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Abstract: Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular
matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human
chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is
closely associated with signaling molecules, especially mitogen-activated protein kinases (MAPKs),
including three representative kinases, extracellular signal regulated kinases (ERK), p38 and c-Jun
N-terminal kinases (JNK). Ginseng (Panax sp.) is a plant which has been traditionally used for
medicinal applications. Ginsenosides are major metabolites which have potentials to treat various
human diseases. In this review, the pharmacological effects of ginsenosides have been rigorously
investigated; these include anti-metastatic and anti-inflammatory activities of ginsenosides associated
with suppression of MMPs via regulation of various signaling pathways. This will highlight the im-
portance of MMPs as therapeutic targets for anti-metastatic and anti-inflammatory drug development
based on ginsenosides.
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1. Introduction

Cancer metastasis is the primary cause of death of cancer patients, as it occupies about
67% of cancer deaths [1]. Cancer metastasis involves multiple cellular events: invasion into
adjoining cells, migration and moving out to distant sites from the origin of tumorigenesis
through the artery and lymphatic systems, and angiogenesis [2,3]. To promote metasta-
sis, cancer cells have to break out and remodel the extracellular matrix (ECM) which is
composed of collagen, laminins, fibronectin, elastin and multiple types of polysaccharide,
because the ECM acts as a chemical and physical barrier anchoring cancer cells to the
origin of tumorigenesis [4]. Therefore, ECM degradation has grabbed cancer researchers’
attention as one of the most critical events of metastasis. Matrix metalloproteinases (MMPs)
enzymatically remove components of the ECM and allow cancer cells to migrate, invade
and spread to tissues from remote organs [5]. It is previously reported that ECM alteration
by MMPs can stimulate inflammation [6]. Furthermore, MMPs can process non-matrix
proteins including inflammatory mediators, which indicates that they can also exacerbate
inflammation and related human diseases [7]. Therefore, it is implicated that modulation
of MMPs may contribute to improvement of cancer metastasis and inflammatory diseases.

Ginseng (Panax sp.) has been prevalently utilized for effective herbal medicine, di-
etary supplements and food products in Asian countries [8]. A broad range of clinical
investigations have elucidated ginseng’s pharmacological effects [9,10]. Those effects in-
clude treatments of cancers, hypertension and diabetes, alleviation of stress, regulations
of metabolism and cholesterol, and stimulation of physical performance [11]. Among its
various constituents, ginsenosides are the main phytochemicals which play critical roles in
the therapeutic effects of ginseng [12]. Ginsenosides have 4 major classes; protopanaxatrial
and protopanaxadiol types which have dammarane backbone, oleanolic acid type with
a pentacyclic triterpenoid, and ocotillol type which has a dammarane backbone and an
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epoxy ring at C20 position (Figure 1) [13]. The clinical potential of various ginsenosides
has been reported for the treatment of chronic illnesses [14].
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This review summarizes recent investigations into the suppressive effects of ginseno-
sides on cancer metastasis and inflammation, especially through the regulation of MMPs
via modulation of various cellular signaling pathways. This will not only provide the me-
chanical basis of MMP inhibition on cancer metastasis and inflammation by ginsenosides
but also raise the idea of developing new anti-metastatic and anti-inflammatory agents
targeting MMPs based on the pharmacological effects of ginsenosides.

2. MMPs and Cancer Metastasis

During metastasis, cancer cells often undergo the epithelial into mesenchymal tran-
sition (EMT) which involves round-shaped epithelial cells changing into polarized mes-
enchymal cells to acquire mobility [15]. In addition, ECM degradation must be preceded
to allow cancer cells “freedom” to move out. Once cancer cells are able to pass through
the ECM, they migrate and invade into and out of blood/lymphatic vessels and reach
out to tissues and organ systems in distance. In addition, angiogenesis also needs to be
accompanied to provide oxygen and nutrients to fast-growing cancer cells.

