
A Tangled Threesome: Adiponectin, Insulin Sensitivity,
and Adiposity
Can Mendelian Randomization Sort Out Causality?
Jorge R. Kizer

T
he discovery nearly two decades ago that the
adipocyte is more than a passive storehouse for
lipids, that it is also an active secretory unit for
peptides capable of system-wide regulation of

energy metabolism, ushered in an exciting era of in-
vestigation into these newfound adipose-derived hor-
mones (1). One intriguing object of these efforts has been
the 244–amino acid protein adiponectin (2). Alone among
major adipokines, adiponectin exhibits decreased rather
than increased production with fat-mass expansion.
Adiponectin is also the most abundantly secreted of all
adipose-tissue peptides, and circulating levels correlate
negatively with insulin resistance (IR), dyslipidemia,
and inflammation (3). Such features have heightened in-
terest in this molecule as a potential therapeutic target
against the modern scourges of obesity and obesity-related
disorders (2,3).

That adiponectin has insulin-sensitizing effects in mice
is now well established (2). Available experimental data
are most compelling for adiponectin’s actions on the
liver, where it promotes fatty acid oxidation and sup-
presses gluconeogenesis, and on adipocytes, where it
inhibits lipolysis (3). In addition, adiponectin has direct
anti-inflammatory properties (1), further enabling salu-
tary fat-mass expansion, which is deemed pivotal to its
insulin-sensitizing effects (3).

Consistent with data in mice, prospective epidemiolog-
ical studies have shown higher circulating adiponectin to
be associated with lower risk of diabetes (4,5). Yet such
observational data, susceptible as it is to confounding and
reverse causation, cannot determine causality (6). In fact,
observations from naturally occurring disorders of insulin
action or from exogenous administration of insulin in
humans have been cited to support the proposition that
the direction of the association may be the reverse of that
supposed (7). According to this hypothesis, the inverse as-
sociation between adiponectin and IR may in fact reflect
suppression of adiponectin production by hyperinsulinemia
acting through spared, as yet undefined, signaling pathways
(7). Hence, the (bi)directionality of the adiponectin–IR

association in the clinical setting has remained an open
question.

Stepping into the breach, Gao et al. (8) report in this issue
of the journal a Mendelian randomization (MR) analysis of
adiponectin’s relation to insulin sensitivity in a population-
based cohort of older Swedish men. The authors chose as
instrumental variables (IVs)—genetic stand-ins for circu-
lating adiponectin levels that, based on the random allo-
cation of alleles during gametogenesis, ought to be free
from bias/confounding—several adiponectin-raising single
nucleotide polymorphisms (SNPs) in AdipoQ. These IVs
were used to generate age-adjusted estimates of adipo-
nectin’s effect on insulin sensitivity that proved to be sig-
nificant for all variants and were moreover comparable in
magnitude to the direct association observed for serum
adiponectin. Such IV estimates of adiponectin’s effects,
however, were substantially attenuated after additional
adjustment for body mass index and waist circumference,
leading the authors to conclude that the association of
adiponectin with higher insulin sensitivity is likely a causal
relation mediated by reduced adiposity.

The study by Gao et al. is the first of its kind and counts
as a clear strength use of the euglycemic insulin clamp, the
gold standard for determination of insulin sensitivity (9).
This technique may have permitted detection of a signifi-
cant association between the IVs and outcome notwith-
standing the study’s relatively modest size (10).

But determining whether this study supports a causal
role for adiponectin as relates to insulin sensitivity, with
adiposity as a mediator, requires careful assessment of the
extent to which the three fundamental assumptions un-
derpinning IV analysis are satisfied (10). The first as-
sumption requires that the genetic variants in AdipoQ be
associated with the modifiable exposure of interest, cir-
culating adiponectin. This is well supported in the current
as in previous studies (11,12). According to the second
assumption, the AdipoQ SNPs must not be associated with
factors apt to confound the association between adipo-
nectin and insulin sensitivity. The third assumption in turn
stipulates that these SNPs must be related to insulin sen-
sitivity only via their association with circulating adipo-
nectin and not be otherwise affected by this outcome. It is
in the case of assumptions 2 and 3 that the potential for
violations exists.

