, PLAUR, APOE, VEGFA,
LDLR, EPYC, RHOQ, LOX, FTH1, NUAK1 and TCEAL3. The negatively
correlated genes include LRRC36, NUAK2, DTYMK, TSPAN11, AXIN2,
CCDC13, C1orf151 and ANAPC5.

Development of the drug-resistant score system
To assess contribution of drug resistance-related genes to
patient survival, we applied survival prediction analysis in the
BRB-arrayTools. Each gene in the respective gene signature was
assigned a coefficient, and the score for each sample was
calculated using the coefficient of these genes. The patients were
then dichotomized into a high- and low-drug-resistant group for
drug resistance using the 50th percentile cutoff of the score as the
threshold value. The results indicated that patient survival
rates were significantly lower in the patient group with a higher

Figure 4. Kaplan–Meier curves were drawn for conditions as follows. (a) Patients in the validation data set were similarly dichotomized into
high (H_FU) and low (L_FU) drug-resistant groups based on the resistance score of 5-fluorouracil (5-FU) (b) Patients in the validation data set
were similarly dichotomized into high (H_Oxa) and low (L_Oxa) drug-resistant groups based on the resistance score of oxaliplatin. (c) Patients
in the validation data set were similarly dichotomized into high (H_SN) and low (L_SN) drug-resistant groups based on resistance score
of SN38.
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drug-resistant score using the drug-resistant score system for all
three drugs (5-FU, 62.5 vs 87.7%, Po2.5E-4; oxaliplatin, 56.9 vs
93.2%, Po5.3E-7 and SN38, 52.8 vs 97.3%, Po2E-10). To further
validate the score systems, we used an independent data set
derived from 290 patients. The drug-resistant score was similarly
calculated and the patients were similarly dichotomized into a
high- and low-drug-resistant group using the 50th percentile cutoff
of the score as the threshold value. Results indicated that the drug-
resistant score system was able to separate patients with good
prognosis (high survival rates) from these with poor prognosis (low
survival rates) (5-FU, 65.8 vs 87.9%, Po2E-4; oxaliplatin, 66.7 vs
87%, Po4.2E-4 and SN38, 65.8 vs 87.9%, Po1.6E-4).
As colon cancer is usually treated with a combination of drugs,

we assume that the more drug the cancer cells are resistant to, the
more likely the patient exhibits a lower chance of survival. We

therefore combined the drug-resistant scores for 5-FU, oxaliplatin
and SN38 to see whether we could further separate the patients
into subgroups with different risks. The patients were categorized
into four groups based on the number of drugs they predicted to
be at high risk of resistance (high risk of 3, 2, 1 or 0 drug
resistance). In the 177-patient data set, the patients with high risk
of three drug resistances exhibit the lowest survival rates (42.7%)
and the patients with no risk of drug resistance exhibit highest
survival rates. In the 290-patient data set, the patients with high
risk of three drug resistances exhibit the lowest survival rates
(54.1%) and the patients with no risk of drug resistance exhibit the
highest survival rates (95.4%).

DISCUSSION
Knowing the drug sensitivity of a given tumor for a particular
agent could significantly impact decision making and treatment
planning. Starting from the gene expression pattern of drug-
resistant cells, we developed three drug-resistance-based score
systems to rank the patients’ response to three first-line anti-
cancer drugs (5-FU, oxaliplatin and irinotecan) for colorectal
cancer treatment. Patients with a high drug resistance score
exhibited poor survival. Patients with a high score of all three
drugs exhibited the poorest survival.
The gene expression patterns of these drug-resistant cell lines

are distinct, which provide a strong basis to develop specific drug-
resistant gene signatures. As genetic background/mutation in
cancer cell lines may contribute to resistance to the tested drugs,
we used data derived from one single cell line HCT116. No
overlapping gene was found in all the three gene lists. The distinct
gene expression patterns also indicated that different drug
resistance mechanisms for drugs with different cytotoxic mechan-
isms. Indeed, cytotoxicity of 5-FU is due to misincorporation of
fluoronucleotides into RNA and DNA and to the inhibition of the
nucleotide synthetic enzyme thymidylate synthase.23 Oxaliplatin
(1,2-diaminocyclohexane-oxalate platinum) mainly forms intras-
trand adducts between two adjacent guanine residues or guanine
and adenine, disrupting DNA replication and transcription.24

