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Abstract

Asperparalines produced by Aspergillus japonicus JV-23 induce paralysis in silkworm (Bombyx mori) larvae, but the target
underlying insect toxicity remains unknown. In the present study, we have investigated the actions of asperparaline A on
ligand-gated ion channels expressed in cultured larval brain neurons of the silkworm using patch-clamp electrophysiology.
Bath-application of asperparaline A (10 mM) had no effect on the membrane current, but when delivered for 1 min prior to
co-application with 10 mM acetylcholine (ACh), it blocked completely the ACh-induced current that was sensitive to
mecamylamine, a nicotinic acetylcholine receptor (nAChR)-selective antaogonist. In contrast, 10 mM asperparaline A was
ineffective on the c-aminobutyric acid- and L-glutamate-induced responses of the Bombyx larval neurons. The fungal
alkaloid showed no-use dependency in blocking the ACh-induced response with distinct affinity for the peak and slowly-
desensitizing current amplitudes of the response to 10 mM ACh in terms of IC50 values of 20.2 and 39.6 nM, respectively.
Asperparaline A (100 nM) reduced the maximum neuron response to ACh with a minimal shift in EC50, suggesting that the
alkaloid is non-competitive with ACh. In contrast to showing marked blocking action on the insect nAChRs, it exhibited only
a weak blocking action on chicken a3b4, a4b2 and a7 nAChRs expressed in Xenopus laevis oocytes, suggesting a high
selectivity for insect over certain vertebrate nAChRs.
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Introduction

Asperparalines are alkaloids produced by Aspergillus japonicus JV-

23 when grown on ‘‘okara’’ media (soybean residue resulting from

tofu manufacturing). They are known to paralyze silkworm

(Bombyx mori) larvae when administered orally using artificial diets

[1]. Asperparalines A, B and C possess unique 3-spiro-succinimide

and cyclopent[f]indolizine moieties along with a N-methylamide

bridge [2] (Fig. 1). The unique structures of asperparalines have

prompted challenges for total synthesis [3], but their targets and

selectivity have not yet been elucidated.

It is presumed that the likely target of asperparaline A is the

nervous system or neuromuscular junction, since the compound

induces paralysis in the silkworm larvae. By applying whole-cell

patch-clamp electrophysiology to larval neurons of B. mori, we

were able to record the neurotransmitter-evoked responses of

native ligand-gated ion channels and study the actions of

asperparaline A. Having detected a blocking action on nicotinic

acetylcholine receptors (nAChRs), we also investigated the actions

of asperparaline A on vertebrate (avian) a3b4, a4b2 and a7

nAChRs expressed in Xenopus laevis oocytes using two-electrode

voltage-clamp electrophysiology. We found that the fungal

metabolite specifically and non-competitively blocked the ACh-

induced response of the native nAChRs in the insect neurons, but

hardly affected receptors for c-aminobutyric acid (GABA) and L-

glutamate. Much weaker blocking actions of asperparaline A were

observed on 3 classes (a3b4, a4b2 and a7) of vertebrate (avian)

nAChRs, suggesting selectivity for invertebrate nAChRs.

Materials and Methods

Approval of this study and animal treatment
This study using living modified organisms (LMO) has been

approved by the committee of Kinki University for the

experiments involving the production of LMOs (ID number:

KDAS-16-015). We used an anesthetic tricaine to reduce the pain

of female frogs (Xenopus laevis) as much as possible when we
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removed oocytes from the frogs by referring to the U.K. Animals

(Scientific Procedures) Act, 1986.

B. mori neurons
Heads were dissected from last instar larvae of B. mori and

placed in a Ca2+-free physiological saline solution of the

following composition: 135 mM NaCl, 3 mM KCl, 4 mM

MgCl2, 10 mM glucose and 10 mM HEPES (pH 7.3, adjusted

with NaOH), supplemented with 50 units ml21 penicillin and

50 mg ml21 streptomycin. The brains were isolated and

desheathed using fine forceps and then treated with 1.0 mg

ml21 collagenase (Type IA, Sigma-Aldrich Japan, Tokyo, Japan)

dissolved in the Ca2+-free saline for 30–40 min at room

temperature. After washing with the Ca2+-free saline, the brains

were transferred to a Ca2+-supplemented incubation saline of

the following composition: 135 mM NaCl, 3 mM KCl, 4 mM

MgCl2, 5 mM CaCl2, 10 mM glucose, 10 mM trehalose and

10 mM HEPES (pH 7.3, adjusted with NaOH) supplemented

with 10% fetal bovine serum and 50 units ml21 penicillin and

50 mg ml21 streptomycin. The neurons were dissociated by

gentle pipetting using a 1,000 ml micropipette tip, and the

resultant cell suspension was placed onto poly-D-lysine (Sigma-

Aldrich Japan, Tokyo, Japan)-coated coverslips which were

placed in a 35-mm diameter culture dish and left for 60 min.

