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Cell migration is a key component in development, homeostasis, immune function, and

pathology. It is important to understand the molecular activity that allows some cells to

migrate. Drosophila melanogaster is a useful model system because its genes are largely

conserved with humans and it is straightforward to study biologically. The well-conserved

transcriptional regulator Signal Transducer and Activator of Transcription (STAT) promotes

cell migration, but its signaling is modulated by downstream targets Apontic (APT) and

Slow Border Cells (SLBO). Inhibition of STAT activity by APT and cross-repression of

APT and SLBO determines whether an epithelial cell in the Drosophila egg chamber

becomes motile or remains stationary. Through mathematical modeling and analysis,

we examine how the interaction of STAT, APT, and SLBO creates bistability in the

Janus Kinase (JAK)/STAT signaling pathway. In this paper, we update and analyze earlier

models to represent mechanistically the processes of the JAK/STAT pathway. We utilize

parameter, bifurcation, and phase portrait analyses, and make reductions to the system

to produce aminimal three-variable quantitative model. We analyze themanifold between

migratory and stationary steady states in this minimal model and show that when the

initial conditions of our model are near this manifold, cell migration can be delayed.

Keywords: JAK/STAT, Drosophila melanogaster, border cell migration, mathematical model, bistability

1. INTRODUCTION

The acquisition of cellular migration plays a critical role in both normal and pathological
development. A better understanding of the processes cells undergo as they transition from a
stationary state to amigratory state is thus of broad interest. Studying themechanics of how cohorts
of cells move together introduces additional complexities, and existing models of collectively
migrating cells differ greatly (Peercy and Starz-Gaiano, 2020; Stuelten et al., 2018; Aman and
Piotrowski, 2010; Saadin and Starz-Gaiano, 2016; Olson and Nechiporuk, 2018; Leonard and
Taneyhill, 2020; Friedl and Mayor, 2017). To study cell migration, some scientists turn to an
experimental model system amenable to both genetic analysis and live imaging. In Drosophila
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melanogaster during oogenesis, a set of cells called border
cells develop within a layer of follicle cells and later become
migratory, leaving the nearby epithelial cells behind as they move
to the oocyte (Montell et al., 2012; Saadin and Starz-Gaiano,
2016). Experimentalists have discovered much of the molecular
regulation that governs this process and what causes some
border cells to become motile while others remain stationary,
including the primary biochemical and molecular pathways.
We are interested in advancing a mathematical model of these
pathways, which could have implications on acquisition of cell
motility in animals in general.

The Janus Kinase/Signal Transducer and Activator of
Transcription (JAK/STAT) signaling pathway has been shown by
previous studies to be crucial in the motility of border cells, as
well as in stem cells and immune response (Montell et al., 2012;
Arbouzova and Zeidler, 2006; Trivedi and Starz-Gaiano, 2018;
Amoyel and Bach, 2012; Amoyel et al., 2014). The JAK/STAT
pathway is well-conserved from fruit flies to humans. Anterior
polar cells in the Drosophila egg chamber (see Figures 1, 2A)
secrete the cytokine Unpaired (UPD), which acts as the ligand
for the transmembrane Domeless receptor in neighboring follicle
cells. UPD is predicted to form a gradient across the adjacent
cells (Van De Bor et al., 2011; Xi et al., 2003; Starz-Gaiano et al.,
2008). The binding of UPD to Domeless activates JAK, leading to
the phosphorylation of the activated JAK/receptor complex. The
activated complex then recruits and phosphorylates STAT. The
phosphorylated STAT dimerizes, moves to the nucleus, and acts
as a transcription factor for specific target genes.

A key target of STAT is the C/EBP transcription factor
Slow Border Cells (Slbo) (Montell et al., 1992; Starz-Gaiano
et al., 2008). Cells specified by high levels of SLBO to become
the border cells respond to chemoattractants that activate two
receptor tyrosine kinases (RTKs), which turn on signaling
cascades that promote directional movement (Montell et al.,
2012; Stuelten et al., 2018; Saadin and Starz-Gaiano, 2016; Friedl
and Mayor, 2017). Downstream of the RTKs, guided motility
is governed in border cells largely through regulation of the
actinomyosin cytoskeleton via the Rho GTPase, Rac, and myosin
phosphorylation states, with coordinated changes in cell-cell
adhesion mediated by E-cadherin (Stuelten et al., 2018; Saadin
and Starz-Gaiano, 2016; Montell et al., 2012; Chen et al., 2020).
The follicle cells receiving sufficiently high levels of UPD—
not necessarily just those in closer proximity to the polar cells
depending on the extracellular geometry (Manning et al., 2015)—
turn on a higher level of STAT activity and become motile border
cells while nearby cells with lower levels do not. Interestingly,
high STAT activity in ovarian follicle cell is sufficient to induce
motility in usually stationary lateral follicle cells (Silver and
Montell, 2001).

We focus on the protein products from two genes activated
by STAT: Apontic (APT) and SLBO. SLBO promotes migratory
behavior and an insufficient amount of SLBO prevents motility
(Montell et al., 1992). APT protein is a transcription factor that
downregulates the function of JAK/STAT and SLBO, and thus
inhibits migration (Starz-Gaiano et al., 2008). APT acts as a
feedback inhibitor on the JAK/STAT pathway, and this process
is mediated by APT’s activation of a microRNA that reduces

STAT protein and activity (Yoon et al., 2011). APT also activates
expression of Socs36E, which downregulates STAT signaling via a
degradation pathway (Monahan and Starz-Gaiano, 2015). APT
and SLBO exhibit cross-repressional behavior (Starz-Gaiano
et al., 2008, 2009). APT directly represses slbo transcription while
SLBO only decreases the level of expression of APT protein.
The dominating protein in a given cell determines the cell fate:
stationary or motile. This creates what appears to be a bistable
system, as cells that receive intermediate amounts of STAT have
the potential to reach either fate (Starz-Gaiano et al., 2009; Rorth,
1994). While it is reasonable based on the non-linearities in the
system to model this cell fate regulation as bistability, in vivo
experiments to support this are challenging and we are not aware
of any particular experiments that have been done to confirm
bistability. By identifying the conditions under which bistability
occurs, modeling can help to design experimental protocols to
confirm bistability.