MMPs are a family of zinc-dependent multi-domain enzymes that play major roles in
the degradation of ECM assembly (Figure 2A). Almost all MMPs show high homology in
the structural organization as represented by proMMP-2 (Figure 2B). At amino-terminus,
they have signal peptide that allocates the fate of MMPs whether they would be secreted or
membrane-bound. Then, they have a propeptide region, a catalytic domain that possesses a
catalytic zinc ion highly coordinated by calcium ions, and a long linker region. At carboxy-
terminus, there is a hemopexin domain that forms homodimer for the full migratory
ability in proMMP-9. Activation of proMMPs is achieved by proteolytic removal of the
propeptide which physically blocks the zinc-containing active-site pocket. MMPs are
categorized into several types based on their molecular structures and substrate preference
(Table 1) [16–19]. For example, collagenases including MMP-1 and MMP-8 specialize in
breakdown of interstitial collagens I, II and III, while gelatinases MMP-2 and MMP-9
mainly favor digestion of collagen type IV and gelatins. Since different types of MMPs
can react with multiple constituents of the ECM, well-controlled expression and activity
of MMPs is crucial for metabolic events of cells such as remodeling of tissues and cell
development [20]. However, dysregulation of MMPs can result in severe human diseases
such as inflammation and tumorigenesis. Considering that one of major roles of ECM
assembly is acting as a physical barrier to protect cells from adverse effects, MMPs can
promote aging of skin, arthritis and metastasis of cancer cells [21].
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Figure 2. Structure and domain organization of proMMP-2. (A) Structure of proMMP-2 is presented
as an example of MMP structure. proMMP-2 is composed of functionally distinct domains. The
catalytic domain, propeptide and hemopexin domain are described in orange, pink and cyan color,
respectively. Zn++ and Ca++ ions are indicated by red and gray color, respectively. Illustration is
based on the crystal structure (PDB accession number: 1CK7). (B) Domain organization of proMMP-2
is presented as a representative example of MMP domain organization.

Functional roles of MMPs in cancer metastasis are not limited to the physical release
from ECM structure. MMPs also have stimulatory or inhibitory effects on angiogenesis. Of
many kinds of MMPs, MMP-2 and MMP-9 play the most important roles in angiogenesis
process [22]. MMP-9 proteolytically digests ECM and releases vascular endothelial growth
factor (VEGF), an ECM-bound factor that is important in the stimulation of angiogenesis.
MMP-2 and MMP-9 also contribute to the angiogenesis via endostatin generation and
angiostatin release by proteolytic cleavage of collagen XVIII and digestion of plasmino-
gen, respectively [17]. MMP-9 also affects regulation of blood vessel development via
degradation of type IV collagen of ECM and subsequent exposure of HUIV26 epitope.
On the other hand, in the process of EMT, epithelial cells lose their integrity and undergo
a phenotypic change into mesenchymal cells. By this process, cancer cell migration and
invasion are stimulated. Elevated metastatic ability of mesenchymal cells would be associ-
ated with high expression level of MMPs in mesenchymal cells [23]. Moreover, previous
report also indicated that MMPs promote cell migration non-enzymatically via hemopexin
domain [24]. They demonstrated that the hemopexin domain of proMMP-9 contribute to
the cell migration through the protein domain swapping approach. As mentioned, MMPs
are associated with various steps of cancer metastasis and, thus, would be the prominent
target for anti-cancer agent development.
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Table 1. Classification of major MMPs and their substrate specificity for ECM components.