The B. mori neurons were then incubated at 25uC for 18–36 h

before electrophysiology. All salines used in the cell culture were

filter sterilized.

Whole-cell patch-clamp electrophysiology
The whole-cell patch-clamp electrophysiology [4] was con-

ducted at 20–23uC. The recording electrodes (patch pipette)

were prepared from glass capillaries (PG150T-10, Harvard

Apparatus, Holliston, MA, USA) using a PE-83 puller

(Narishige, Tokyo, Japan). The patch pipette was filled with

an internal solution (100 mM KCl, 1 mM CaCl2, 4 mM MgCl2,

20 mM sodium pyruvate, 10 mM EGTA and 10 mM HEPES

(pH 7.3, adjusted with Tris)). Only pipettes having a resistance

of 5–6 MV when filled with the internal solution were used for

experiments. Coverslips with neurons attached were carefully

transferred to the recording chamber (RC-16, Warner Instru-

ments, Hamden, CT, USA) and superfused continuously at 5 ml

min21 with a physiological saline (135 mM NaCl, 3 mM KCl,

5 mM CaCl2, 4 mM MgCl2, 10 mM glucose and 10 mM

HEPES (pH 7.3, adjusted with NaOH)). The membrane

currents were recorded using an Axopatch 200B amplifier

(Molecular Devices, Sunnyvale, CA, USA) and low-pass filtered

at 10 kHz using a four pole-Bessel filter. Data were stored on a

personal computer, for subsequent analysis, using a Digidata

1320A data acquisition system (Molecular Devices, Sunnyvale,

CA, USA). The holding membrane potential of the neuronal

membrane was 260 mV. The current-clamp method that keeps

the membrane current at zero was also used to examine the

effect of asperparaline A on the resting membrane potential of

the neuron. ACh, L-glutamate and GABA were applied to the

B. mori neurons using a U-tube; fipronil, mecamylamine and

asperparaline A were applied by either U-tube or bath-

application.

Expression of vertebrate nicotinic acetylcholine receptors
in X. laevis oocytes

Oocytes at stage V or VI of development were removed from

female X. laevis under anesthetic in 1.5 g l21 tricaine [5,6,7].

Oocytes were then treated for 30–40 min at room temperature

with 2.0 mg ml21 collagenase (Type IA, Sigma-Aldrich Japan,

Tokyo, Japan) dissolved in the Ca2+-free standard oocyte saline

(SOS) of the following composition: 100 mM NaCl, 2 mM KCl,

1.8 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES 5.0 (pH 7.6).

After washing in Ca2+-free SOS to remove collagenase, the

follicle cell layer was manually removed using forceps, and

followed with the nuclear injection of 20 nl cDNAs of the chicken

nAChR subunits (a3, a4, a7, b2 and b3) in the pcDNA3.1 (+)

expression vector in distilled water (final concentration of each

cDNA: 0.1 ng nl21). For a3b4 and a4b2, 1:1 mixtures of the a
and the non-a (b2 and b3) cDNA solution were injected into

oocytes. The injected oocytes were incubated at 18uC in SOS

supplemented with penicillin (100 units ml21), streptomycin

(100 mg ml21), gentamycin (20 mg ml21) and 2.5 mM sodium

pyruvate. Electrophysiology was conducted 3–5 days after

nuclear injection of cDNAs.

Two-electrode voltage-clamp (TEVC) electrophysiology
TEVC electrophysiology was performed at room temperature

(18–23uC). The X. laevis oocytes were secured in a Perspex

recording chamber that was continuously perfused with SOS (7–

10 ml min21) as previously described [7,8]. Membrane currents

were recorded using a GENECLAMP 500B amplifier (Molecular

Devices, Sunnyvale, CA, USA) at a holding potential of

2100 mV. The electrodes were filled with 2 M KCl and had a

resistance of 1–5 MV when measured in SOS. Signals were

digitized using a Digidata 1200 data acquisition system

(Molecular Devices) and recorded using Clampex 9.0 (Molecular

Devices). Agonists were dissolved in SOS and were applied to

oocytes for 3–5 s, with an interval of 1–5 min between

applications, to ensure a full recovery from desensitization.

