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Simple Summary: Ketosis metabolic research is extremely rare in Korea. This study aimed to
compare the rumen fluid and milk metabolites between healthy and subclinical ketosis-diagnosed
lactating dairy cattle. Six Holstein cows were allocated into two groups based on whether they fit
the criteria for subclinical ketosis, and their rumen fluid and milk samples were collected from the
stomach tube and pipeline milking system. Rumen fluid and milk samples metabolites were analyzed
using proton nuclear magnetic resonance spectroscopy. They were identified and quantified using the
Chenomx NMR Suite 8.4 software and statistical analysis was performed using Metaboanalyst 5.0. In
rumen fluid, ruminant energy source metabolites (acetate, glucose, and propionate) were significantly
higher in the healthy group, whereas in milk, ketone body metabolites (3-hydroxybutyrate and
acetoacetate) were significantly higher in the subclinical ketosis-diagnosed group. This report will
serve as a reference guide for future studies on ketosis metabolomics in Korea.

Abstract: Ketosis metabolic research on lactating dairy cattle has been conducted worldwide; how-
ever, there have been very few Korean studies. Biofluids from lactating dairy cattle are necessary to
study ketosis metabolic diseases. Six Holstein cows were divided into two groups (healthy (CON)
and subclinical ketosis diagnosed (SCK)). Rumen fluid and milk samples were collected using a
stomach tube and a pipeline milking system, respectively. Metabolites were determined using proton
nuclear magnetic resonance (NMR) spectroscopy and they were identified and quantified using the
Chenomx NMR Suite 8.4 software and Metaboanalyst 5.0. In the rumen fluid of the SCK group,
butyrate, sucrose, 3-hydroxybutyrate, maltose, and valerate levels were significantly higher than
in the CON group, which showed higher levels of N,N-dimethylformamide, acetate, glucose, and
propionate were significantly higher. Milk from the SCK group showed higher levels of maleate,
3-hydroxybutyrate, acetoacetate, galactonate, and 3-hydroxykynurenine than that from the CON
group, which showed higher levels of galactitol, 1,3-dihydroxyacetone, γ-glutamylphenylalanine,
5-aminolevulinate, acetate, and methylamine. Some metabolites are associated with ketosis diseases
and the quality of rumen fluid and milk. This report will serve as a future reference guide for ketosis
metabolomics studies in Korea.
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1. Introduction

Ketosis is a metabolic disease in lactating dairy cattle characterized by high concentra-
tions of ketone bodies (3-hydroxybutyrate [BHBA], acetoacetate, and acetone) metabolites
in their blood (plasma and serum), milk, and urine [1]. Ketosis is classified into two groups;
subclinical ketosis (SCK) (concentration of BHBA in serum are between 1.2 to 1.4 mM/L)
and clinical ketosis (concentration of BHBA in serum are between 2.6 to 3.0 mM/L) [2,3].
The causes of ketosis in lactating dairy cattle are early lactation, high energy requirements
for milk production combined with comparatively low feed intake [4,5], and extreme
reduction in feed intake during peripartum [6]. The negative effects of ketosis may include
decreased milk production, reduced reproduction, higher risk of lameness, mastitis, metri-
tis, retained placenta, and increased culling ratio [7–10]. Therefore, more studies on ketosis
in lactating dairy cattle are required.

Numerous studies on lactating dairy cattle ketosis disease using various metabo-
lite detection techniques such as nuclear magnetic resonance (NMR) spectroscopy, gas
chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrom-
etry (LC-MS) have focused on the metabolite changes in their biofluids (rumen fluid, serum,
plasma, milk, urine, and feces).

In studies on rumen fluid, GC has been used to compare the bacterial community
through volatile fatty acid (VFA) production [11] and acetone through isopropanol con-
centrations [12,13]. However, research using rumen fluid has not been performed yet. In
studies on milk, NMR spectroscopy has been used to compare glycerophosphocholine
(GPC) using the phosphocholine ratio [14], whereas GC-MS was used for other metabolites
associated with amino acids and carboxylic acid [15]. Furthermore, metabolites in lactating
dairy cattle milk were studied to compare and identify biomarkers for lactating dairy cattle
ketosis disease [16–18]. Xu et al. [16] suggested glycine in milk as a potential biomarker
for ketosis; furthermore, Xu et al. [18] reported that glycine, choline, and carnitine play
important roles in ketosis.

