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Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol,
and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in �brosis/cirrhosis
and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury.e
regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases.

1. Apoptosis

Apoptosis is a process of programmed cell death. Apoptotic
cells are characterized by energy-dependent biochemical
mechanisms and obvious morphological changes [1, 2].
ese features include membrane blebbing, cell shrinkage,
nuclear chromatin condensation, and chromosomal DNA
fragmentation. e apoptotic process deletes single cell or
small clusters of cells without in�ammatory response [3].
Apoptotic cells die in a controlled and regulated fashion.
ismakes apoptosis distinct fromother uncontrolledmodes
of cell death such as necrosis, necroptosis, autophagy, and
corni�cation [4]. Uncontrolled cell death leads to cell lysis,
in�ammatory response, and serious health problems [5].
Apoptosis is associated with multiple pathophysiological
functions. During the embryological stage of mammals,
apoptosis is important for the normal development of organs
[6]. In adults, apoptosis regulates physiological processes
(e.g., removing aged cells) and maintains tissue homeostasis
[7]. Dysfunction or dysregulation of the apoptotic program is
implicated in a variety of congenital anomalies and patholog-
ical conditions such as tumorigenesis, autoimmune diseases,
neurodegenerative disorders, and others [8].

2. Hepatic Apoptosis

Hepatic apoptosis, as name indicated, means cell suicide
in liver. e hepatic apoptosis is different from hepatocyte

apoptosis. e hepatocyte apoptosis describes the apoptotic
cell death in only hepatocytes (one type of liver cells), but
the hepatic apoptosis re�ects the interaction of manifold
cells in liver and represents a comprehensive outcome of
multiple effects. e liver is an organ consisting of several
phenotypically distinct cell types, for example, hepatocytes,
cholangiocytes, stellate cells, sinusoidal endothelial cells,
Kupffer cells, oval cells, and so forth [9]. Predominant hep-
atocytes make up 70–80% of the liver cells [10]. Hepatocytes
manufacture critical circulating proteins, generate bile acid-
dependent bile �ow, detoxify endo- and xenobiotics, and
regulate intermediary metabolism [11]. Hepatocyte injury
results in liver dysfunction.e epithelial cholangiocytes line
the bile ducts and modulate bile �ow. Cholangiocyte damage
causes impairment of bile �owor cholestasis [12].e hepatic
stellate cells (HSCs) can be transformed into myo�broblastic
phenotype, which contributes to the exuberant wound heal-
ing responses. Chronic form of liver damage can result in
activation of HSCs, hepatic �brosis, and liver cirrhosis [13].
e sinusoids are the vascular structures in the liver, which
are lined by a fenestrated endothelial cell type. Sinusoidal
endothelial cell injurymanifests as the sinusoidal obstruction
syndrome [14]. e resident Kupffer cells, natural killer, and
natural killer T cells constitute the innate immune system
in the liver [15]. ese innate immune cells contribute to
and amplify liver injury. If the liver is severely injured,
intrahepatic precursor cells or oval cells may come to the
rescue. e oval cells are thought to be the liver’s resident
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stem cells and have the potential to make new hepatocytes
[16]. e processes of apoptotic cell death are as tightly
regulated as those of growth and proliferation, and together
they establish a �nely tuned balance that ensures proper
organ size and function. Failure in the regulation of these
responses lies at the heart of many human diseases. In liver,
massive apoptosis can be mediated by causative factors (e.g.,
viruses, hepatotoxins) via ligands and membrane receptors,
which heavily impair liver function [17]. e apoptotic
process modulates proliferation, homoeostasis, regulation,
and function of the hepatobiliary system. e relationship of
hepatic apoptosis with pathologic hepatic �brosis has become
more noticed in recent years [18]. Hepatic apoptosis and its
regulation are thought of as a pivotal step in most forms
of liver injury, including liver �brosis, cirrhosis, and the
development of hepatocellular carcinoma [19, 20].

3. Etiology of Hepatic Apoptosis

Hepatic apoptosis accompanies almost all types of liver
injury. Triggering factors of apoptotic liver injury can be
roughly classi�ed into three groups according to difference
of their source (Figure 1). Extrinsic factors indicate causative
factors from external environment or they are foreign to the
body such as viruses, alcohol, and drugs. Intrinsic factors
include the causative factors that are derived from the liver
itself, for example, toxic bile acids and free fatty acids.
Immune factors lie between extrinsic and intrinsic factors.
Immune-mediated mechanism can be either an independent
etiological factor or interactive factor during pathogenesis
of liver injury. Foreign factor may elicit immunological
response that attacks cells to cause apoptosis. e foreign
factor (e.g., viral infection) can also uncover internal antigen
to expose immune system and further induce autoimmunity
[21]. In some liver diseases such as primary biliary cirrhosis,
primary sclerosing cholangitis, hepatitis C, and hepatitis B,
the immune response becomes a critical factor to exacerbate
the severity of liver injury [15]. �bviously, the classi�cation
on initial factors of hepatic apoptosis is arbitrary. It is only
convenient for description. In fact, some liver injury is a
comprehensive consequence of multiple interlinking factors,
for example, viral infection and alcohol abuse, fatty in�ltra-
tion, and hepatotoxin [22, 23]. Moreover, genetic variability
should be taken into account to analyze the interaction
between genetic and environmental factors. e preexisting
genetic condition enhances susceptibility to various types of
apoptosis inducers and perpetuates the destruction of liver
tissue [24].