Group MMP ECM Substrates

Collagenases
MMP-1 Collagens (III>I>II, VII, X), gelatin, entactin, laminin, aggrecan, perlecan
MMP-8 Collagens (I>II>III, VII, X), gelatin, fibronectin, aggrecan
MMP-13 Collagens (II>III>I, VII, X), gelatin, aggrecan, entactin

Gelatinases
MMP-2 Gelatin, collagen (IV-VI), fibronectin, elastin

MMP-9 Gelatin, collagen (IV, V, VII, X, XIV, XVIII), fibrillin, elastin, osteonectin,
fibronectin, elastin

Stromelysins
MMP-3 Gelatin, collagens (II, III, IV, V, IX, X, XI, XVIII), laminin, fibronectin, aggrecan,

fibrin, elastin, perlecan
MMP-10 Collagen (I, III-V), gelatin, elastin, aggrecan, proteoglycan
MMP-11 Fibronectin, gelatin, laminin, aggrecan

Matrilysins MMP-7 Collagen (IV–X, XVIII), gelatin, laminin, aggrecan, fibronectin, vitronectin,
fibrin, entactin, vitronectin

MMP-26 Gelatin, collagen type IV, fibronectin, fibrin

Metalloelastase MMP-12 Elastin, collagen (I, IV, XVIII), gelatin, laminin, vitronectin, fibronectin,
proteoglycan

Membrane-type MMPs

MMP-14 Gelatin, collagens (I, II, III), fibronectin, laminin, fibrin, perlecan
MMP-15 Collagens (I, IV), perlecan, fibronectin, laminin, aggrecan, perlecan
MMP-16 Fibrin, gelatin, type III collagen, fibronectin, vitronectin, laminin
MMP-17 Gelatin, fibrin
MMP-24 Gelatin, fibronectin, laminin, proteoglycans

3. MMPs and Inflammation

Inflammation is a crucial event to protect homeostasis against several stimuli including
stress, injury and pathogens. However, aberrant inflammation results in severe human
diseases such as diabetes, arthritis, cardiovascular diseases, neurodegenerative diseases,
progression of cancers and fibrosis [13,25]. Inflammation frequently induces overexpression
of MMPs which can aggravate cellular damage at inflammatory sites [7]. MMPs can regulate
inflammation through cleaving non-matrix substrates including inflammatory cytokines
and chemokines, which can be processed by MMPs to become active forms [7]. Association
of MMPs with inflammation is reported by previous studies. For example, MMP-13 can
promote inflammatory bowel disease in mice through cleavage of pro- tumor necrosis factor
(TNF)-α to generate its mature form [26]. In addition, MMP-2, MMP-3, and MMP-9 can
activate interleukin (IL)-1β via processing of its pro-forms [27]. Correlation of MMPs with
inflammation was also found in clinical studies. For instance, elevated levels of MMP-2 and
MMP-9 were observed in patients with Crohn’s disease and ulcerative colitis [28]. Clinical
data of bronchiectasis patients also show that increase of MMPs are highly linked with
inflammatory mediators [29]. Those studies suggest that appropriate regulation of MMPs
may lead to alleviation and/or prevention of inflammation and related diseases.

4. Signaling Pathways Related with MMP Regulation

Expressions and activities of MMPs are regulated by various signaling pathways.
Mitogen activated protein kinases (MAPKs), which includes three major classes Extra-
cellular signal-regulated kinases (ERKs), p38 and c-Jun N-terminal kinases (JNKs), are
a major family of enzymes highly associated with MMPs. Different stimuli, including
growth factors and cytokines, can induce MAPK signaling pathways, and those signaling
pathways commonly involve cascades consisting of more than three kinases acting sequen-
tially to regulate target proteins via adding phosphate groups to serine and/or threonine
residues [30]. Continuous phosphorylation leads to regulation of transcription factors
which are often related with a wide range of cellular events. For instance, it is stated that
suppression of the ERK and CREB pathway down-regulates transcriptional expressions
of gelatinases (MMP-2 and MMP-9) in ovarian cancer cells [31]. Other reports highlight
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that external stimuli including ultraviolet (UV) and reactive oxygen species (ROS) can
increase expression of MMP-1 via activation of MAPK signaling pathways [22,32]. In rat
chondrocytes, IL-1β-induced collagen II degradation of MMP-1, MMP-3 and MMP-13 was
regulated by ERK and p38 [33]. It is also documented that expression of various MMPs
are regulated by p38 in bladder cancer (HTB5 and HTB9), breast cancer (MDA-MB231),
hepatocellular carcinoma (SK-Hep1 and SNU-387), squamous cell carcinoma (UT-SCC7)
and prostate cancer (PC3 and PC3-M) cell lines from patients with cancer [34–38]. JNK, an-
other type of MAPK is closely linked with metastatic abilities in cancer cells from different
organs including oral cancer and prostate cancer [39,40]. Strengthened cancer metastasis
by JNK can accompany activation of MMPs. Modulation of JNK can down-regulate inva-
sion of oral cancer cells via inhibited expression of MMP-2 and MMP-9 [39]. In prostate
cancer, JNK activated by androgen receptor (AR) resulted in elevated MMP-9 levels and
cell invasion [41].