In Korea, the Holstein species constitute approximately 99% of the lactating dairy
population and are the most important livestock breed in the dairy industry [19]. Many
studies have been conducted on the improvement of milk production, composition, and
associated diseases in Holstein cows. Above all, research on ketosis has focused on ketone
body metabolite concentrations in blood, milk, and urine [20–22]. Recently, metabolomics
studies have been conducted by comparing biofluid metabolites from Korean native cattle
(Hanwoo; Bos taurus coreanae), and lactating dairy cattle (Holstein species) using proton
nuclear magnetic resonance (1H-NMR) spectroscopy [23–25]. However, owing to the
low number of studies using 1H-NMR spectroscopy on lactating dairy cattle biofluid
metabolites associated with ketosis metabolic diseases, more studies are required.

This study showed that the metabolic profiles of Holstein cows based on rumen fluid
and milk might differ between the healthy (CON) and SCK groups. Based on the rumen
fluid and milk samples, this study aimed to elucidate the metabolic profiles of Holstein
cows by using 1H-NMR spectroscopy and to compare the CON and SCK Holstein groups.
Moreover, studies on metabolites using 1H-NMR spectroscopy are insufficient in Korea, this
study will serve as a reference guide for future ruminant’s ketosis metabolomics studies.

2. Materials and Methods
2.1. Animals and Sampling

Three CON Holstein cows (39.27 ± 3.39-months-old; body weight, 554.33 ± 19.30 kg;
parity, 1.00 ± 0.00; milk yield, 30.30 ± 5.75 kg; blood BHBA concentration, 0.63 ± 0.12 mM)
and three SCK Holstein cows (56.91 ± 24.89-month-old; body weight, 563.33 ± 65.19 kg;
parity, 1.67 ± 1.15; milk yield, 25.33 ± 2.04 kg; blood BHBA concentration, 1.33 ± 0.78 mM)
were used in this study.

The experiment lasted 14 days, with first 4 days as the diet adaptation period. The
blood BHBA concentration was measured after milking in the morning and it was con-
ducted for a total of 9 days during the monitoring period. The range of blood BHBA
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concentrations for the SCK group was established as 1.0 to 1.4 mM, whereas for the CON
group, it ranged between 0.5 to 0.7 mM [2,26–28]. The blood BHBA concentration was
determined using a portable ketone test meter (FreeStyle Optium Neo H-Ketone Meter;
Abbot Diabetes Care Ltd., Witney, Oxon, UK) and the respective strips (Precision Extra
Ketone Test Strips) by following the instructions provided by the manufacturer.

Rumen fluid and milk samples were collected on the last day of the experiment. All
the animals were fed total mixed ration (TMR). The amount of TMR consumed by cows of
the CON group depended on their voluntary intake; however, the cows of the SCK group
had a restricted feed intake in the stanchion barn (30 kg/day; approximately 10 kg per
animal). Table 1 shows the chemical composition results of TMR. The contents of dry matter
(method No. 934.01), crude protein (method No. 976.05), calcium (method No. 927.02),
and phosphorus (method No. 3964.06) in TMR was assayed as described by Association of
Official Analytical Communities methods [29]. The contents of neutral detergent fiber and
acid detergent fiber in TMR were assayed as described by Van Soest et al. [30].

Table 1. Ingredients and nutrients of the experimental diets.

Items Amount

Ingredients composition, % of DM
Concentrate 15.30

Soybean meal 2.40
Corn silage 47.20
Alfalfa hay 7.10
Tall fescue 9.40
Timothy 5.90

Energy booster 1 7.10
Cash Gold 1 4.50
Lyzin-Plus 2 0.20
Limestone 3 0.20
Zin Care 1 0.10
Supex-F 1 0.50

Trace minerals 4 0.05
Vitamins premix 5 0.05

Chemical composition (% of DM basis)
Dry matter (DM), % 53.2

CP 10.0
NDF 28.2
ADF 16.9
Ca 0.40
P 0.15

1 Cofavet, Cheonan, Republic of Korea. Zin Care, contained 16 GDU/g protease bromelain, 2.0 × 108 cfu/g;
Supex-F, contained 99% protected fat from palm oil. 2 A.N.Tech, Cheonan, Republic of Korea. Lyzin-Plus,
contained 6.0% Zn, 0.9% Cu, 1.4% Mn, 5.0% chelated glycine. 3 Sungshin minefield, Jeongseon, Republic of
Korea. 4 Trace minerals, contained 0.4% magnesium, 0.20% potassium, 4% sulfur, 0.08% sodium, 0.03% chlorine,
0.4 g of iron/kg, 60.042 g of zinc/kg, 16.125 g of copper/kg, and 42.375 g of manganese/kg. 5 Vitamins premix,
provided approximately 5000 KIU of retinol/kg, 1000 KIU of cholecalciferol/kg, 33.5 g of tocopherol/kg, and
2.4 g of ascorbic acid/kg. CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber; Ca, calcium;
P, phosphorus.