Irinotecan interacts with cellular Top1-DNA complexes and has
S-phase-specific cytotoxicity.25

A large portion of the differentially expressed genes is related to
drug resistance, indicating that the identified genes recapitulate
features of drug resistance. For example, IGF1R, ABCC3 and FOXO3
are associated with drug resistance26–28 and overexpressed in 5-
FU-resistant cells. Expression levels of drug-resistant-related genes
such as CD24, FANCD2, CYP1B1 and STAT5B were increased in
oxaliplatin-resistant cells.29–32 Similarly, SRC, ICAM1, CD44, IGF1,
ERBB3, RET and CDK1 correlate with drug resistance33–39 and were
overexpressed in SN38-resistant cells to regulate drug resistance.
Interestingly, although gene expression patterns are distinct in
these drug-resistant cell lines, pathway analysis indicated that the
drugs share some common core nodes of significantly changed
pathways. For example, PI3K–Akt, MAPK–ERK pathways were
altered in all three drug-resistant cell lines and the NFKB pathway
was altered in HCT116-FU and HCT116-SN cells. The PI3K–Akt
signal transduction pathway comprises of the lipid kinase,
phosphatidylinositol 3-kinase (PI3K) and the serine/threonine
kinase, Akt (or PKB). Activation of this pathway has a pivotal role
in essential cellular functions, such as survival, proliferation,
migration and differentiation that underlie the biology of human
cancer.40 The Raf/MEK/ERK pathway influences chemotherapeutic
drug resistance as ectopic activation of Raf induces resistance to
doxorubicin and paclitaxel in breast cancer cells.41 NFKB
transcription factor induces drug resistance through MDR1
expression in cancer cells.42 However, there is a lack of explicit
link of gene functions to corresponding resistance to a particular
drug. Caution must be taken to interpret the results.

Figure 5. Kaplan–Meier curves were drawn for conditions as follows.
(a) Patients in the training data set were grouped into four groups
based on the number of high-resistance scores the patients have (3,
the patients are in three high-resistance groups; 2, the patients are
in two high-resistance groups; 1, the patients are in one high-
resistance group; 0, the patients are in low-resistance groups).
(b) Patients in the validation data set were grouped into four groups
based on the number of high-resistance scores the patients have (3,
the patients are in three high-resistance groups; 2, the patients are
in two high-resistance groups; 1, the patients are in one high-
resistance group; 0, the patients are in low-resistance groups).
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Other molecular signatures have been reported in colon cancer.
For example, a molecular signature for oncogenic BRAF is reported
in human colon cancer cells.43 Colon cancer molecular subtypes
were identified by expression profiling and associated with stroma,
mucinous type and different clinical behavior.44 Gene expression
profiling of peritoneal metastases from appendiceal and colon
cancer demonstrates unique biologic signatures and predicts patient
outcomes.45 Intestinal adenomagenesis involves core molecular
signatures of the epithelial–mesenchymal transition.46 The new
discovered drug-resistant gene signatures add new knowledge to
this field and a combination of these gene signatures may reveal
new mechanisms in colorectal cancer. However, the cellular model-
based gene signatures may not represent all features of clinical
samples. The results are preliminary and require further validation in
future studies involving tumor samples from patients. Combining
the drug-resistant scores derived from each single agent might not
reflect reality in patients who receive these drugs together. Caution
should be taken to interpret the gene-outcome correlations.
In conclusion, we identified candidate genes, gene sets and

pathways related to drug resistance in colorectal cancer, which
warrant further investigation. The drug-resistant score systems are
able to stratify patients into good or poor survival groups, which
warrant further validation.
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