Association of Phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) signaling
pathways with MMPs are also well known by several reports. In a previous paper, it is
stated that lipopolysaccharide (LPS)-induced overexpression of MMP-9 in RBA-1 rat brain
astrocytes was resulted from PI3K/Akt pathway [42]. Invasive abilities of PTK7-mediated
TE-10 esophageal cancer cells could be enhanced by activation of PI3K/Akt/IKK/ nuclear
factor κB (NF-κB) signaling axis along with ERK signaling pathways [43]. Akt activation
is also needed for migration and invasion of SKOV-3 ovarian cancer cells, as the selective
inhibition of the PI3K/Akt by LY294002 significantly suppressed expression of MMP-2 [44].
Other signaling proteins such as Smad, Notch and myeloid differentiation primary response
88 (MyD88) are also known to regulate expression of MMPs [45–47].

5. Ginseng and Human Chronic Diseases

It is reported that ginseng has been used for medication of human diseases about
5000 years ago in China [48]. There are 13 ginseng spices (Panax ginseng C. A. Meyer, Panax
japonicus C. A. Meyer, Panax pseudoginseng Wallich, Panax quinquefolius, Panax vietnamensis Ha
et Grushv., etc), which are cultivated in different countries and contain different constituents
of metabolites (Table 2) [49]. Recent studies have investigated the potential of ginseng to
treat a wide range of human diseases such as wrinkle formation, cold symptom complex,
tumor progression, cancer-related fatigue, cardiovascular diseases, Alzheimer’s disease and
inflammation, while improving glucose metabolism and cognitive skills [9,13,50–54]. Ginseno-
sides, major secondary metabolites purified from ginseng, possess therapeutic potential as
well. For example, ginsenoside Rg3 has also shown to enhance survival of patients with lung,
gastric and esophageal cancers in clinical studies [9]. Various in vitro and in vivo experiments
demonstrate that other ginsenosides also exhibit anti-cancer and anti-inflammatory effects,
although more clinical trials are needed to confirm those positive outcomes [9,13].
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Table 2. Ginseng species and their major ginsenosides.

Ginseng Species Major Ginsenosides References

Panax ginseng C. A. Meyer Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1, Rh1 [55–57]

Panax japonicus C. A. Meyer Rb1, Rc, Re, Rg1, R1, R2 [58]

Panax pseudoginseng Wallich Rg1, Re, Rb1, Rc, Rb2, Rd [56]

Panax quinquefolius Rb1, Re, Rd, Rg1, Rc, Rb2 [56,59]

Panax vietnamensis Ha et Grushv. Rb1, Rc, Rb2, Rd [56]

Panax stipuleanatus H. T. Tsai and K. M. Feng Rb1, Rb3, Rc, Rd [60]

Panax trifolius L. Ro, Re, Rf, Rg2 [61]

Panax zingiberensis C. Y. Wu and K. M. Feng Ro, Rg1, Rh1 [62]