Rumen fluid was collected from the Holstein cows using the stomach tube 3 to
4 h after their morning feed. The first rumen fluid was not sampled due to saliva and
blood contamination. All rumen fluid was collected using a conical tube (30 mL each).
Subsequently, rumen fluid samples were centrifuged at 806× g for 15 min to remove feed
particles and the supernatant was stored at −80 ◦C until analyzed for metabolites using
1H-NMR spectroscopy [23]. Milk samples were collected by using a pipeline milking
system and then transferred to a conical tube (30 mL). Subsequently, milk samples were
stored at −80 ◦C until analyzing for metabolites using 1H-NMR spectroscopy [23].
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2.2. Prepared Proton Nuclear Magnetic Resonance Spectroscopy Analyses

The rumen fluid samples were recentrifuged at 12,902× g for 10 min and the su-
pernatant was collected 300 µL. Standard buffer solution (2,2,3,3-d(4)-3-(trimethylsilyl)
propionic acid [TSP] sodium salt) was added to 300 µL of supernatant in deuterium oxide
(D2O) solvent / standard buffer solution (300 µL). The supernatants (600 µL) were trans-
ferred to 5 mm NMR tubes for NMR analysis [31,32]. The collected milk samples were
centrifuged at 4000× g for 15 min to remove the lipid layer in the supernatant. Thereafter,
the mixture of milk (250 µL) and D2O (300 µL) were transferred to 5 mm NMR tubes for
NMR spectroscopy analysis [32,33].

Proton nuclear magnetic resonance spectroscopy spectra of rumen fluid and milk
samples were obtained on an SPE-800 MHz NMR-MS spectrometer (Bruker BioSpin AG,
Fällanden, Switzerland) at 64 K using a 5 mm triple-resonance inverse cryoprobe with
Z-gradients (Bruker BioSpin CO., Billerica, MA, USA). The pulse sequence used for the
rumen fluid and milk were per-saturation pulse sequence collecting 64,000 data points
with 128 transients, a spectral width of 16,025.641 Hz, a relaxation delay of 4.0 s and an
acquisition time of 2.0 s.

2.3. Metabolites Identification, Quantification, and Statistical Analyses

The metabolites qualitative and quantification were carried out by import the analyzed
spectral data into the Chenomx NMR suite 8.4 software (ChenomxInc, Edmonton, AB,
Canada). The baseline and phase were matched for comparison between samples using
the Chenomx processor. The spectral width was 10 ppm and was referenced to the TSP
signal at 0 ppm. Metabolite qualitative and quantitative analyses were performed by using
LMD (livestock metabolites database; [http://www.lmdb.ca, accessed on 12 March 2021]),
BMD (bovine metabolite database; [http://www.bmdb.ca, accessed on 12 March 2021]),
and the Chenomx profiler.

Statistical analyses of the metabolites data were using the Metaboanalyst version 5.0
(http://www.metaboanalyst.ca, accessed on 16 March 2021). The resulting data were
normalization selected methods were, as follows, raw wise normalization: normalization
to constant sum; data transformation: log normalization; data scaling: pareto scaling.
Univariate Student’s t-test was used to quantify the difference between metabolite profiles
of the rumen fluid and milk. Principal component analysis (PCA) and partial least square-
discriminant analysis (PLS-DA) were used as multivariate data analysis techniques to
generate a classification model and provide quantitative information for discriminating the
rumen fluid and milk sample metabolites. The different CON and SCK group’s rumen fluid
and milk metabolites were determined on the basis of a statistically significant threshold of
variable importance in projection (VIP) scores. Metabolites with VIP scores higher than were
obtained 1.5 were obtained PLS-DA model. Metabolic pathway analysis was performed
using a Bos taurus pathway library. Metabolic pathways were significantly different; rumen
fluid and milk metabolites of the other studied animals were statistically analyzed by
Metaboanalyst version 5.0 for metabolic pathways analysis, which were based on database
sources by KEGG (kyoto encyclopedia of genes and genomes; [http://www.kegg.com,
accessed on 18 March 2021]).