We base our model on the mechanistic model built by
Ge et al. (2012). Focusing on the cross-repression system
of APT and SLBO, they built a mathematical model using
elementary interactions to identify which components of the
system are sufficient for bistability. Depending on the strength
of the UPD signal and thus the level of STAT activity, each
border cell can become motile (SLBO dominates) or remain
stationary (APT dominates). Cells with an intermediate level of
STAT activity may fall above or below the threshold necessary
for mobility.

Ge and Stonko created a 15-variable model including many
mechanisms of STAT regulation (see Figure 2A) as well as the
cross-repression system of APT and SLBO (see Figure 2B) with
sufficient elements, specifically cooperativity in SLBO repressing
apt mRNA translation, to cause bistability. We do not know the
mechanism for this, but we suspect SLBO activates expression of
a microRNA that mediates the effect. Ge et al. (2012) identified
several miRNAs in the Drosophila genome that have upstream
binding sites for SLBO activation and seed sequences that would
target the apt mRNA 3′ untranslated regions.

To describe briefly the full model, in Equations (1) and (2) JAK
(J) is altered to an enzymatically active state, J∗, in the presence
of UPD (U). Further in Equation (1) J∗ enzymatically activates
two STAT monomers (S) to create the activated STAT dimer (S∗2)
shown for STAT variables and complexes in Equations (3)–(6)
with c1 denoting the complex between activated JAK (J*) and
STAT (S). Equation (5) represents APT sequestering S∗2 in c2.
In Equations (7) and (8) APT (A) and SLBO (B) are produced
from their mRNA and degraded, while A binding with S∗2 is
accounted for. The mRNA production of stat (mσ ), apt (mα),
and slbo (mβ ), is shown in Equations (7)–(9) based on a constant
basal production and transcribing or probabilistic fraction based
on non-transcribing stat (σ ), apt (α), and slbo (β) respectively,
along with degradation. In Equation (9) B cooperatively enhances
mα degradation, while in Equations (10) and (11) A enhances
mσ and mβ degradation. The gene state dynamics are shown in
Equations (12)–(15), with S∗2 inducing transcription of σ , α, and
β , while binding with A puts slbo into a repressed state (βR).
Model variables for Equations (1)–(15) from Ge et al. (2012) are
in Table 1.
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FIGURE 1 | Egg development and the migration of border cells. (A) A cartoon of the development of a Drosophila egg chamber and the movement of the border cells

between the nurse cells (nc). The outer edge of the egg chamber is made up of epithelial follicle cells and the box outlines the cells in (B). (B) The signaling molecule

Unpaired is secreted from the polar cells and (C) induces a gradient of STAT activity across the anterior epithelium. Often the follicle cells very close to the polar cells

assume the identity of border cells and (D) become motile and migrate as a cluster toward the oocyte. The cells with below-threshold levels of STAT activity shut the

signaling off in a switch like manner.

FIGURE 2 | (A) Full mechanistic diagram of JAK/STAT pathway (B) Cross-repression system of APT and SLBO. STAT activates apt and slbo transcription leading to

the production of apt and slbo mRNA and translation into APT and SLBO proteins. SLBO represses apt translation while APT suppresses slbo transcription and

function. High APT levels make the cell stationary and high SLBO levels make the cell motile. However, which state dominates cannot be determined from this

qualitative diagram alone.
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TABLE 1 | 15-variable model variables.

Variable Description and Units

J∗ Activated JAK protein (nM)

J JAK protein (nM)

S STAT protein monomer (nM)

c1 J∗ and S complex (nM)

c2 S∗
2 and A complex (nM)

S∗
2 Activated STAT protein dimer (nM)

A APT protein (nM)

B SLBO protein (nM)

mα APT mRNA (nM)

mβ SLBO mRNA (nM)

mσ STAT mRNA (nM)

α Proportion of inactive apt genes

β Proportion of inactive slbo genes

βR Proportion of repressed slbo genes

σ Proportion of inactive stat genes

The 15-variable model is:

dJ∗

dt
= k

f
UJUJ − kbUJJ

∗
− k

f
c1 J

∗S2 + kbc1c1 + kc1c1 (1)

dJ

dt
= −k

f
UJUJ + kbUJJ

∗ (2)

dS

dt
= −2k

f
c1 J

∗S2 + 2kbc1c1 + 2kS∗2S
∗
2 + ksmσ − δSS (3)

dc1

dt
= k

f
c1 J

∗S2 − kbc1c1 − kc1c1 (4)

dc2

dt
= k

f

S∗2A
S∗2A− kbS∗2A

c2 (5)

dS∗2
dt

= kc1c1 − kS∗2S
∗
2 − k

f

S∗2A
S∗2A+ kbS∗2A

c2 (6)

dA

dt
= kAmα − δAA− k

f

S∗2A
S∗2A+ kbS∗2A

c2 (7)

dB

dt
= kBmβ − δBB (8)

dmα

dt
= kmα

(1− α)− δmα
mα +mo

α − δBα
B2mα (9)

dmβ

dt
= kmβ

(1− β − βR)− δmβ
mβ +mo

β − δAβ
Amβ (10)

dmσ

dt
= kmσ

(1− σ )− δmσ
mσ +mo

σ − δAσ
Amσ (11)

dα

dt
= −k

f
αS

∗
2α + kbα(1− α) (12)

dβ

dt
= −k

f
βS

∗
2β + kbβ (1− β − βR) (13)

dβR

dt
= k

f

βRAβ − kb
βRβ

R (14)

dσ

dt
= −k

f
σ S

∗
2σ + kbσ (1− σ ) (15)