Panax wangianus Sun Unknown

Panax major Ting Unknown

Panax omeiensis J. Wen Unknown

Panax sinensis J. Wen Unknown

6. Anti-Metastatic and Anti-Inflammatory Effects of Ginsenosides via Regulation of MMPs

As mentioned above, ginsenosides have been reported to have suppressive effects
on varied human diseases. Of note, anti-metastatic and anti-inflammatory effects of
ginsenosides are also well described. Furthermore, those effects are intimately linked
with the inhibition of expression and/or enzymatic activities of MMPs via modulation
of signaling pathways. Various in vitro and in vivo assays highlight that ginsenosides
including compound K (CK), Rg1, Rg3, Rh1, Rh2 and Rd reduced metastatic abilities of
various tissue-specific cancer cells by down-regulating the transcriptional expressions of
several MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9 and MMP-13). In addition,
ginsenosides exerted anti-inflammatory activities in cells or animals with a model of
inflammatory diseases. Synergistic MMP-inhibiting effects of some ginsenosides combined
with other reagents are also documented. This suggests the possibility of ginsenosides
being developed to avoid multidrug resistance, one of the difficulties in developing a
new therapeutic agent [63]. In this part of the review, I will summarize the effects of
representative ginsenosides on MMPs.

6.1. Rg1

Rg1 can be isolated from the root or stem of Panax ginseng (Figure 3). Several studies
demonstrate the pharmacological effects of Rg1 in cells from different organ systems
including the nervous and immune systems [64,65]. Rg1 (50, 100 and 200µM) repressed
phorbol myristate acetate (PMA)-induced metastatic abilities of breast cancer cells via
down-regulated DNA binding activity of NF-κB and reduced expression of MMP-9 [66].
Furthermore, Rg1 can exert synergistic MMP-inhibiting effects with other drugs. A recent
study showed that Rg1 could intensify anti-metastatic effects of Timosaponin AIII, an
anti-cancer steroid saponin, in MG63 and U2OS osteosarcoma cells [67]. In particular,
gelatin cleavage by MMP-2 and MMP-9 were remarkably reduced via transcriptional
regulation when cells were exposed to both Timosaponin AIII and Rg1. Repressive effects
of Timosaponin AIII (6µM) on JNK, p38 and ERK were significantly strengthened by the
combination with Rg1 (250µM) [67].

MMP-inhibiting and anti-inflammatory effects of Rg1 from several tissues are also
demonstrated. Yao et al. reported that Rg1 dissipated the elevated expression of MMP-2,
MMP-3 and MMP-9 in CCl4-exposed inflammatory liver from Kunming mice (20 mg/kg)
via activation of AMPK and suppression of NF-кB [68]. Rg1 (20 mg/kg) relieved ECM
degradation by MMP-9 which contributes to cigarette smoke-induced pulmonary fibrosis
in Sprague-Dawley (SD) rats (20 mg/kg) and MRC5 human fibroblasts (40µM) through
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down-regulation of TGF-β1/Smad pathway [69]. Rg1 could diminish inflammation of rat
cardiomyocytes (20 µM) by decreased gelatinases (MMP-2 and MMP-9) [70]. MMP-13 was
down-regulated by Rg1 in human arthritis chondrocytes (10 µg/mL) and SD rats with
osteoarthritis (OA) (30 mg/kg) as well [71].
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signalings [61,66–68,70,71].