3. Results
3.1. Multivariate Data Analysis

To characterize the variations in the rumen fluid and milk metabolic profiles of the
CON and SCK groups, PCA and PLS-DA were conducted. In the rumen fluid PCA score
plots (Figure 1a), CON and SCK groups were not separated; PC 1 and PC 2 accounted for
29 and 25.9% of the variation, respectively. The milk PCA score plots (Figure 1b) in the
CON and SCK groups were separated; PC 1 and PC 2 accounted for 27.8 and 21.9% of the
variation, respectively.

http://www.lmdb.ca
http://www.bmdb.ca
http://www.metaboanalyst.ca
http://www.kegg.com
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The rumen fluid PLS-DA score plots (Figure 2a) for the CON and SCK groups were
clearly separated; components 1 and 2 accounted for 20.7 and 22.1%, respectively. The
milk PLS-DA score plots (Figure 2b) for the CON and SCK groups were clearly separated;
components 1 and 2 accounted for 23.6 and 23.9%, respectively. These results indicate
differences in the classes and concentrations of rumen fluid and milk metabolites identified
in the CON and SCK groups.
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3.2. Detection and Quantification of Rumen Fluid and Milk Metabolites

The results in Table 2, Supplementary Tables S1–S4, and Figures S1 and S2 reveal
the metabolites detected and quantified in rumen fluid and milk from the CON and SCK
groups. In the CON group, out of the 145 metabolites detected in the rumen fluid, 48 were
quantified and classified into 13 chemical classes. In the SCK group, out of 171 metabolites
detected in the rumen fluid, 45 were quantified and classified into 13 chemical classes.

Table 2. Summary of general information of metabolites in rumen fluid and milk in experimental
Holstein cows.

General Information Healthy Subclinical Ketosis

Rumen fluid
Detected metabolites (n ≥ 1) 145 171

Quantified metabolites (n = 3) 48 45
Classified chemical classes 13 13

Range of metabolites concentration 0.87~23,207.30 µM 7.30~22,139.17 µM
Milk

Detected metabolites (n ≥ 1) 163 162
Quantified metabolites (n = 3) 69 84

Classified chemical classes 14 13
Range of metabolites concentration 1.00~98,861.57 µM 1.53~77,940.70 µM

In the CON group, out of 163 metabolites detected in the milk, 69 were quantified and
classified into 14 chemical classes. In the SCK group, out of 162 metabolites detected in the
milk, 84 were quantified and classified into 13 chemical classes.

3.3. Differences in Rumen Fluid and Milk Metabolites

Table 3 shows the significance (p < 0.05) and trends (0.05 ≤ p < 0.1) of different
metabolites in the rumen fluid and milk of the CON and SCK groups. In the SCK group,
rumen fluid showed significantly higher (p < 0.05) butyrate, sucrose, BHBA, maltose, and
valerate levels than that in the CON group, and methylamine, methionine, and isopropanol
showed a tendency to be higher (0.05 ≤ p < 0.1). In contrast, N-N-dimethylformamide,
acetate, glucose, and propionate were significantly (p < 0.05) higher in the rumen fluid
from the CON group than in that from the SCK group. In the milk from the SCK group,
maleate, BHBA, acetoacetate, galactonate, and 3-hydroxykynurenine were significantly
(p < 0.05) higher, and acetone, guanidoacetate, 2-oxoisocaproate, xanthine, and trehalose
showed a tendency to be higher (0.05 ≤ p < 0.1) compared to that in the CON group. In
contrast, galactitol, 1,3-dihydroxyacetone, γ-glutamylphenylalanine, 5-aminolevulinate,
acetate, and methylamine were significantly (p < 0.05) higher, and riboflavin and choline
levels showed a tendency to be higher (0.05 ≤ p < 0.1) in the milk from the CON group
than in that from the SCK group.

Table 3. Differential enrichment of metabolites content of rumen fluid and milk between healthy and subclinical ketosis groups.