In this paper we analyze and adapt the Ge and Stonko model
so that a minimal reduction retains the dynamics of the
detailed model. In section 2 we describe the methods we use to
establish parameters and for bifurcation analysis. In section 3
we develop the minimal reduced model. In section 4 we analyze
bifurcation results, identify the critical stable manifold separating
the migratory and stationary steady states, validate experimental
results, and compare our model to previous models. We apply
this model in the interesting case of controlling microRNA-
mediated degradation of stat mRNA via APT and show that
delays in STAT activation, even to the point of activation failure
within a biophysical time span, are possible due to the proximity
of the critical UPD level to a limit point bifurcation. We conclude
with possible experimentation that could test and improve
our model.

2. MATERIALS AND METHODS

In this section, we describe the methods used to analyze our
minimal reduced model developed below. We use bifurcation
and parameter analysis and identify the stable manifold between
the stationary and motile steady states.

2.1. Time Course and Bifurcation Analysis
We use XPPAUT (Ermentrout, 2002) to create time course
simulations and bifurcation diagrams and to analyze the
bistability of the reduced model. We use the stiff integration
method to solve our system of ODEs. A bifurcation occurs when
a small change in parameter values results in a qualitative change
in a system. Bifurcation analysis allows us to identify limit points
treating UPD as a parameter, and helps to identify the separatrix
between our steady states.

2.2. Establishing Parameters
In order to establish a more biophysically realistic model for this
study, we researched existing literature to find data to establish
parameter values. For some parameters we were able to find
data specific to the JAK/STAT pathway or Drosophila. For other
parameters, related pathways were used to obtain data relevant to
this model.

We were able to identify published values for general
translation and transcription rates and applied the established
rates to the lengths of JAK (encoded by hopscotch), STAT
(encoded by Stat92E), APT, and SLBO genes and proteins
(Hargrove et al., 1991; Lewin, 2004). The lengths are found in
the fly genome database, Flybase (Thurmond et al., 2019). Protein
and mRNA degradation rates have a wide range of average values
so JAK, STAT, APT, and SLBO are assumed to conform to this
range (Guido et al., 2006; Harris et al., 2011; Nicholson and
Nicola, 2013). The protein to DNA binding and dissociation
rates of JAK and STAT have been identified in general but
not specifically for APT and SLBO (Halford and Marko, 2004;
Parsaeian et al., 2013; Yang et al., 2002; Nicholson and Nicola,
2013).

Many signaling pathways, including the JAK/STAT pathway,
are regulated by microRNAs (miRNAs) (Lui et al., 2015;
Yoon et al., 2011). Ge et al. (2012) identified several
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microRNAs annotated in the genome (Thurmond et al., 2019;
Betel et al., 2007) that have seed sequences corresponding
to apt and slbo, suggesting they are also regulated by
this mechanism. This regulation can occur through mRNA
degradation, translational inhibition, or other means, making
the parameters corresponding to miRNA kinetics difficult to
assign. Ge and Stonko addressed this by condensing the
various processes by which miRNA can affect mRNA into
one degradation rate. We identified a parameter value for this
combined effect through information from the model established
in Yoon et al. (2011). The rate that slbo transitions in and out
of its repressed state was also hard to identify due to lack of
data, so we utilized the rate given in Ge and Stonko which was
adapted from the rate for a different repressor in Harris et al.
(2011) and information from Rorth (1994). The base levels of
STAT and the total amount of JAK present in border cells were
estimated from Yoon et al. (2011), Starz-Gaiano et al. (2008), and
McGregor et al. (2002). Lastly, for the rates of STAT independent
mRNA production, we again used the original parameter values
from Starz-Gaiano et al. (2009). For slbo, this rate is most
likely negligible. However, apt can be activated by means other
than STAT. The protein Eyes Absent (EYA) can also activate
transcription of apt (Starz-Gaiano et al., 2009).

2.3. Manifolds Separating Cell Fate Basins
of Attraction
One goal in developing the three-variable model was to be able
to fully understand the manifold that separates the steady states
in the model. For a level of UPD in the bistable region, cells
can either become motile or remain stationary depending on the
initial conditions of the system.

We visually identified the manifolds by labeling initial
conditions according to the steady state to which they converge.
This allows us to see the basins of attraction for each steady state.
These two stable steady states, one where SLBO dominates and
the cell becomes motile and one where APT dominates and the
cell remains stationary, are listed in the appendix with values for
each variable. In our three-dimensional system we are able to
approximate the manifold by fitting a surface to the boundary
between the basins of attraction.

A graphical representation of the boundary manifold was
achieved by creating a 3-d grid of initial conditions and
determining to which steady state each converged within 500
min, a time deemed reasonable from experimental data. Any
initial conditions that did not converge by this time were
identified as lying near the manifold. We then used the MATLAB
curve fitting toolbox to fit a surface to these points, creating an
approximation of the manifold between the steady states.