4. Mechanisms of Hepatic Apoptosis

Diverse stimuli can trigger apoptosis from inside or outside
the cell, for example, contradictory cell cycle or developmen-
tal death signals, cell surface receptors, DNA damage, cyto-
toxic drugs, and irradiation [25, 26]. In�ammatory cytokines
(e.g., TNF𝛼𝛼) can continually induce the activation of caspase-
8, caspase-3, and DNA fragmentation through membrane
receptors [27]. is apoptotic pathway is a direct activation

of caspases, called extrinsic pathway (Figure 2). Intracellular
metabolic disturbances or excess reactive oxygen species can
cause damage in mitochondria, which results in cytochrome
c release and caspase-9 activation [28].e activated caspase-
9 further triggers caspase-3 activation and apoptosis. Because
this type of apoptosis is from mitochondrion-mediated
activation of caspases, it is thus called indirect pathway
or intrinsic pathway. Apoptotic causative factors are able
not only to induce apoptosis, but also simultaneously to
stimulate survival signals against cell death as well. In histol-
ogy, liver contains manifold cell types such as hepatocytes,
cholangiocytes, sinusoidal endothelial cells, Kupffer cells,
and others [9, 29]. Each cell type is uniquely susceptible to
various apoptosis-inducers. However, signaling mechanisms
of apoptosis are common in spite of different cell types or
inducers.

4.1. Apoptosis Shares Common Cell Death Machinery. Var-
ious death signals activate common signaling pathways,
leading to characteristic cell changes and apoptotic death.
A typical study was observed from genetic investigation in
the nematode C. elegans [30]. Some speci�c genes induced
apoptotic killing and elimination of somatic cells during
hermaphrodite development [31]. Both inhibitory ced-9 and
inducible egl-1 modulated cysteine protease ced-3/ced-4
complex. e ced-4 is similar to the mammalian apoptotic
protease activating factor 1 or Apaf-1, but egl-1 and ced-
9 belong to Bcl-2 family of pro- or antiapoptotic proteins
[32]. All of those core components have been identi�ed in
mammals. ey comprise a complicated apoptotic signaling
network and can be activated by a death-inducing stimulus.
During apoptotic cell death, caspases are activated. e acti-
vated caspases execute apoptotic death in cells [33, 34]. e
caspases are of central importance in the apoptotic signaling
network. Caspases are a family of cytosolic aspartate-speci�c
cysteine proteases. Caspases are present as inactive zymogen
or procaspase that are activated by proteolytic cleavage. e
procaspase contains a prodomain aligned by a large and a
small subunit from N-terminus to C-terminus. An active
form of caspases is a heterotetramer consisting of each two
small and two large subunits [35]. e prodomain is oen
but not necessarily removed during the activation process.
Fourteen different members of the caspase family have
been discovered in mammals [36]. Human caspases can be
subdivided into three functional groups: cytokine activation
(Caspase-1, -4, -5, and -13), apoptosis initiation (Caspase-2,
-8, -9, -and -10), and apoptosis execution (Caspase-3, -6, and
-7) [37]. e initiator caspases are recruited to and activated
at death-inducing signaling complexes either in response
to the ligation of cell surface death receptors or to signals
from mitochondria. In the execution phase of apoptosis,
effector caspases cleave vital cellular proteins leading to the
morphological changes that are illustrated by destruction of
the nucleus, DNA fragmentation, chromatin condensation,
and cell shrinkage [1, 2]. Caspases-8, -9, and -3 are pivotal
junctions in apoptosis pathways [38, 39]. Caspase-8 and
caspase-9 can activate caspase-3 via proteolytic cleavage.
e activated caspase-3 then cleaves vital cellular proteins
to trigger apoptosis. e role of caspases has also been
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F 1: Triggering factors of hepatic apoptosis can be roughly classi�ed into three groups. �xtrinsic causative factors indicate that triggering
factors are from external environment or they are foreign to the body such as viruses, alcohol, and drugs. Intrinsic factors include the causative
factors that are derived from the liver itself, for example, toxic bile acids and free fatty acids. Immune factors can be either an independent
etiological factor or interactive factor during pathogenesis of liver injury. For example, viral infection can uncover internal antigen to expose
immune system and further exacerbate the severity of liver injury.

proven by gene knockout experiments. A deletion targeting
caspase-8 resulted in perinatal mortality aer day 12 [40].
Caspase-3 and caspase-9 de�cient embryos died of severe
defects in brain development [41, 42]. Caspases are regulated
at multiple levels by APAF1, CFLAR/FLIP, NOL3/ARC,
and inhibitors of apoptosis proteins (IAPs) family [43–
46]. Of note, apoptotic cell death is dominantly induced
by caspase activation, but apoptosis-inducing factor (AIF)
or AIF-homologous mitochondrion-associated inducer of
death- (AMID-)mediated apoptosis also induces apoptosis in
a caspase-independent manner [47].