Metabolites Classification CON/SCK 1 p-Value VIP Score 2 Fold Change 3

Rumen Fluid
Butyrate Organic acids SCK 6.74 × 10−4 0.94 −0.14

N,N-dimethylformamide Carboxylic acids CON 1.15 × 10−3 2.17 0.78
Acetate Organic acids CON 3.06 × 10−3 0.72 0.09
Sucrose Carbohydrates SCK 1.18 × 10−2 1.81 −0.57
Glucose Carbohydrates CON 1.44 × 10−2 1.21 0.25

Propionate Organic acids CON 1.50 × 10−2 0.83 0.25
3-hydroxybutyrate Lipids SCK 2.20 × 10−2 1.87 −0.57

Maltose Carbohydrates SCK 3.36 × 10−2 1.51 −0.46
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Table 3. Cont.

Metabolites Classification CON/SCK 1 p-Value VIP Score 2 Fold Change 3

Valerate Organic acids SCK 3.83 × 10−2 0.81 −0.12
Methylamine Amines SCK 7.36 × 10−2 1.67 −0.44
Methionine Amino acids SCK 7.39 × 10−2 2.06 −0.82
Isopropanol Alcohols SCK 9.56 × 10−2 1.55 −0.64

Milk
Galactitol Carbohydrates CON 1.81 × 10−4 1.92 0.68

1,3-dihydroxyacetone Carbohydrates CON 3.75 × 10−4 4.43 0.56
Maleate Carboxylic acids SCK 6.18 × 10−4 2.32 −1.05

γ-glutamylphenylalanine Amino acids CON 7.73 × 10−4 2.01 0.77
3-hydroxybutyrate Lipids SCK 5.28 × 10−3 1.87 −0.70

Acetoacetate Carbohydrates SCK 1.80 × 10−2 1.23 −0.32
5-aminolevulinate Carboxylic acids CON 2.11 × 10−2 1.91 0.78

Acetate Organic acids CON 2.98 × 10−2 1.53 0.46
Galactonate Carbohydrates SCK 4.15 × 10−2 0.92 −0.19

3-hydroxykynurenine Organic acids SCK 4.54 × 10−2 1.73 −0.54
Methylamine Amines CON 4.90 × 10−2 2.17 1.12

Acetone Others SCK 5.73 × 10−2 1.01 −0.25
Guanidoacetate Carboxylic acids SCK 7.68 × 10−2 1.01 −0.22

2-oxoisocaproate Organic acids SCK 7.94 × 10−2 1.56 −0.70
Xanthine Nucleosides, Nucleotides SCK 8.15 × 10−2 1.61 −0.77

Riboflavin Others CON 8.55 × 10−2 0.68 0.23
Choline Lipids CON 9.24 × 10−2 1.76 0.74

Trehalose Carbohydrates SCK 9.63 × 10−2 2.16 −2.00
1 CON/SCK, comparison between healthy (CON) and subclinical ketosis (SCK) group. 2 VIP Score, variable importance in the projection
obtained from the partial least square-discriminant analysis model. 3 Fold Change, calculated as binary logarithm of the average
concentration response ratio between CON and SCK group, where the positive value means that average concentration response of the
metabolites in the former is larger than that in the latter and vice versa.

As shown in Figure 3, evaluation of VIP scores obtained from PLS-DA provided 20 and
19 significantly different metabolites (VIP score > 1.5) between the CON and SCK groups
of rumen fluid and milk, respectively. In the rumen fluid, dimethylamine, methionine, and
BHBA had the highest VIP scores in the SCK group compared to that in the CON group
(Figure 3a). In contrast, N,N-dimethylformamide and arabinose had the highest VIP scores
in the CON group, compared to the SCK group. In milk, maleate, trehalose, and threonate
had the highest VIP scores in the SCK group compared to the CON group. In contrast,
1,3-dihydroxyacetone, methylamine, and γ-glutamylphenylalanine had the highest VIP
scores in the CON group compared to the SCK group (Figure 3b).

3.4. Metabolic Pathway Analysis

Based on rumen fluid metabolism, including that of starch and sucrose metabolism;
pyruvate metabolism; glyoxylate and dicarboxylate metabolism; glycolysis and gluco-
neogenesis; butanoate metabolism; galactose metabolism; propanoate metabolism; and
synthesis and degradation of ketone bodies; eight metabolic pathways significantly differed
(p < 0.05) between the CON and SCK groups. The two metabolic pathways tended to differ
(0.05 ≤ p < 0.1) between the CON and SCK groups in rumen fluid, including cysteine and
methionine metabolism, and aminoacyl-tRNA biosynthesis (Table 4 and Figure 4a).
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Table 4. Pathway analysis of significantly different rumen fluid and milk metabolites compared with healthy and subclinical
ketosis groups.