3. DEVELOPING THE REDUCED MODEL

We began by reducing the fixed STAT cross-repression system of
APT and SLBO (Equations, 7–10, 12–14) to a two-variablemodel.
In the process of researching biophysically realistic parameters
we discovered that the binding rate of STAT to target genes
appears to be several orders of magnitude faster than any other

process in the system, as seen in Table 2 (Halford and Marko,
2004; Parsaeian et al., 2013; Yang et al., 2002; Nicholson and
Nicola, 2013; Karsten et al., 2006; Ekas et al., 2010). For example,

k
f
α , k

f
β , and k

f

βR are at least three orders of magnitude faster than

the translation and transcription kinetics. Additionally, α, β , and
βR reach equilibrium significantly faster than the other variables.
We used time-scale analysis to reduce the system. We made a
quasi-steady state approximation for α, β , and βR and set those
derivatives equal to zero. This allowed us to solve Equations (12),
(13), and (14) for α∗ = 1 − α and β∗ = 1 − β − βR in terms of
APT protein and STAT dimer:

α∗
=

S∗2
Kα

S∗2
Kα

+ 1
(16)

β =
1

S∗2
Kβ

+ 1+ A
K

βR

(17)

βR
=

k
f

βR

kb
βR

Aβ =

A
K

βR

S∗2
Kβ

+ 1+ A
K

βR

(18)

β∗
= 1− β − βR

=

S∗2
Kβ

S∗2
Kβ

+ 1+ A
K

βR

(19)

with Kα =
kbα

k
f
α

, Kβ =
kbβ

k
f
β

, KβR =
kb
βR

k
f

βR

Our parameter values indicate that the mRNA processes occur
at least twice as fast as the protein processes. This makes a
quasi-steady state approximation formα andmβ plausible. Thus,
we have a two-variable model where only APT and SLBO
are dynamic.

The two-variable model is:

dA

dt
= kA

kmα
α∗ +mo

α

δmα
+ δBα

B2
− δAA (20)

dB

dt
= kB

kmβ
β∗ +mo

β

δmβ
+ δAβ

A
− δBB (21)

mα =
kmα

α∗ +mo
α

δmα
+ δBα

B2
(22)

mβ =
kmβ

β∗ +mo
β

δmβ
+ δAβ

A
(23)

After establishing the cross-repressional system of APT and
SLBO, we reintroduced STAT dynamics to the model. Now
we reduce the STAT activation system (Equations 1–6, 11, 15)
through a number of assumptions.

First, we ignored the theoretical APT-STAT complex (c2) as
its effects of APT sequestering STAT do not affect the steady
state structure of the model, which we proved analytically. Then
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TABLE 2 | Three-variable system parameter values.

Parameter Symbol Value Units Citation

Binding rate of UPD to JAK kfUJ 0.0133 min−1 Manning et al., 2015; Ghiglione et al., 2002; Wright et al., 2011;

Ward et al., 1995; Hilton and Nicola, 1992

Dissociation rate of UPD to JAK kbUJ 0.1 nM· min−1 Ghiglione et al., 2002; Wright et al., 2011; Ward et al., 1995; Hilton

and Nicola, 1992

Binding rate of J∗ complex to 2 STAT

monomers

kfc1 1 min−1 Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas et al., 2010

Dissociation rate of J∗ complex to 2 STAT

monomers

kbc1 0.1 nM· min−1 Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas et al., 2010

Rate of S∗
2 leaving J∗ kc1 100 nM· min−1 Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas et al., 2010

Dedimerization rate of S∗
2 kS∗2 0.1 nM−1· min−1 Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas et al., 2010

Rate of STAT translation kS 3 min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of degradation of STAT δS 0.1 min−1 Harris et al., 2011; Nicholson and Nicola, 2013

Rate of transcription of stat kmσ
1 min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of degradation of stat mRNA δmσ
0.2 min−1 Guido et al., 2006; Harris et al., 2011

Base level of stat mRNA mo
σ 0.5 nM· min−1 Ge et al., 2012; Silver and Montell, 2001; Ghiglione et al., 2002

Degradation rate of stat mRNA due to miRNA

induced by APT

δAσ 0.05 nM−1· min−1 Yoon et al., 2011

Binding rate of S∗
2 to stat kfσ 1 min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al.,

2002; Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas

et al., 2010

Dissociation rate of S∗
2 to stat kbσ 2 nM· min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al.,

2002; Nicholson and Nicola, 2013; Karsten et al., 2006; Ekas

et al., 2010

Total amount of JAK JT 0.15 nM Ge et al., 2012; McGregor et al., 2002

Rate of APT translation kA 0.298 min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of transcription of apt kmα
0.54 nM· min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of STAT independent production of apt

mRNA

mo
α 0.52 nM· min−1 Starz-Gaiano et al., 2009

Rate of degradation of APT δA 0.04 min−1 Starz-Gaiano et al., 2008; Ge et al., 2012; Harris et al., 2011

Rate of degradation of apt mRNA δmα
0.086 min−1 Guido et al., 2006; Harris et al., 2011; Starz-Gaiano et al., 2008

Degradation rate of slbo mRNA due to miRNA

induced by APT

δAβ
0.1 nM−1· min−1 Ge et al., 2012; this work

Binding rate of S∗
2 to apt kfα 100 min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al.,

2002; Starz-Gaiano et al., 2008

Dissociation rate of S∗
2 to apt kbα 0.66 nM· min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al., 2002

Rate of SLBO translation kB 0.312 min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of transcription of slbo kmβ
0.538 nM· min−1 Hargrove et al., 1991; Lewin, 2004; Thurmond et al., 2019

Rate of STAT independent production of slbo

mRNA

mo
β 0.03 nM· min−1 Starz-Gaiano et al., 2009

Rate of degradation of SLBO δB 0.04 min−1 Harris et al., 2011; Rorth, 1994; Rorth et al., 2000

Rate of degradation of slbo mRNA δmβ
0.086 min−1 Guido et al., 2006; Harris et al., 2011

Degradation rate of apt mRNA due to miRNA

induced by SLBO

δBα
0.5 nM−2· min−1 Ge et al., 2012; this work

Binding rate of S∗
2 to slbo kfβ 100 min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al.,

2002; Starz-Gaiano et al., 2008

Dissociation rate of S∗
2 to slbo kbβ 0.66 nM· min−1 Halford and Marko, 2004; Parsaeian et al., 2013; Yang et al.,