6.2. Rg3

Ginsenoside Rg3 is one of major compounds found in red ginseng which is a root of
steamed Panax ginseng C. A. Meyer [72] (Figure 4). While Rg3 has a potential to display
various therapeutic effects, it especially strengthened anti-cancer efficacy compared with
other ginsenosides with its strong pro-apoptotic activities [73]. As mentioned earlier, clini-
cal trials indicate that Rg3 can be developed as an effective anti-cancer drug [9]. The major
anti-tumor effects of Rg3 were suppression of proliferation, metastasis, angiogenesis, and
promotion of apoptosis [74]. Various studies revealed that Rg3 diminished the metastatic
abilities of cancers via inhibition of MMPs. Several in vitro and in vivo studies reported
that Rg3 impeded migration and invasion of ovarian (SKOV-3), lung (A549, H1299 and
LLC1), pancreatic (tissues from cancer patients), colorectal (SW480 and Caco-2), thyroid
(TPC-1, BCPAP, C643, and Ocut-2c), nasopharyngeal (HNE1 and CNE2), skin (B16), and
breast (MCF-7) cancers via down-regulation of MMP-2 and/or MMP-9 [75–85]. It is notable
that 20(R)-Rg3, not 20(S)-Rg3 showed inhibitory effects in A549 lung cancer cells, indicating
that stereospecificity should be considered in some contexts [76]. also hampered metastatic
activities of B16F10 melanoma cells through reducing expression of MMP-13 [86]. Of
note, MMP inhibition by Rg3 in melanoma and lung cancer cells is highly linked with
inactivation of MAPKs and/or Akt signaling pathways [76,84]. Synergistic effects of Rg3
with other compound on MMP expression were also reported. Combined treatment with
Rg3 (5 mg/kg) and the anti-angiogenic drug Endostar (5 mg/kg) inhibited transcription of
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MMP-2 and MMP-9 in mice bearing MCF-7 breast tumors, notably better than treatment
with Endostar alone [85].
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In regard to inflammation, Rg3 attenuated protein expression of MMP-9 in LPS-induced
RAW264.7 murine macrophages and non-stimulated HaCaT human keratinocytes (50 µM
and 25 µM, respectively) while not affecting cell viability [87]. Moreover, Rg3 (10, 15 and
20 µM) inhibited MMP-13 expression in IL-1β-SW1353 human chondrosarcoma cells [88].

6.3. Rh1

Ginsenoside Rh1, a metabolite from Rg1, can be isolated from red ginseng which
is a root of steamed Panax ginseng C. A. Meyer [89] (Figure 5). Previous investigations
reported Rh1′s potential to protect neuronal cells, inhibit neoplasm and improve chronic
inflammatory diseases [90]. Phosphorylation of MAPKs including ERK, JNK and p38
was notably down-regulated by treatment with Rh1 (50 µM and 100 µM) in HepG2 liver
cancer cells [91]. This modulation is highly correlated with suppressed activity of AP-1
transcription factors and reduced collagenase activity of MMP-1 [91]. In vitro experiments
showed that Rh1 (100 µM and 300 µM) effectively inactivating MAPKs, AP-1 and NF-κB of
U87MG astroglioma cells, resulting in impeded cell migration and invasion [92]. Metastatic
abilities of SW620 colorectal cancer cells were also suppressed by Rh1 (100 µM) via inhibi-
tion of MAPK signaling transduction pathways and transcriptions of MMP-1 and MMP-3
while increasing expression of tissue inhibitor of metalloproteinases 3 (TIMP3), a negative
regulator of MMPs [93]. Rh1 could effectively protect cell death and inhibit transcriptional
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expression of MMP-3 and MMP-9 with other pro-inflammatory cytokines in LPS-induced
BV2 murine microglial cells (100 and 300 µM) while inactivating MAPKs [94].
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6.4. Rh2

Earlier studies demonstrated that the ginsenoside Rh2 prompted cancer apoptosis
through activation of cell death signaling pathways that start from stimulation of death
receptors in mitochondria or cell membranes [95] (Figure 6). Rh2 has potential to effectively
suppress growth of metastasis of cancer cells as well. In one research, Rh2 (10 and 20 µM)
repressed the transcriptions of MMP1, MMP-3, MMP-9 and MMP-14 in U87MG and
U373MG human astroglioma cells [96]. In that study, inhibition of MAPKs, AP-1 and
NF-κB were observed in U87MG human astroglioma cells after treatment with Rh2 [96].
Rh2 also diminished metastatic activities of pancreatic (Bxpc-3 at a dose of 45 µM) and lung
(A549 at a dose of 60 and 100 µM) cancer cells via inhibition of MMP-2 and MMP-9 [97,98].
In U251 glioma cancer cells, Rh2 (0.1mg/mL) displayed anti-metastatic effects mediated by
regulation of Akt signaling pathways and reduced MMP-13 expression [99]. Treatment with
Rh2 (10 µM) hindered expression of three types of MMPs, MMP-1, MMP-2 and MMP-9
in HCT116 and SW620 human colorectal cancer cells via regulation of JAK2 and STAT3
pathways [100].