4.2. Death Receptor-Dependent Pathway (Extrinsic Pathway).
Apoptotic process is initiated by the interaction between
apoptosis-causing factors and their cognate ligands. ese
speci�c ligands bind to cell membrane receptors that belong
to the tumor necrosis factor receptor (TNFR) gene super-
family. Some ligands/receptors such as Fas ligand (FasL,
CD95L), TNFR-1, and TRAIL receptors DR-4 and DR-5
have been extensively studied [48, 49]. Since the apoptosis-
triggering factors from inner environment of cells, the
pathway through the activation of “death receptors” is
called the death receptor-dependent apoptosis or extrinsic
apoptosis. Cysteine-rich extracellular subdomains of TNFR
family mediate the cytoplasmic death domains. Following
the activation of death receptors, adapter molecules like
RIP1, TRADD, TRAF2, or FADD are recruited to the death
domains of the activated death receptors, forming the death-
inducing signaling complex (DISC) [50]. e death effector

domain of FADD sequesters procaspase-8 to the DISC.
Active caspase-8 works at downstream effector caspases,
subsequently cleave speci�c substrates and �nally resulting
in cell death. is is a direct and main pathway of caspase-
dependent apoptosis [51].

4.3. Mitochondrial-Dependent Pathway (Intrinsic Pathway).
Intracellular conditions can be altered by a variety of
adverse factors such as growth factor deprivation, oxida-
tive stress, and metabolic disturbances. As the accumula-
tion of harmful responses surpasses the critical threshold,
mitochondrial damages occur. e mitochondrial impair-
ment can be demonstrated by ATP depletion, inhibi-
tion of 𝛽𝛽-oxidation, and an increase in the permeabil-
ity of the mitochondrial membranes [52–54]. e per-
meabilization of the mitochondrial transmembrane incurs
the release of proapoptotic proteins from the mitochon-
drial intermembrane space into the cytoplasm, for exam-
ple, Smac/Diablo, HtrA2/Omi, apoptosis-inducing factor,
endonuclease endoG, and cytochrome 𝑐𝑐 [55, 56]. e release
of mitochondrial proteins is of importance in mediating
and enhancing apoptotic pathways. For example, cytosolic
cytochrome 𝑐𝑐 can bind to monomeric Apaf-1, assemble the
apoptosome (a cytosolic death signalling protein complex),
and trigger the activation of the initiator procaspase-9 [57].
Activated caspase-9 initiates downstream effector caspases
such as caspase-3, caspase-7, and caspase-6, ultimately result-
ing in cell death with all the morphological and biochemical
features [1, 2, 58]. In contrast, this type of apoptosis is induced
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F 2: Diverse stimuli from inside or outside the cell can cause apoptosis. In�ammatory cytokines (e.g., TNF𝛼𝛼) may continually induce
the activation of caspase-8, caspase-3, and DNA fragmentation through membrane receptors. is apoptotic pathway, called the extrinsic
pathway, is a direct activation of caspases. Intracellular metabolic disturbances or excess reactive oxygen species can hurt mitochondria
and result in cytochrome c release and caspase-9 activation. e activated caspase-9 further stimulates caspase-3 activation and apoptosis.
Because this type of apoptosis is from mitochondrion-mediated activation of caspases, it is thus named mitochondrial-dependent pathway
or mitochondrial pathway. Sometimes, it is also called indirect pathway or intrinsic pathway. Mitochondrial dependent pathway is different
from extrinsic apoptotic pathway, but two pathways are not mutually exclusive in liver. e mitochondrial pathway is very important during
hepatic apoptosis, which is oen required to amplify the relatively weak death receptor-induced apoptotic signal. Apoptotic causative factors
are able to activate survival signals against cell death as well.

by intracellular stressors, which is thus termed intrinsic
apoptotic pathway or intrinsic pathway. Since mitochondria
play a central role in the integration and propagation of
death signals originating from inside the cell, it is also
called mitochondrial dependent pathway or mitochondrial
pathway. Particularly, those mitochondrial events are con-
trolled by the regulatory mechanisms, which are in many
ways dependent on members of the Bcl-2 family [59].
Mitochondrial-dependent pathway is different from above-
mentioned extrinsic apoptotic pathway, but two pathways are
not mutually exclusive in liver. emitochondrial pathway is
oen required to amplify the relatively weak death receptor-
induced apoptotic signal in liver cells [60].