Metabolic Pathway Total Cmpd 1 Hits 2 p-Value −Log
(p-Value) FDR 3 Impact 4

Rumen fluid
Starch and sucrose metabolism 18 2 1.98 × 10−4 3.70 1.98 × 10−3 0.12

Pyruvate metabolism 22 1 3.07 × 10−3 2.51 1.02 × 10−2 0.06
Glyoxylate and dicarboxylate metabolism 32 1 3.07 × 10−3 2.51 1.02 × 10−2 0.00

Glycolysis and gluconeogenesis 26 2 8.43 × 10−3 2.07 1.69 × 10−2 0.03
Butanoate metabolism 15 2 1.04 × 10−2 1.98 1.69 × 10−2 0.00
Galactose metabolism 27 1 1.13 × 10−2 1.95 1.69 × 10−2 0.04

Propanoate metabolism 23 1 1.18 × 10−2 1.93 1.69 × 10−2 0.00
Synthesis and degradation of ketone bodies 5 1 2.01 × 10−2 1.70 2.51 × 10−2 0.00

Cysteine and methionine metabolism 33 1 7.77 × 10−2 1.11 7.77 × 10−2 0.10
Aminoacyl-tRNA biosynthesis 48 1 7.77 × 10−2 1.11 7.77 × 10−2 0.00

Milk
Galactose metabolism 27 1 3.99 × 10−4 3.40 3.43 × 10−3 0.00
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Table 4. Cont.

Metabolic Pathway Total Cmpd 1 Hits 2 p-Value −Log
(p-Value) FDR 3 Impact 4

Glycerolipid metabolism 16 1 4.03 × 10−4 3.39 3.43 × 10−3 0.00
Glycine, serine and threonine metabolism 34 3 7.64 × 10−4 3.12 4.33 × 10−3 0.02

Synthesis and degradation of ketone bodies 5 2 3.24 × 10−3 2.49 1.10 × 10−2 0.60
Butanoate metabolism 15 2 3.24 × 10−3 2.49 1.10 × 10−2 0.11
Tyrosine metabolism 42 1 4.18 × 10−3 2.38 1.18 × 10−2 0.00

Arginine and proline metabolism 38 1 5.96 × 10−3 2.22 1.45 × 10−2 0.02
Valine, leucine and isoleucine degradation 40 2 1.01 × 10−2 2.00 2.14 × 10−2 0.01

Riboflavin metabolism 4 1 1.15 × 10−2 1.94 2.17 × 10−2 0.50
Pyruvate metabolism 22 1 4.27 × 10−2 1.37 5.56 × 10−2 0.06

Glycolysis and gluconeogenesis 26 1 4.27 × 10−2 1.37 5.56 × 10−2 0.03
Glyoxylate and dicarboxylate metabolism 32 1 4.27 × 10−2 1.37 5.56 × 10−2 0.00

Porphyrin and chlorophyll metabolism 30 1 4.36 × 10−2 1.36 5.56 × 10−2 0.03
Valine, leucine and isoleucine biosynthesis 8 1 4.58 × 10−2 1.34 5.56 × 10−2 0.00

Glycerophospholipid metabolism 36 1 5.82 × 10−2 1.23 6.60 × 10−2 0.03
Purine metabolism 66 1 6.23 × 10−2 1.21 6.62 × 10−2 0.03

Starch and sucrose metabolism 18 1 7.36 × 10−2 1.13 7.36 × 10−2 0.00
1 Total Cmpd, The total number of compounds in the pathway. 2 Hit, The actually matched number from the user uploaded data.3 FDR,
The p-value adjusted false discovery rate. 4 Impact, The pathway impact value calculated from pathway topology analysis.
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from pathway topology analysis, respectively. Metabolic pathway name: 1, starch and sucrose metab-