A previous in vivo study stated that treatment with Rh2 (1 mg/mL, 5 times a day)
suppressed Grb-2–associated binder 1 (Gab1), Akt and ERK, which resulted in lowered
expression of MMP-9 and corneal neovascularization in alkali-exposed ICR mice [101].
20(R)-Rh2, which is a minor stereoisomer of Rh2, exerted anti-inflammatory and MMP-
inhibiting effects in LPS-induced RAW 264.7 cells and TNF-α-induced HaCaT cells [102].
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6.5. Rb1

Ginsenoside Rb1, which has multiple biological activities such anti-oxidant and anti-
inflammatory effects, could suppress expression of collagenase MMP-13 in SW1353 human
chondrosarcoma cells and SD rats with anterior cruciate ligament transection (80µM), via
inhibition of Notch molecular signaling pathways [103] (Figure 7). Since this study used
chondrosarcoma cells, it is expected that Rb1 may also repress cancer metastasis. Rb1 also
improved inflammation and MMP-13 expression in human chondrocytes from OA patients
and SD rat models of OA [104,105]. Rb1′s anti-inflammatory potential is not limited to
OA, as Rb1 ameliorated vascular disease and brain damage associated with inflammation.
Administration of Rb1 (20 mg/kg) successfully reduced expression of MMP-2 and MMP-9
via modulation of JNK and p38 pathways, which led to ECM destruction and vascular
remodeling in ApoE−/− mouse model of Abdominal aortic aneurysm (AAA) [106]. Fur-
thermore, treatment with Rb1 (20 and 40 mg/kg) prevented blood-brain barrier through
inhibition of pro-inflammatory mediators including MMP-9 [107].

6.6. Compound K (CK)

Compound K (CK) is a ginsenoside originated from Rb1, a main compound of Panax
ginseng C. A. Meyer [108] (Figure 8). There have been in vitro and in vivo studies emphasiz-
ing the therapeutic potency of CK in improvement of allergies, diabetes, inflammation, skin
aging and hepatocellular damage [109]. MMP-inhibiting effects of CK are also reported by
several publications. In MHCC97-H hepatocellular carcinoma cells, CK treatment (50 and
75 µM) inhibited expression of MMP-2 and MMP-9 via reduced activity of NF-κB [110]. CK
mixed with miscells (20 µg/mL) successfully lowered protein levels of MMP-9 in A549 lung
cancer cells, resulting in declined migration and invasion in mice bearing A549 cells [111].
Invasive and migratory abilities of MG63 and U2OS osteosarcoma cells decreased due to
weakened PI3K, Akt, mTOR and p70S6K1 signaling pathways and lessened expression of
gelatinases by CK (20 µM) [112]. Furthermore, CK (15 µM) effectively restrained expression
of MMP-9 in U87MG astroglioma cells via suppression of ERK, JNK, and p38 MAPKs [113].
CK attenuated expression levels of MMP-3 and MMP-9 in LPS-induced BV2 murine mi-
croglial cells (50 and 75 µM), while down-regulating MAPKs, AP-1 and NF-κB [114].
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6.7. Rd

The ginsenoside Rd is known to possess neuroprotective potential, as it can inhibit ac-
tivity of NF-κB and expression of TNF-α in LPS-induced N9 microglial cells [115] (Figure 9).
Rd also showed anti-inflammatory effects in rats with ischemia via reduced protein levels
of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 [116]. Additionally,
Rd attenuated the generation of nitric oxide, production of prostaglandin E2 (PGE2) and
the DNA binding ability of NF-κB, leading to a decrease in inflammatory responses of
RAW264.7 murine macrophage cells [117]. Although there is no publication focusing on
the relationship with Rd, inflammation and MMPs yet, inhibitory effects of Rd on anti-
metastatic effects and MMPs are reported. Anti-metastatic effects of Rd (150µM) on 4T1
breast cancer were achieved by down-regulation of MMP-3 via regulation of Smad2 [118].
In HepG2 human liver cancer cells, Rd (50 and 100µM) reduced phosphorylation of
MAPKs and DNA binding activity of AP-1 in addition to leading to dwindled expression
of collagenase MMP-1, gelatinase MMP-2 and matrilysin MMP-7 [119].