5. RegulatoryMechanisms of Hepatic Apoptosis

e apoptosis signaling pathways are kept in an inactive state
in viable cells, but ready for action in most cell types. All
of animal cells might be intrinsically programmed to self-
destruct. e activation of apoptosis is turned on in response
to the ligation of a death receptor with its cognate ligand.
Cells would die instantaneously unless cell death is inhibited
by survival signals (e.g., growth factors) [61, 62]. e various

antiapoptotic molecules as well as proapoptotic factors have
been identi�ed. ese components are genetically encoded.
e apoptotic cell death requires the interplay of a multitude
of factors. ese related factors are organized in a tight
and efficient manner in the mediation and regulation of
apoptotic signaling (Figure 3). e apoptotic process is
modulated at different stages or locations. For example,
antibody can neutralize the apoptosis-causing factors, for
example, in�ammatory cytokine TNF𝛼𝛼 [63].emembers of
IAP family and iNOS can inhibit caspases along extrinsic or
intrinsic pathways [64, 65]. Bcl-2 family mainly regulates the
intrinsic pathway in cytoplasm [66]. Mitochondrial proteins
Smac/Diablo and Prss25/HtrA2/Omi modulate IAP activity
as well [67, 68]. Transcription factors NF-𝜅𝜅B, c-Jun, and
p53 mediate apoptosis through up- or downregulation of
apoptosis-related gene expression in nuclei.e details of the
regulatory mechanisms still need to be determined.

5.1. IAP Family. IAPs are grouped as a family of antiapoptotic
proteins. Many homologues are conserved across several
species. �ight members of human IAPs have been identi�ed
so far [69]. e IAP members are de�ned by the presence
of one or more repeats of Baculovirus IAP repeat (BIR)
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F 3: All of animal cells may be intrinsically programmed to self-destruct. e activation of apoptosis causes cell death instantaneously
unless the cell death is inhibited by survival signals. e various antiapoptotic molecules as well as proapoptotic factors have been identi�ed.
e apoptotic cell death requires the interplay of a multitude of factors. ese related factors are organized in a tight and efficient manner in
the mediation and regulation of apoptotic signaling. e members of IAP family and iNOS can inhibit caspases along extrinsic or intrinsic
pathways. Bcl-2 family mainly regulates the intrinsic pathway in cytoplasm. Mitochondrial proteins Smac/Diablo and Prss25/HtrA2/Omi
modulate IAP activity as well. Transcription factors such as NF-𝜅𝜅B and p53 mediate apoptosis through up- or downregulation of apoptosis-
related gene expression in nuclei. e detailed regulatory mechanisms still need to be determined.

domains made of 70 amino acid motifs. e antiapoptotic
properties of IAPs depend on interaction between the BIR
domains and caspases [70]. In XIAP molecule, for example,
the BIR3 domain directly binds to the small subunit of
caspase-9, but the BIR2 domain interacts with the active-
site substrate binding pocket of caspases-3 and -7 [71, 72].
cIAP1 and cIAP2 contain a caspase-recruitment domain
that mediates protein-protein interactions. cIAP1 and cIAP2
can also directly bind caspases-3, -7, and -9 [73]. e
function of IAPs has long been limited to an inhibition
of apoptosis through their capacity to bind some caspases.
Biochemical data have indicated that cIAP1 and 2, initially
thought to be caspase inhibitors [74], can bind to caspases
but do not directly inhibit them [75]. Instead, accumulating
evidence suggests that cIAP1 and -2 are involved in various
signal transduction pathways, including NF-𝜅𝜅B activation in
response to TNF𝛼𝛼 [76]. e precise biologic roles of cIAP1
and 2 are currently not known. Anyway, a direct binding
to caspase by cIAPs is very important means of regulation.
Mitochondrial Smac/Diablo released from themitochondrial
intermembrane space can counteract the inhibitory effect

of IAPs on caspases when Smac/Diablo binds to IAPs (e.g.,
XIAP). Smac/Diablo is a negative regulator of IAPs and
displays its apoptosis-enhancing property [77].e antiapop-
totic IAPs mediate both death receptor-dependent pathway
and mitochondrial-dependent pathway. While IAPs regulate
cell death by controlling caspases, they also modulate other
signaling processes that impact cell viability. IAPs contain
a highly conserved ring domain at their C-terminal end
which possesses E3 ubiquitin ligase activity. ey may target
other proteins such as caspase-3 and -7 for ubiquitination
and degradation [78, 79]. Probably the most important con-
tribution of IAPs to cell survival and tumorigenesis resides
in the ability of a number of IAPs to act as ubiquitin-E3
ligases regulating NF-𝜅𝜅B signaling [80]. Certain members
of IAP family function as important gatekeepers of cell
death and survival. Since the prominent expression of these
proteins is found in some tumors, IAPs are targets for
anticancer therapy [81]. At present, many small molecules
have been designed for their capacity to inhibit IAP-caspase
interaction.
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5.2. iNOS Expression. Nitric oxide (NO) is enzymatically
synthesized from l-arginine by three well-known NO syn-
thase isoforms [82]. ey are neuronal NO synthase (type
1 NOS), inducible NO synthase (iNOS or type 2 NOS),
and constitutively expressed endothelial NO synthase (eNOS
or type 3 NOS), respectively. NO as a short-lived free
radical exhibits its role in neurotransmission and memory
formation, prevention of blood clotting, regulation of blood
pressure, and mediation of the bactericidal and tumoricidal
activity ofmacrophages [83]. Under physiological conditions,
only the constitutive eNOS produces the low level of NO in
liver to regulate hepatic perfusion. iNOS expression can be
induced by cytokines or microbial products (e.g., LPS). iNOS
is readily up-regulated in the liver under a number of condi-
tions, including endotoxemia, hemorrhagic shock, ischemia-
reperfusion, sepsis, infection, hepatitis, ozone exposure, and
liver regeneration [84]. e iNOS expression is downregu-
lated by steroids, TGF𝛽𝛽, the heat shock response, p53, and
NO itself [85]. In vivo hepatic iNOS induction is differ-
entially regulated by the typical acute-phase reactants [86].
NO protects hepatocytes from TNF𝛼𝛼-induced apoptosis and
hepatotoxicity. e up-regulation of iNOS/NO is apoptosis-
resistant in liver [87, 88]. e antiapoptotic mechanisms of
NO involve a series of NO target interactions that range from
indirect and nonspeci�c to direct interaction with apoptotic
machinery. NO directly inhibits caspase activity through
S-nitrosylation of cysteine thiol in hepatocytes, endothelial
cells, and several tumor cell lines [89–91]. S-nitrosylation of
caspases in hepatocytes is a very efficient activity [92]. e
antiapoptotic action of NO inhibits the most apical caspase-
8 by S-nitrosylation, subsequently preventing Bid cleavage,
mitochondrial cytochrome 𝑐𝑐 release, and caspases-9 and -3
activation [93]. NO can rescue a cell from apoptosis even
aer the caspase cascade has been activated. Because NO
easily diffuses within a cell or from cell to cell, NO can
efficiently guard against aberrant activation of caspases. In
addition, the antiapoptotic effects ofNO include (i) induction
of cytoprotective stress proteins, for example, HSP32 and
HSP70; (ii) cGMP-dependent inhibition of apoptotic signal
transduction [94, 95].