Figure 4. Metabolic pathway mapping was significantly different between rumen fluid (a) and milk (b) compared in healthy
and subclinical ketosis groups. The pathway impact analysis was performed using the Metaboanalyst 5.0 program. The
results are presented graphically as a bubble plot. The darker color and larger size represent higher p-value from enrichment
analysis and greater impact from pathway topology analysis, respectively. Metabolic pathway name: 1, starch and sucrose
metabolism; 2, pyruvate metabolism; 3, glyoxylate and dicarboxylate metabolism; 4, glycolysis and gluconeogenesis;
5, butanoate metabolism; 6, galactose metabolism; 7, propanoate metabolism; 8, synthesis and degradation of ketone bodies;
9, cysteine and methionine metabolism; 10, aminoacyl-tRNA biosynthesis; 11, glycerolipid metabolism; 12, glycine, serine
and threonine metabolism; 13, tyrosine metabolism; 14, arginine and proline metabolism; 15, valine, leucine and isoleucine
degradation; 16, riboflavin metabolism.

In milk, 14 metabolic pathways significantly differed (p < 0.05) between the CON
and SCK groups. These included those involved in galactose metabolism, glycerolipid
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metabolism; glycine, serine, and threonine metabolism; synthesis and degradation of ke-
tone bodies; butanoate metabolism; tyrosine metabolism; arginine and proline metabolism;
valine, leucine, and isoleucine degradation; riboflavin metabolism; pyruvate metabolism;
glycolysis and gluconeogenesis; glyoxylate and dicarboxylate metabolism; porphyrin and
chlorophyll metabolism; and valine, leucine, and isoleucine biosynthesis. Three metabolic
pathways between the CON and SCK groups tended to differ (0.05 ≤ p < 0.1), in milk,
including glycerophospholipid metabolism, purine metabolism, and starch and sucrose
metabolism (Table 4 and Figure 4b).

4. Discussion

In this investigation, we have used a relatively small number of Holstein cows; thus,
our study may have fewer experimental animals than what is necessary for adequate
statistical power analysis [8]. Therefore, the small scale of this experiment may have
resulted in fewer significant findings or weaker external validity in comparison to large-
scale studies [8]. However, in this study, simultaneous metabolic profiling of rumen fluid
and milk samples has been conducted, and this can serve as a guide for future research of
SCK in lactating dairy cattle.

Volatile fatty acids, such as acetate, propionate, butyrate, and valerate, accounted for
approximately 70% of the ruminant energy sources [34]. However, the excessively high
concentrations of butyrate and valerate in the rumen of lactating dairy cattle with ketosis
are a concern. Approximately 26–33% butyrate and 18–24% valerate, which were absorbed
by the rumen papillae, were converted into BHBA [35]. Feeds with a high concentration
of butyrate were considered ketogenic precursors [36]. Robertson and Thin [37] and Thin
and Robertson [38] reported that ketotic lactating dairy cattle are associated with high
BHBA concentrations in the rumen fluid. In the present study, butyrate and BHBA levels
were significantly higher in the SCK group than in the CON group (p < 0.05). Rumen in
isopropanol absorbed the ketosis signals from the central nervous system [39]. Sato and
Shiogama [12] reported that ketosis is related to the presence of acetone and isopropanol
in the rumen fluid. In the present study, the isopropanol tended to be higher in the SCK
group (0.05 ≤ p < 0.1) than in the CON group.

Mellado et al. [40] reported that parturition under heat stress (HS) results in the
development of SCK in lactating dairy cattle. In addition, Acetobacter in the rumen produces
acetate by oxidizing sugars, and its abundance is reduced under HS [41]. The acetate
in rumen fluid is absorbed by blood vessels for synthesizing fatty acids in mammary
epithelial cells (associated with milk fat) [42]. Succinate is a precursor of propionate, which
is associated with gluconeogenesis in ruminants [43]. Clemmons et al. [44] reported that
the succinate levels were higher in a low-residual feed intake steer group than in a high-
residual feed intake steer group. Propionate is absorbed through the rumen epithelium
and used in the liver for gluconeogenesis. Besides, increasing milk production in lactating
dairy cattle [45]. Ketosis-induced lactation in dairy cattle has a negative effect on milk
composition and milk production [7,9]. In the present study, acetate and propionate levels
in the SCK group were significantly lower (p < 0.05) than those in the CON group, and
succinate was quantified only in the CON group. Glucose in the rumen fluid is an important
nutrient required for milk synthesis and is rapidly converted into VFAs [4]. In the present
study, the glucose levels in the CON group were significantly higher (p < 0.05) than that in
the SCK group. Moreover, glycolysis and gluconeogenesis metabolic pathways differed
(p < 0.05). In addition, the propionate and glucose concentrations were significantly higher
in the CON group than in the SCK group. As ketosis research using metabolites from
rumen fluid is limited, these results will aid in future studies.