6.8. Other Ginsenosides

Other types of ginsenosides also have the potential to suppress MMPs. Ginsenoside
Rb2 was reported to lower the accumulation of hepatic lipid in obese mice, blood glucose
level in rats with diabetes and triacylglycerol in 3T3-L1 adipocytes [120]. In previous re-
search, Rb2 inhibited expression of MMP-2 and invasive activities in HHUA and HEC-1-A
endometrial cancer cells [121] (Figure 10A). Ginsenoside F2 (35 mg/kg), which can be
derived from varied types of protopanaxadiol saponins, is known to induce apoptosis
and repress invasive abilities of U373MG glioblastoma cells-implanted SD rats with re-
duced expression levels of MMP-9 [122] (Figure 10B). Novel ginsenoside derivatives AD-1
(40 mg/kg) and 4-XL-PPD (50 and 100µM) are also reported to inhibit protein levels of
MMP-9 and/or MMP-2 in athymic nude mice with A549 lung cancer cells and MGC-803
human gastric cancer cells, respectively [123,124] (Figure 10C,D).
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Treatment with ginsenoside Rg5, one of main components in steamed ginseng, de-
creased LPS-induced transcription of MMP-9 in BV2 microglial cells (30 and 50 µM), which
implies a neuroprotective potential [125] (Figure 11A). Ginsenoside Rb3 also hindered ex-
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pression of gelatinases by down-regulation of JNK/NF-кB signaling axis in H9c2 murine
cardiac myoblasts which were exposed to oxygen and glucose deprivation [126] (Figure 11B).
Ginsenoside Ro, an oleanolic acid type-ginsenoside, inhibited inflammation and protein
levels of MMP-3 and MMP-9 through inactivation of NF-кB in IL-1β-stimulated rat chondro-
cytes [127] (Figure 11C). Additionally, ginsenoside F4 (30 and 50 µM) diminished MMP-13
expression in IL-1β-stimulated SW1353 cells through inactivation of p38 [88] (Figure 11D).
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7. Conclusions and Perspectives

In conclusion, ginsenosides’ potential to exert anti-metastatic and anti-inflammatory ef-
fects has a high association with regulation of MMPs and related signaling pathways. Even
though there are numerous molecules proposed to be targets for suppressing metastatic
abilities of cancers and inflammatory diseases, MMPs are one of the most intriguing ones
because both their ECM degradation and non-enzymatic modes of action considerably
contribute to metastasis and immune responses. Since ginsenosides’ MMP suppression had
synergy with a few known compounds, co-treatment with other chemicals including MMP
inhibitors may also exhibit promising results in the future [67,85,108,128]. This escalates
the value of ginsenosides as promising anti-cancer and anti-inflammatory agents to be
further developed and modified. However, there is a limitation that ginsenosides do not
have sufficient clinical studies to ensure their potential yet, as pointed out in a previous
review [9]. One of the main reasons is their low solubility and bioavailability which are im-
portant for oral administration [129,130]. Although several positive outcomes were shown
from in vivo studies, effective methods such as chemical modifications and delivery with
micro/nano particles may needed to enhance the parameters of bioavailability (absorption,
metabolic rate and efflux of ginsenosides) to obtain more consistent experimental data
and increase the possibility of clinical applications [131,132]. Furthermore, it should be
considered that ginsenosides are highly likely to affect not only MMPs, but also quite a
few other proteins. It is implicated that use of ginsenosides for targeting MMPs may give
rise to unexpected results by changes of other unknown factors. More thorough in vitro
and in vivo assays are required to clarify the correlation between ginsenosides, MMPs and
other related molecules for drug development.
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