5.3. Bcl-2 Family. Bcl-2 is the �rst oncogenic gene to demon-
strate that tumorigenesis depends on the ability to prevent
apoptosis [96]. Mammalian Bcl-2 family contains up to 30
relatives, of which some belong to a group of pro-survival
members and others to a group of proapoptotic members
[97]. e prosurvival proteins, for example, Bcl-2, Bcl-XL,
Bcl-w, A1, and Mcl-1, possess the domains BH1, BH2, BH3,
and BH4. e proapoptotic group includes Bax-subfamily
(Bax, Bak) and Bok. BH3-only proteins (e.g., Bid, Bim,
Bik, Bad, Bmf, Hrk, Noxa, Puma, Blk, BNIP3, and Spike)
have short BH3 motif, an interaction domain that is both
necessary and sufficient for their killing action [98, 99].
e Bcl-2 family controls apoptosis through either guarding
mitochondrial integrity to prevent release of cytochrome c
from the mitochondria [100, 101] or directly inhibiting acti-
vation of caspases [102]. Bax, a cytosolic monomer, changes
its conformation during apoptosis and integrates into the

outer mitochondrial membrane and oligomerizes [103]. Bax
and Bak oligomers are believed to provoke or contribute to
the permeabilization of the outer mitochondrial membrane,
either by forming channels by themselves [104] or by inter-
acting with components of the membrane pore [105]. In
contrast, antiapoptotic Bcl-2 members sequester proapop-
totic Bcl-2 members by binding to their BH3 domains
and thereby prevent Bax or Bak activation/oligomerization
and consequently inhibit mitochondrial proapoptotic events.
Overexpression of Bcl-2 or Bcl-XL inhibits apoptosis by
suppressing the generation of reactive oxygen species (ROS),
preventing an increase in the permeability and blocking
the release of cytochrome 𝑐𝑐 [106]. e possible mechanism
through which the Bcl-2 family regulates apoptosis can be
outlined as follows: particular BH3-only proteins activated
by speci�c apoptotic stress signals interact with antiapoptotic
members on the outer mitochondrial membrane and result
in the release of Bax-like proapoptotic factors. e Bax-like
factors undergo a conformational change and slip into the
outer mitochondrial membrane. is process provokes an
enhancement in the permeability of the mitochondrial mem-
branes and the release of apoptogenic factors [97]. Besides
eliciting antiapoptotic effects on the mitochondrial level, Bcl-
2 also inhibits apoptotic pathways that might depend on
caspase-7 as a central effector [107]. Bcl-2 antiapoptotic pro-
teins inhibit cell death rather than promoting proliferation.