In regard to assumption 2, the negative correlation ob-
served between AdipoQ SNPs and adiposity is of particu-
lar concern. The current paradigm is that caloric excess
leads to fat-mass expansion, with resulting adipose tissue
stress and inflammation leading to reduced adiponectin
production (13). This places adiposity primarily upstream
of adiponectin, not downstream. Yet because adiposity in
late adulthood should not influence the random allocation
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of AdipoQ alleles during meiosis, the authors posit that the
inverse relation with adiposity, and the attenuation of the
AdipoQ–insulin sensitivity association by measures of fat
mass cannot reflect confounding but mediation (8). Con-
sistent with this proposition, adiponectin infusion into the
central nervous system of mice does lead to weight loss
(14). But in a genetic model, overexpression of adipo-
nectin led to enhanced fat-mass expansion and weight gain
in mice, with protection against IR (15). Casting further
doubt on this premise, no consistent associations between
AdipoQ SNPs and reduced adiposity have emerged from
human genetic association studies (11,16,17).

Given the paucity of independent support for the notion
of reduced adiposity as a mediator of adiponectin’s insulin-
sensitizing role, the possibility of bias/confounding war-
rants special attention (Fig. 1). This could occur if genetic
variants at nearby loci causing reduced adiposity were in
linkage disequilibrium with the examined adiponectin-
raising SNPs (10), but no such variants have been de-
scribed. Another possibility is that of interaction between
AdipoQ variants and adiposity in the former’s relationship
with insulin sensitivity (18), wherein the alleles lowering
adiponectin levels do so as a result of, for instance, in-
creased susceptibility to obesity-associated proinflamma-
tory cytokines’ suppression of adiponectin production
(19). Indeed, the importance of accounting for gene-by-
adiposity interactions in unmasking genetic determinants
of IR has been recently demonstrated (20). In the current
study, the IV estimates appeared more strongly associated

with insulin sensitivity in participants with higher than
lower adiposity, but there was insufficient power to ad-
dress this question adequately. How such an interaction
would account for the negative correlation between adi-
posity and AdipoQ is not immediately clear, however, since
a survival advantage to individuals harboring the adipo-
nectin-raising alleles would occur only in an obesogenic
context.

Moreover, if the proposed hypothesis that hyper-
insulinemia can suppress adiponectin production in the
setting of IR (7) proves correct, then a pathway whereby
outcome could affect genotype would be present—in vi-
olation of assumption 3 (Fig. 1). Such transcriptional
regulation would mostly apply for the promoter SNP
(rs17300539) (11), but if the latter’s adiponectin-lowering
allele acted through enhanced binding of an insulin-
stimulated repressor, this could account for its associa-
tion with lower insulin sensitivity. Again, however, this
proposed mechanism fails readily to explain the negative
correlation of the promoter variant—let alone the re-
maining SNPs—with fat-mass measures, since any health
advantage of AdipoQ resistance to hyperinsulinemic sup-
pression of transcription would not be predictably asso-
ciated with lower adiposity.

Hence, a tangled web of association among the variables
involved, wherein a bidirectional relation between adipo-
nectin and insulin sensitivity could exist (7), and a differ-
ent obesogenic milieu (11,20) might affect the impact of or
upon AdipoQ variants, mandates caution in interpreting
MR findings in this context. Although the current findings
could be interpreted as supporting a causal role for adi-
ponectin in insulin sensitivity, these will require replication
in larger studies with greater power to assess effect mod-
ification by obesity. Ultimately, however, more confident
causal inference from IV analysis for this question will
require advances in understanding the molecular regula-
tion of adiponectin and still-elusive pathways of insulin
signaling. Pending development of suitable pharmaco-
therapies that specifically target adiponectin in humans,
MR approaches may offer the best alternative to random-
ized trials for unraveling the chain of causality, but judging
the soundness of the underlying assumptions—and the
merit of the resulting conclusions—will require basic knowl-
edge to more forward apace.
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