2002; Starz-Gaiano et al., 2008

Rate slbo transitions into repressed state kf
βR

100 min−1 Harris et al., 2011; Rorth, 1994

Rate slbo transitions out of repressed state kb
βR

0.522 nM· min−1 Harris et al., 2011; Rorth, 1994

we used the Michaelis-Menten approximation for the activated
JAK (J∗) conversion of two STAT molecules to an activated
STAT dimer (S∗2). This eliminates the JAK-STAT complex (c1)
and condenses the conversion. We assumed conservation of

JAK to eliminate unactivated JAK (J) by defining a constant
total JAK as JT = J + J∗. We also assumed that UPD (U)
activation of JAK and STAT activation are fast so J∗ and S∗2
can be solved for by quasi-steady state approximations. Lastly,
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FIGURE 3 | Time courses of STAT, APT, and SLBO with initial conditions STAT = 12, APT = 56, SLBO = 1.5 in the 3-variable model for (A) motile steady state (UPD

= 4) and (B) stationary steady state (UPD = 1) and the 15-variable model for (C) motile steady state (UPD = 4) and (D) stationary steady state (UPD = 1).

similar to the reduction made for apt and slbo, the inactive stat
gene state (σ ) and stat mRNA (mσ ) were solved by quasi-steady
state approximations. These assumptions gave us the following
additional approximations:

σ =
1

S∗2
Kσ

+ 1
with Kσ =

kbσ

k
f
σ

(24)

vmax = kc1 J
∗ (25)

km =

√

√

√

√

kbc1 + kc1

k
f
c1

(26)

J∗ =
k
f
UJUJT

kbUJ + k
f
UJU

(27)

S∗2 =
1

kS∗2

vmaxS
2

S2 + k2m
(28)

Thus, producing our minimal three-variable model in APT,
SLBO, and STAT:

dA

dt
= kA

kmα
α∗ +mo

α

δmα
+ δBα

B2
− δAA (29)

dB

dt
= kB

kmβ
β∗ +mo

β

δmβ
+ δAβ

A
− δBB (30)

dS

dt
= kS

kmσ
(1− σ )+mo

σ

δmσ
+ δAσA

− δSS (31)

4. RESULTS

4.1. Bifurcation Analysis
Time courses of STAT, APT, and SLBO show the difference
between the motile and stationary steady states in Figures 3A,B.
Figures 3C,D shows the comparable results for the original 15-
variable model. The two models converge to slightly different
steady state values. This is due to the methods used to reduce the
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FIGURE 4 | Bifurcation diagrams of (A) APT and (B) STAT against UPD in the three-variable model. A solid line indicates a stable steady state, a dashed line indicates

an unstable steady state. Limit point bifurcations (where the sold and dashed lines meet) create “knees” where the model jumps from one steady state to the other. At

U = 0 APT dominates.

FIGURE 5 | Sensitivity of the Bistable Range. This shows log10 of percent change in each parameter that maintains bistability. The first bar (blue) for each parameter is

the negative change, the second (red) is the positive change.

STAT dynamics in the 3-variable model. Exact steady state values
can be found in the Supplementary Materials.

A bifurcation diagram of APT against UPD revealed a non-
trivial state when U = 0 with a high level of APT, as seen
in Figure 4A. This can be interpreted as the system being
predisposed to the stationary cell fate until UPD and thus STAT
is high enough, at UPD > 11.24 nM. As UPD approaches 0 on
the upper branch, APT stops at a value of 44.73 nM. Since APT
is also positively affected by STAT via UPD, very low UPD will
decrease the steady state levels of APT but not to zero, leaving

the stationary state the only steady state at very low UPD. Here
the system encounters a limit point bifurcation and with a higher
UPD level would transition to low APT and a motile cell fate.

Additionally, with the same parameters as Figure 4A, the
STAT bifurcation (Figure 4B) shows that if UPD begins at a high
level in a cell, the cell will remain in the motile state even as UPD
decreases to a very low level. This can be seen in experiments that
dissociate polar cells and border cells. The border cells continue
to migrate until their UPD level presumably drops below the
threshold level, i.e., as they get too far away from the polar cells
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(Starz-Gaiano et al., 2008; Cai et al., 2014). This threshold also
exists in the opposite direction—as the level of UPD increases
in an epithelial cell, it becomes a migratory border cell once the
threshold is reached (Manning et al., 2015).

The bistability in the model depends on two mechanisms. We
show that the predominate non-linearity is in SLBO cooperative
repression of apt mRNA translation. We also show the repressed
state for the slbo gene induced by APT contributes to bistability
(Starz-Gaiano et al., 2008). Bifurcation diagrams for STAT, APT,
and SLBO with each combination of these criteria are presented
as Figures S1–S3. As quadratic non-linearity in SLBO is made
linear and the ability to reach the slbo gene repressed state is
eliminated, the stationary basin of attraction becomes smaller
until bistability is lost.

4.2. Parameter Values
Throughout the research on parameter values, the goal was to
develop a range of realistic parameters to test in our model.
There are two reasons why a range of values is desirable. First,
from the biological point of view, many biological processes do
not occur at a constant rate. Second, heterogeneity in cellular
parameters will likely lead to some parameter variety. A range of
average values is thus bothmore appropriate andmore consistent
with experimental data. We were able to test the robustness of
the dynamics over the ranges of parameters to see if the model
behavior matches experimentally observed outcomes.

The parameter values established through research from a
variety of experimental systems and testing for bistability are
shown in Table 2. The range of values identified for each
parameter demonstrates a robust region of bistability. This adds
confidence in the decision to use some parameter values that were
established from a range of possible values.