5.4. Transcription Factors: NF-𝜅𝜅B, p53, and c-Jun. ere are
a lot of transcription factors involving apoptotic process.
Here, NF-𝜅𝜅B, p53, and c-Jun are chosen to represent roles
of transcription factors. Transcription factor NF-𝜅𝜅B has
been described as an essential antiapoptotic factor as well
as a central regulator of the innate and adaptive immune
response. e NF-𝜅𝜅B can upregulate expression levels of
antiapoptotic proteins such as Bcl-2, Bcl-XL, and A1 [108,
109]. e activation of NF-𝜅𝜅B mediates Akt, known as
protein kinase B, to involve cell proliferation and play a
key role in transcription of pro-survival genes [110]. NF-
𝜅𝜅B can also activate gene expression of antiapoptotic IAPs,
for example, survivin in hepatocytes [111]. e crucial role
of cIAP1, cIAP2, and XIAP has been discussed in the
regulation of NF-𝜅𝜅B activating signaling pathways. Many
small molecules have been designed for their capacity to
inhibit IAP-caspase interaction. Unexpectedly, these small
molecules appeared to signi�cantly affect NF-𝜅𝜅B activation
[76]. Transcription factor p53 is retained in the cytosol at low
cellular concentrations. Ubiquitination of p53 is mediated
by oncogene Mdm2. In response to cellular stress such as
oncogene activation, hypoxia, and especially DNA damage,
p53 is phosphorylated at speci�c serine/threonine residues
[112]. e activated p53 represses antiapoptotic proteins, for
example, Bcl-2, Bcl-XL, or survivin, resulting in growth arrest
and/or apoptosis [113, 114]. In transcription-independent
p53 apoptosis pathways, p53 can be translocated to mito-
chondria and interacted with Bcl-XL to induce the release of
cytochrome 𝑐𝑐 [115]. p53-mediated apoptosis pathways can
be suppressed by survival signals, such as growth factors
binding to their cognate growth factor receptors that results
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in activation of the Akt kinase [116, 117]. p53 is induced
by oncogenes such as c-myc, adenovirus E1A, and ras [118],
transcriptionally regulated by acetylation and SUMOylation
[119, 120]. More than 50% of human tumors contain a
mutation or deletion of the p53 gene [121, 122]. e loss
of the gene p53 contributes to the decreased expression
of CD95 and reduced sensitivity of hepatocellular carci-
noma (HCC) cells towards this apoptosis pathway, whereas
microinjections of wild-type p53 and treatment with the
chemotherapeutical bleomycin restore sensitivity towards
CD95-induced apoptosis in tumor cells [123]. Moreover,
p53 induces CTGF expression and promotes liver �brosis
[124]. p53-mediated signaling also leads to the progression
of nonalcoholic steatohepatitis in humans and mice, possibly
through controlling p66Shc signaling, ROS levels, and apop-
tosis [125]. c-Jun, a basic leucine zipper transcription factor,
is mainly activated through double phosphorylation by the
JNK pathway [126]. c-Jun is able to crosstalk, amplify, and
integrate different signals for tissue development and disease
through multiple layers of a complex regulatory scheme
[127, 128]. c-Jun is involved in numerous cell activities,
such as apoptosis, proliferation, survival, tumorigenesis, and
tissue morphogenesis [129, 130]. c-Jun protects hepatocytes
against excessive activation of the endoplasmic reticulum
stress response and subsequent cell death [131]. Primary hep-
atocytes lacking c-Jun show increased sensitivity to TNF𝛼𝛼-
induced apoptosis [132]. c-Jun knockout mice die at midges-
tation with increased numbers of apoptotic cells in the fetal
liver [133, 134]. Differentiated hepatocytes, rather, require c-
Jun for cell-cycle progression. Conditional deletion of c-Jun
in adult livers mainly reduces the proliferation capacity of
hepatocytes aer partial hepatectomy [135]. c-Jun is also a
major regulator in the development of hepatic carcinomas. c-
jun was required at early stages of chemically induced HCC
in mice [132, 136] as well as activated in HCC of humans
[137], suggesting an important oncogenic function for this
gene in liver tumors of mammals. Oncogenicity of c-Jun may
be due to several mechanisms: c-Jun cooperates with Ras in
tumor cell proliferation [138]; c-Jun directly represses p53
transcription to affect the anti-proliferative activity of p53
[139]; in addition, c-Jun modulates TNF𝛼𝛼 and TGF𝛽𝛽 signal-
ing pathways to participate in development of liver tumor
[140, 141].

6. Outcomes of Hepatic Apoptosis

Apoptosis is a complicated process that induces cell death
and modi�es tissue response. Diversity of apoptosis in
speci�c tissue or cells is able to cause different diseases.
Apoptosis in neurons contributes to neurodegeneration such
as Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, and amyotrophic lateral sclerosis [142]. Apoptosis
of endothelial cells results in ischaemia, for example, stroke,
myocardial infarction [143]. Massive apoptosis of T lym-
phocytes causes AIDS or a failure to eliminate autoreactive
lymphocytes leads to autoimmunity [144]. In liver, hepatic
apoptosis affects the progression of liver disease withmultiple
changes. Outcomes of hepatic apoptosis include liver dys-
function, �brosis/cirrhosis, and tumorigenesis (Figure 4).

Apoptosis
Anti-apoptosis

Dysfunction
fibrosis/cirrhosis

tumor

F 4: Apoptosis is a complicated process that induces cell death
and modi�es tissue response. e severity of liver injury may result
from an imbalance between apoptotic and antiapoptotic capabilities.
Hepatic apoptosis affects the progression of liver disease. Outcomes
of hepatic apoptosis include liver dysfunction, �brosis/cirrhosis, and
tumorigenesis.