Ketone body metabolites in milk are used to diagnose ketosis [1]. McArt et al. [46]
reported that SCK in lactating dairy cattle increased the BHBA concentrations in serum
to 100 µM/L and decreased milk yield by 500 mL/day for one month. Milk BHBA
concentrations were increased, and high proportions of somatic cells were observed [47]. In
addition, acetone can negatively affect ketosis and methane emissions in ruminants [48]. In



Animals 2021, 11, 2526 11 of 14

the present study, the milk yield in the CON group was higher than that in the SCK group.
In the SCK group, BHBA and acetoacetate were significantly higher (p < 0.05), and acetone
tended to be higher (0.05 ≤ p < 0.1) than in the CON group. In addition, the synthesis
and degradation of ketone body metabolic pathways differed significantly (p < 0.05).
Klein et al. [14] reported that high concentrations of GPC are associated with low ketosis.
In the present study, the sn-glycero-3-phosphocholine (GPC synonym) concentration was
higher in the SCK group than in the CON group, but was not significant (p > 0.05), and the
glycerophospholipid metabolism pathway showed a trend (0.05 ≤ p < 0.1).

Several studies on identifying metabolic markers of milk composition are being con-
ducted to diagnose ketosis. Glycine in milk could be used as a marker for energy balance
and metabolic status, and choline can supply methyl groups for cell growth in the mammary
glands of lactating dairy cattle [18,49]. Xu et al. [18] reported that high concentrations
of glycine and low concentrations of choline in milk are associated with negative energy
balance in lactating dairy cattle. Sundekilde et al. [50] reported that carnitine, citrate,
choline, and lactose are associated with milk coagulation properties. The coagulation
parameters are positively affected by choline and negatively affected by carnitine, citrate,
and lactose [50]. However, it is unclear how these metabolites are associated with milk
coagulation processes [51]. In the present study, the lactose concentration in the CON
group was higher than that in the SCK group, and glycine concentration in the SCK group
was higher than that in the CON group, but the difference was not significant (p > 0.05).
In addition, CON group choline tended to be higher (0.05 ≤ p < 0.1) compared with
the SCK group. Somatic cell count (SCC) is associated with changes in protein, fat, and
metabolites in milk [52]. Sundekile et al. [52] reported that when the SCC was higher in
milk, acetate, butyrate, BHBA, isoleucine, and lactate concentrations were increased, while
hippurate and fumarate concentrations were decreased. As acetate is associated with milk
fat synthesis [53], the acetate concentration used in this study did not adversely affect
milk composition. In the present study, the BHBA concentrations in the SCK group were
significantly higher (p < 0.05) than that in the CON group. Acetate concentrations in the
CON group were significantly higher (p < 0.05) than that in the SCK group. Among milk
contents, riboflavin (vitamin B2) accounts for the second-highest ratio after calcium [54];
thus, it is thought to be a metabolite that can positively affect milk quality. In the present
study, riboflavin tended to be higher (0.05 ≤ p < 0.1) in the CON group compared to
the SCK group. Xanthine (purine metabolite) is catalyzed to uric acid (end product) by
xanthine oxidase [55]. Xanthine oxidase has been isolated and purified from the milk fat
globule membrane (MFGM) [56]. Studies have shown that MFGM has a protective effect
against infectious diseases on the gut immune response and the gut microbiota [57–59].
In the present study, the xanthine concentration tended to be lower (0.05 ≤ p < 0.1) in the
CON group than in the SCK group.

5. Conclusions

The metabolic profiles of the rumen fluid and milk samples from CON and SCK
groups were obtained using 1H-NMR spectroscopy. In the rumen fluid, ruminant energy
source metabolites including acetate, propionate, and glucose were higher in the CON
group, whereas those metabolites associated with ketosis disease, including butyrate and
BHBA were higher in the SCK group. In the milk, ketone body metabolites including
BHBA, acetoacetate, and acetone were higher in the SCK group. Whereas, the varying
results on milk quality as compared to previous studies and associated with milk quality
metabolites including acetate and riboflavin were higher and xanthine was lower in the
CON group. Future studies should focus on other metabolomics tools (LC-MS or GC-MS)
and explore biomarkers related to ketosis.
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