Figure 5 shows the percent change on a log10 scale in each
parameter that maintains bistability. The exact range for each
parameter is listed in Table 3. The most sensitive parameter
is δAσ . This makes sense biologically, as δAσ controls APT
induced miRNA degradation of stat. Changing this rate directly
affects whether a presumptive border cell produces enough
STAT activity to pass the threshold needed for motility given a
particular amount of UPD. APT has multiple levels of control
on STAT, but this may be the most sensitive because there are
multiple other regulators at the protein level. We explore the
effects of this parameter on the outcome of the system below.
The range of possible values for each parameter supports the
robustness of the JAK/STAT pathway as a bistable system.

4.3. Manifolds in Three-Variable Model
We found that our three-variable minimal model retains the
bistability and dynamics of the 15-variable model. Therefore,
we use the three-dimensional manifolds in this model to better
understand the behavior of the full model.

The stable manifold appears to be near-planar in the STAT-
APT-SLBO phase space. The UPD value determines the position
of the plane, with the manifold shifting from the STAT-SLBO
plane to the STAT-APT plane as UPD increases, thus increasing
STAT and SLBO production. Figure 6 shows how the manifold

TABLE 3 | Bistable Range of each parameter.

Parameter Bistable start Bistable end

kfUJ 0.007 985

kbUJ 0 0.241

kfc1 0.389 993

kbc1 0 156

kc1 47.43 1093

kS∗2 0 0.167

kS 1.875 221

δS 0.0013 0.16

kmσ
0.428 113

δmσ
0 2.46

mo
σ 0 109

δAσ 0.043 0.057

kfσ 0.028 996

kbσ 0.089 69.6

JT 0.12 0.21

kA 0.04 0.615

kmα
0 1.67

mo
α 0 1.65

δA 0.019 0.334

δmα
0.024 24.5

δAβ
0 0.13

kfα 0 1098

kbα 0 998

kB 0.144 1.56

kmβ
0.232 985

mo
β 0 0.243

δB 0.0011 0.08

δmβ
0 2.77

δBα
0.031 30.19

kfβ 4.7 1094

kbβ 0 14.02

kf
βR

0 1003

kb
βR

0 959

Any value in this range will maintain bistability in the model with other parameters held at

their baseline values from Table 2.

shifts as UPD increases from 0.0133 to 4, values that cover much
of the bistable range of UPD.

To visualize the dynamics for each of the three values of UPD
in the bistable region used in Figure 6, we plot trajectories to
demonstrate how the manifold affects the outcomes of different
initial conditions. Initial conditions that lie just below the
manifold are attracted to the stable manifold near the unstable
steady state and then repelled toward the stationary steady state.
Initial conditions that lie just above the manifold behave similarly
but converge to the motile steady state. Figure 7 depicts this
behavior, with initial conditions that progress to the stationary
steady state and the corresponding trajectories in blue and initial
conditions that progress to the motile steady state and the
corresponding trajectories in red. Three initial conditions and
trajectories for each steady state are plotted. The motile steady
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FIGURE 6 | Stable manifold when UPD = 0.0133, UPD = 0.133, and UPD = 4. As UPD increases, the manifold shifts from the STAT-SLBO plane to the STAT-APT

plane.

state is in red, the stationary steady state is in blue, and the
unstable steady state is in black. The unstable steady state lies on
the 2D stable manifold.

When UPD is low, such as in Figure 7A, initial conditions in
most of the phase space will result in the stationary steady state.
When UPD is high, such as in Figure 7C, initial conditions in
most of the phase space will result in the motile steady state.

Figure 7D combines Figures 7A–C to show how the shifting
manifold affects the system. As the value of UPD increases
and the manifold moves below additional initial conditions, the
motile basin of attraction expands and the motile and stationary
steady states shift slightly. Movies showing a 3D rotation of
each space and time series of each trajectory are available in the
Figures S4–S8.

4.4. Delay From miRNA
The rate at which APT-induced miRNAs lead to degradation of
stat mRNA is controlled in the model by the parameter δAσ .
Figure 8A shows time courses of S in the three-variable model
with UPD = 4 for different values of δAσ . We established a
typical value of δAσ = 0.05 that allows S to equilibrate around
200 min, which is consistent with the time it takes for border
cells to respond to UPD (Starz-Gaiano et al., 2008; Manning
et al., 2015). The STAT level when δAσ = 0.05 is well above
the threshold needed for the cell to become motile. An increase
to δAσ = 0.17382 delays STAT convergence by a significant
amount of time, about 600 min. If we increase δAσ to just 0.18, S
never elevates within 1,000min. Thus, the cell remains stationary.
Each time course in Figure 8 represents a different outcome of
the JAK/STAT pathway: GO, where SLBO dominates (δAσ =

0.05); STOP, where APT dominates (δAσ = 0.18); and SLOW,
where the transition to motility is delayed (δAσ = 0.17382). The
mechanisms of how APT-activated miRNAs affect STAT are still
being analyzed, but initial findings support the idea that changes

in miRNA activity can cause delays similar to those seen in our
model (Yoon et al., 2011; Luo and Sehgal., 2012; Monahan and
Starz-Gaiano, 2016; Sun et al., 2015). Delays in STAT activation
and failure of activation are possible within a realistic time frame.

For basal levels of δAσ the system has normal STAT activation.
However, as δAσ is increased the manifold separating the GO
and STOP basins of attraction gets close to the initial condition,
slowing the rise time to activation. If δAσ is raised enough
the manifold crosses the initial condition and the trajectory is
attracted to the STOP fate. Figure 8B further illustrates this delay.
The 3D plot shows that at t = 300 the SLOW cell fate still has
very low STAT and SLBO production. At the same time the GO
and STOP cell fates have almost converged to their respective
steady states. This change in outcome for one initial condition
occurs because the increase in δAσ causes the manifold to shift
just above the initial condition. This can be seen in Figure 9,
where the initial condition lies between the SLOWmanifold and
the STOP manifold.