6.1. Dysfunction. e roles of apoptosis are multiple in
the adult body. One important function is to maintain
homeostasis. A lot of aged or ill cells die by apoptosis every
second and a similar number are produced by mitosis for the
maintenance of homeostatic balance [145]. Another speci�c
task for apoptotic process is the regulation of immune cell
selection and activity [146]. Apoptotic death of hepatocytes
is a characteristic feature in liver diseases caused by viral
hepatitis, cholestasis, alcoholism, ischemia/reperfusion, liver
preservation for transplantation, and drug/toxicant-induced
injury [147]. Chronic liver disease actually is a comprehen-
sive consequence of both main apoptosis and less initial
necrosis. Massive apoptosis may predominantly involve in
the early stage of chronic or subacute liver injury [148].
Apoptotic cell death is executed through an ATP-dependent
death program oen initiated by either death ligand/receptor
interactions or mitochondrial permeabilization and release
of proapoptotic proteins. Hepatic apoptosis is able to be
detected by caspase assay, DNA-fragmentation assay, �uo-
rescent dye, and TUNEL staining. Liver dysfunction re�ects
the severity of liver damage that includes both apoptosis and
necrosis. Liver function can be tested by the serum levels
of ALP, AST, ALT, bilirubin, total cholesterol, and glucose.
In fact, several modes of acute or chronic liver disease are
related to both apoptosis and necrosis [149, 150]. Which
kind of liver disease is predominantly related to apoptosis?
Which one to necrosis?What are themediators (e.g., immune
cells, ligands), are there translational approaches (antibodies,
inhibitors) to block apoptosis in this context? It is still a
long way to answer these questions. Current data indicate
that blocking hepatic apoptosis (e.g., deletion of caspase-8)
may also trigger an increased liver necrosis or necroptosis
[151, 152].
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6.2. Fibrosis/Cirrhosis. Apoptosis mediates the mechanisms
of hepatic �brosis/cirrhosis [153]. Apoptotic cell death of
hepatocytes emerges as a fundamental component of vir-
tually all acute and chronic liver diseases. Apoptosis affects
liver tissue repair, regeneration, and �brosis [154–156]. e
liver has well-documented strong regenerative abilities—it
can regenerate from up to a 70% hepatectomy. e hepate-
ctomized livers regenerate to nearly their original mass in
just days by cell proliferation. In many chronic liver diseases
and aer chronic exposure to hepatotoxins like toxic drugs or
alcohol, regeneration may not keep pace with hepatocellular
death. Fibrotic scars synthesized largely by hepatic stellate
cells gradually replace and displace functional hepatocytes
[157]. An increasing body of evidence from both experimen-
tal and clinical studies suggests that hepatocyte apoptosismay
contribute to liver �brogenesis [18]. For instance, in animal
models of cholestasis, attenuation of hepatocyte apoptosis
also reduces �brogenesis [158]. Engulfment of apoptotic
bodies by hepatic stellate cells stimulates the �brogenic
activity of these cells and may be one mechanism by which
hepatocyte apoptosis promotes �brosis [159]. Chronic liver
injury can continuously activate myo�broblasts to exacerbate
hepatic �brosis [160]. Hepatic �brosis has the potential to
be the most deleterious effect on the liver, as progressive
�brosis can culminate into cirrhosis.e cirrhosis is themost
nefarious consequence of continuous liver injury with portal
hypertension and implications, as it results in chronic liver
failure and death. Cirrhosis also is a serious risk factor in
pathogenesis of hepatocellular carcinomas [161]. In addition,
recent studies in animal models of chronic liver injury with
mixed apoptosis and necrosis demonstrated that blocking
apoptosis alone is not sufficient to prevent liver �brosis
[162, 163]. us, an understanding of how liver cells die and
how such cell death can be modulated is of obvious clinical
relevance.

6.3. Carcinogenesis. Hepatic apoptosis is associated with
liver carcinogenesis via two potential mechanisms. One is
apoptotic bodies stimulate continuous cell turnover that
provides a platform for cancer-initiatingmutations, while the
proapoptotic pressure is an impetus to develop mechanisms
to avoid apoptosis [164]. e other is malfunction of the
deathmachinery results from themutation of genes that code
for factors directly or indirectly involved in the initiation,
mediation, or execution of apoptosis [165]. Dysregulation of
apoptotic signaling can cause insufficient apoptosis leading
to cancer (cell accumulation, resistance to therapy, defec-
tive tumor surveillance by the immune system), persistent
infections (failure to eradicate infected cells) [144, 145,
166]. Tumorigenesis is not merely the result of excessive
proliferation due to the activation of oncogenes, but also
frequent impairment of apoptosis checkpoints [167, 168].
eoretically, deregulated malignant transformation sensi-
tizes a cell to apoptosis. However, when those oncogenic
transformed cells acquire additional defects in apoptosis
pathways, they are therefore protected against apoptotic cell
death and become malignant seeds [169]. A transformed
cell can activate an expression of antiapoptotic oncogenes or

inactivate proapoptotic tumor-suppressors, which results in
a protection against apoptosis. Several examples re�ect this
apoptosis-mediated special function during carcinogenesis.
Bcl-2 was the �rst apoptosis-related gene that was recog-
nized to play a role in tumorigenesis. Overexpressed Bcl-
2 in a variety of cancers contributes to cancer cell survival
through direct inhibition of apoptosis [170, 171]. Conversely,
mutations of Bax or Bak genes in certain cancers promote
tumorigenesis in vivo [172–174]. OncogenicAkt/PKBkinase,
frequently active or ampli�ed in many types of human
cancer [175], can negatively regulate proapoptotic Bad and
procaspase-9 [117]. Its antagonist, the phosphatase PTEN,
is a tumor suppressor [176]. Furthermore, Akt/PKB is stim-
ulating the NF-𝜅𝜅B survival pathway by phosphorylation of
I𝜅𝜅B kinase alpha. is process suppresses p53 proapoptotic
signalling by phosphorylation of the oncogene Mdm2 [177].
ere is an inappropriate activation or overexpression of
both NF-𝜅𝜅B andMdm2 during the process of transformation
[178, 179]. Defective apoptosis causes tumor formation, pro-
gression, metastasis, and occurrence of multidrug resistance
during cancer therapy [180]. A lack of apoptosis or enhanced
liver apoptosis may both result in hepatocellular cancer
depending on the tissue environment [164, 166, 181].

7. Summary and Future Study

Speci�c strategies should be employed to address the various
causes that induce hepatic apoptosis and the different stages
of liver injury. For the treatment of premature cell death,
the inhibition of proapoptotic key components such as the
caspases might be promising [166]. Interventions in hepatic
apoptosis can help to delay disease progression, reduce the
morbidities of liver insufficiency, enhance the quality of life,
and prolong patient survival. By examining the mechanisms
by which components of the apoptotic machinery contribute
to pathogenic processes, we will broaden our understanding
of the liver injury/repair response. e long-term goal is
to design future hepatoprotective strategy through potential
therapeutic use of apoptotic/antiapoptotic modalities. For
tumorigenesis, strategies may include the targeted activation
of proapoptotic tumor suppressors and/or alternatively the
blockade of antiapoptotic oncogenes. Aer understanding
of the core components of the apoptosis mechanism at the
molecular and structural levels, lots of attempts have been
concentrating on IAPs as targets for anticancer therapy [182,
183]. At present, some caspase inhibitors and new drugs tar-
geting IAPs are as follows. (i) Caspase inhibitors. Pan-caspase
inhibitors include IDN-6556 (ID�N), PF-03491390 (P�zer),
Emricasan (Conatus), and VX-166 (Vertex). Inhibitor for
caspase-8, -9, -1 contains GS-9450 (previously known as
LB84451) (Gilead). ese inhibitors are used in preclinical
studies, liver preservation (IDN-6556), and human clinical
trials (GS-9450, PF-03491390, IDN-6556), respectively. (ii)
New drugs targeting IAP family member. Survivin inhibitor
YM155 has been using in clinical trials. XIAP-antisense
oligonucleotide AEG35156 and phenoxodiol targeting XIAP
(a synthetic derivative of plant iso�avone genistein) were
also tried. AT-406 targeting cIAP1, cIAP2, and XIAP has
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been beginning in clinical trial [184]. e effectiveness of
cancer therapy was the highest when several IAPs were
downregulated simultaneously, suggesting that multiple IAPs
rather than an individual IAP (e.g., XIAP) should be targeted
[185]. Potential problems with the long-term clinical use
of caspase (or IAP) inhibitors: (a) hepatocarcinogenesis; (b)
upregulation of caspase (or IAP) independent cell events; (c)
Biochemical �are or overshootwhen stopped.ese potential
problems must be addressed.

Future studies will investigate pro�les of apoptot-
ic/antiapoptotic gene expression, regulation of apoptot-
ic/antiapoptotic genes, and potential clinical use of these
gene targets. Apoptosis-related signaling network needs to
be clari�ed and detailed. Potential methods include analysis
of gene expression, novel proteomic approaches, as well
as functional studies of theses apoptosis-related genes. e
preferences are as follows: (1) to amplify antiapoptotic role
during liver injury and repair; (2) to promote apoptosis of
hepatic stellate cells; (3) to inhibit antiapoptotic role in cancer
cells; (4) Combinative application of apoptotic/antiapoptotic
techniques. A comprehensive guideline should be consid-
ered, which will include. (a) removal of causes (viral killers,
alcohol absence, drug safety, diet); (b) regulation of apoptosis
by small non-coding RNAs (e.g., siRNA, saRNA) or caspase
inhibitors; and (c) replacement sick cells by stem cell therapy.
In summary, hepatic apoptosis is an essential process in the
pathogenesis of liver disease. e hepatic apoptosis and its
regulatory mechanism can provide the necessary tools to
combat liver diseases.

8. Conclusion

(i) Hepatic apoptosis is a prominent pathological feature
in liver diseases.

(ii) Outcomes of hepatic apoptosis include liver dysfunc-
tion, �brosis/cirrhosis, and tumorigenesis.

(iii) e regulation of apoptosis and antiapoptosis can
provide the necessary tools to combat liver diseases.
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