4.5. Experimental Tests
We tested our models to confirm if they reproduced certain
behaviors identified in various experiments. It has been shown
that if STAT activity is blocked by stage 9 of cell migration, the
level of APT protein drops by about half (Starz-Gaiano et al.,
2008, 2009; Yoon et al., 2011; Monahan and Starz-Gaiano, 2015).
It is also known that increasing the initial condition of APT
should decrease the level of STAT protein and activity (Starz-
Gaiano et al., 2008). These behaviors should be achievable by
our models.

The three-variable model (Equations 29–31) reproduces the
experimental behavior of APT when STAT is knocked down,
as shown in Figure 10A. STAT initially converges to a value of
about 4. Setting kS = 0 causes STAT to be constantly zero.
This causes APT to converge to an equilibrium roughly half
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FIGURE 7 | Manifolds and trajectories for three values of UPD. Stationary initial conditions and trajectories are in blue and motile initial conditions and trajectories are

in red. The motile steady state is in red, the stationary steady state is in blue, and the unstable steady state is in black. (A) Manifold and trajectories for UPD = 0.0133.

(B) Manifold and trajectories for UPD = 0.133. (C) Manifold and trajectories for UPD = 4. Movies showing a 3D rotation of each space and time series of each

trajectory are available in the Figures S4-S8. (D) A-C combined to show how the motile basin of attraction expands as UPD increases and the manifold shifts.

that of the stationary steady state. APT acts as an inhibitor to
STAT activity, so for higher APT initial conditions we should
see lower levels of STAT. This also occurs in the three-variable
model (Figure 10B).

4.6. Comparison to Previous Models
Previous mathematical models of the JAK/STAT pathway in
Drosophila have focused on matching the qualitative behavior
of the system. We compare our mechanistic model to the
models developed in Starz-Gaiano et al. (2008) and Yoon
et al. (2011) in Table 4. We rewrite our equations and
use composite parameters to allow for easier comparison.
The names of variables for STAT and SLBO differ across
the models.

Our model and the earlier models share the same basic
structure. The equations for STAT, APT, and SLBO all have
a production term and a degradation term. The production
terms include the cross-reactions of the proteins. However, our
model describes these interactions in more detail, accounting

for more of the known molecular interactions and biochemical
production/degradation rates. For example, our STAT equation
includes the feedback inhibition from APT. Our model also
includes STAT independent production rates for both APT and
SLBO, while the earlier models only include this for APT. By
including the details of these molecular interactions, we gain
the ability to mathematically examine the bistability of the
JAK/STAT pathway.

Dynamic UPD is a feature of earlier models. Earlier models
also include that levels of active STAT are positively regulated
by production of UPD. Our model can be combined with the
UPD dynamics developed in Manning et al. (2015). They used
a partial differential equation to model the change in UPD
concentration over time in three-dimensional extracellular space
(Manning et al., 2015). This more detailed version of UPD
dynamics includes the spatial element of how UPD diffuses from
the polar cells into the border cells. It also helps to explain
how border cells farther from the polar cells, which receive less
UPD, can be delayed in becoming motile. Additionally, modeling
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FIGURE 8 | Three levels of miRNA controlled by δAσ : GO δAσ = 0.05, STOP δAσ = 0.18, SLOW δAσ = 0.17382 with initial conditions STAT = 12, APT = 56, SLBO =

1.5, and UPD = 4. (A) Time courses of STAT. As δAσ increases STAT activation is delayed. (B) 3D plot of the three cell fates in (A). The motile steady state is in red, the

stationary steady state is in blue, and the unstable steady state is in black. t = 300 on each trajectory is marked in purple.

FIGURE 9 | Manifolds for δAσ = 0.05, δAσ = 0.18, δAσ = 0.17382. As δAσ increases, the manifold shifts above the initial condition in black.
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FIGURE 10 | (A) Time courses of APT show levels decrease by half when STAT is knocked down from a steady state value of around 4 to one of 0 by setting kS = 0.

(B) Time courses of STAT for different initial conditions of APT. When UPD = 0.1, STAT steady state levels decrease for high initial conditions of APT. S(0) = 12 and

B(0) = 1.5.

TABLE 4 | Comparison of models.

Variable Starz-Gaiano et al. (2008) Yoon et al. (2011) This paper

JAK/STAT dJ
dt

= 0.04U

1+10P2+0.1J2+ 33A2

1+15S

− 0.01J dJ
dt

=
pjU

1+qjP2+
ajR

1+kj S
2

− rjJ
dS
dt

=
kSkmσ

S2

S2+k2m

U
U+KUJ

+mo
σ

(δ1+A)

[

Kσ kS∗
2

kc1 JT
+ S2

S2+k2m

U
U+KUJ

] − δSS

UPD dU
dt

= 0.01P− 0.006U+ 0.1 d2U
dx2

dU
dt

= puP− ruU+ du
d2U
dx2

U is a parameter.

APT dA
dt

= 0.0001J
1+4A2+S

− 0.0001A+ 1e-5 dA
dt

=
paJ

1+qaS
− raA+ ba

dA
dt

=
k̂1

(δ2+B2 ) S2

S2+k2m

U
U+KUJ

− δAA+
K1

δ2+B
2

SLBO dS
dt

= 0.002J2

1+0.5A2
− 0.0005S dS

dt
=

psJ
2

1+qsA
− rsS

dB
dt

=
k̂2 k̂3

S2

S2+k2m

U
U+KUJ

(δ3+A)(1+k̂3
S2

S2+k2m

U
U+KUJ

+ A
K
βR

)
− δBB+

K2
δ3+A

miRNA279 dR
dt

=
prA

1+qrK2 − rrR

Ken dK
dt

= pkJ− rkK

Composite parameters: KUJ =
kb
UJ

kf
UJ

, δ1 =
δmσ

δAσ
,

k̂1 =
kAkmα KαkS∗

2
δBαkc1 JT

,K1 =
kAm

o
α

δBα
, δ2 =

δmα

δBα
, k̂2 =

kBkmβ

δAβ
, k̂3 =

kc1 JT
kS∗

2
Kβ

,K2 =
kBm

o
β

δAβ
, δ3 =

δmβ

δAβ
.

in Peercy and Starz-Gaiano (2020) gives details of how the
geometry of the egg chamber influences cell fate and migration
dynamics. They also examine models of velocity and migratory
cohort size as well as how clusters of border cells function to
guide directional movement. Together our mechanistic model,
the spatial dynamics of UPD from Manning et al. (2015), and
models of collective migration from Peercy and Starz-Gaiano
(2020) help us gain a better understanding of the threshold for
motility in border cells.

5. DISCUSSION

We reduced the mechanistic Ge and Stonko model in stages
to arrive at our minimal three-variable model. This final model
allows us to better understand bistability in the JAK/STAT
pathway. Our minimal model retains the parameters from the
more complex model, allowing easier analysis but retaining
critical properties. We discovered that non-linearity in SLBO

repression of apt mRNA translation (Equation 9), and to a
lesser extent APT repression of the slbo gene is required for
bistability. The model displays the bistability of the stationary
and motile cell states expected from experimental data for
medium saturation of STAT activity. It has been shown that
modulating UPD expression affects the number of migratory
cells (Manning et al., 2015; Van De Bor et al., 2011; Silver and
Montell, 2001; Xi et al., 2003; Grammont and Irvine, 2002).
If UPD is low there are no migratory cells and if UPD is
high there are many. This can induce normally stationary cells
far away from the anterior to become motile (Manning et al.,
2015).

We established parameters that showed bistability was
obtainable under realistic conditions. Every parameter in the 15-
variable model was found to have a wide range of values that
guaranteed bistability. The robustness with respect to parameter
values also suggests the biophysical utility of the model. Cell
migration is an essential biological process, so the JAK/STAT
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pathway necessitates robustness under a range of parameter
values, which the model supports. It makes sense that the
JAK/STAT pathway would be able to operate successfully under a
range of parameter values.

Ge and Stonko assumed that a key aspect necessary for
bistability in APT and SLBO is cooperativity in SLBO repressing
apt mRNA. In our dynamic STAT model, we found that the
feedback inhibition of APT on STAT is necessary for bistability
in STAT activity coming from the bistability between APT and
SLBO. We also found that the initial amount of APT present in
a cell is a major factor in whether or not the cell will become
motile through affecting the level of STAT activity. Our minimal
reduced model also reproduces behavior seen in experiments,
such as declines in APT expression when STAT is knocked
down and how initial levels of APT affect final levels of STAT
(Starz-Gaiano et al., 2008).

We also showed that delays in STAT activation and
failure of activation are possible within a realistic time
frame. By controlling the degree of feedback inhibition of
APT on STAT we can induce a delay in the transition to
cell motility or cause the cell to remain stationary. This
result is due to the proximity of the UPD level to a limit
point bifurcation.

Assumptions made in the development of this model lead
to some limitations. Specific parameter values for the exact
reactions occurring in the egg chamber are not known, so
we performed sensitivity analysis to show the robustness in
parameter values. The STAT dynamics were reduced under a
number of assumptions. One was the decision to ignore the
c2 equation, which allows APT to act as a buffer on STAT.
Since the action of APT on STAT is known to function by
preventing activation throughmiRNAs (Yoon et al., 2011) as well
as limiting active protein present (Monahan and Starz-Gaiano,
2015, 2016), this assumption might oversimplify the larger
system. Additionally, the quasi-steady state assumptions made in
reducing STAT dynamics may also oversimplify the model.

Further study into the various methods by which APT
inhibits STAT would enable us to improve how the model
captures this interaction. Experiments that change the level
of APT or STAT may give more information about how the
delay in specification affects the migration of the cell cluster.
Experimenting with apt mutants could tell us more about
how the bistability we show in cell specification ultimately
affects cluster migration and the further development of the egg
chamber. When STAT is abnormally high more intermediate
border cells trail behind the polar cells (Silver and Montell,
2001; Silver et al., 2005; Monahan and Starz-Gaiano, 2015;
Starz-Gaiano et al., 2008). Socs36E limits STAT signaling and
higher Socs36E reduces motile cell number. Both of these
cases may suggest how a delay in cell specification affects cell
migration.

It may also be important to consider how APT and SLBO
may interact through miRNAs. Currently there is little data
beyond the existence of these miRNAs (Ge et al., 2012). miRNA
interactions directly affect bistability in the model, so greater

detail could improve the model. Experiments that control the
level of UPD secreted could identify how quickly the signal enters
border cells and the levels of UPD which correspond with the
activated STAT threshold to induce motility. To further gauge the
STAT levels it would also be valuable to know the level of APT
present in border cells through activation by EYA, prior to STAT
activation and upregulation by STAT.

The JAK/STAT signaling pathway is known to be well-
conserved. Specifically, it seems to be comparable in Drosophila
and in humans (Trivedi and Starz-Gaiano, 2018; Arbouzova and
Zeidler, 2006; Amoyel and Bach, 2012; Amoyel et al., 2014).
Thus, as the model we have developed helps to explain cell
motility in Drosophila, it may prove useful to our understanding
of the process in humans. The “decision” for tumor cells to
become motile is often a turning point for cancer progression.
Additionally, STAT signaling is also well-known for controlling
stem cell division decisions. Thus, the decisiveness of STAT-
based signaling may have a variety of roles in different cell
types, but the model and its bistability shown in this paper
may help to explain how this STAT signaling operates in
different situations.
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