Asperparaline A (10 mM) was bath-applied to oocytes for 1 min

and then co-applied with ACh.

Analysis of electrophysiological data
The membrane current data were analyzed using Clampfit 9.2

(Molecular Devices, Sunnyvale, CA, USA). The concentration-

inhibition curves for asperparaline A were fitted with the following

equation, using Prism 4.03 (GraphPad Software, CA, USA):

Y~
Imax

1z10(½A�-logIC50)_nH
ð1Þ

where Y is the normalized response, Imax is the normalized

maximum response, IC50 (M) is the half maximal inhibitory

concentration, [A] is the logarithm of the concentration of

asperparaline A (M) and nH is the Hill coefficient. On the other

hand, the concentration-response curves for ACh were fitted with

Figure 1. Chemical structure of asperparaline A.
doi:10.1371/journal.pone.0018354.g001
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Figure 2. Acetylcholine (ACh)-induced currents (A), the effects of blockers (mecamylamine and fipronil) on the ACh- (B), c-
aminobutyric acid (GABA) (C)- and L-glutamate (D)-induced currents and the actions of asperparaline A on the resting-state (E) and
neurotransmitter-evoked currents (F–H) in the silkworm (Bombyx mori) larval neurons. The holding potential was 260 mV. ACh (10 mM),
L-glutamate (30 mM) and GABA (30 mM) was applied for 2 s using the U-tube, whereas mecamylamine and fipronil were bath-applied for 1 min prior
to co-application with the agonists. In (E), asperparaline A was applied alone at 1 mM for 2 s using the U-tube, whereas in (F–H), it was bath-applied
for 1 min prior to co-application with neurotransmitters ACh (F), GABA (G) and L-glutamate (H). Note that both peak and slowly desensitizing current
amplitudes of the ACh-evoked response were blocked reversibly, selectively and almost completely by 1 mM asperparaline A (F).
doi:10.1371/journal.pone.0018354.g002
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the following equation:

Y~
Imax

1z10(logEC50-½A�)_nH
ð2Þ

where EC50 (M) is the half maximal effective concentration.

Chemicals
Fipronil and mecamylamine hydrochloride were purchased

from Sigma-Aldrich Japan (Tokyo, Japan). Asperparaline A

was obtained by purifying the okara broth of A. japonicus JV-23

as previously reported [1,2]. Stock solutions of fipronil,

mecamylamine and asperparaline A were prepared in DMSO

at a concentration of 10–100 mM and stored at 220uC until

use. These stock solutions were diluted with the physiological

saline described below. The final concentration (v/v) of

DMSO in test solutions was 0.1% or lower, which had no

adverse effect on the cellular response under investigation. Test

solutions of ACh, L-glutamate and GABA were prepared by

directly dissolving the stock solutions in saline immediately

prior to experiments.

Results

Membrane currents induced by three neurotransmitters
in B. mori larval brain neurons and actions of
asperparaline A on the membrane currents

Application of ACh (10 mM) resulted in a rapid inward current

at a holding potential of 260 mV with fast and slow desensitizing

phases. The ACh-induced currents were stably recorded using

intracellular (pipette) and extracellular (bath) solutions for 15 min

Figure 3. The effects of repeated application of ACh on the blocking action of asperparaline A. After recording the control response to
ACh at 10 mM, asperparaline A was continuously bath-applied at 30 nM, during which ACh was also applied at 10 mM for 2 s every minute using the
U-tube. (A) Traces of the ACh-induced current responses in the presence of 30 nM asperparaline A. (B) Normalized peak current amplitude of the ACh
responses recorded during the continuous application of asperparaline A. The peak current amplitude of each response was normalized by that of
the response recorded before the application of asperparaline A. Each plot represents the mean 6 standard error of the mean of 4 separate
experiments.
doi:10.1371/journal.pone.0018354.g003
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or longer (Fig. 2A). The entire current was completely blocked by

bath-applied 100 mM mecamylamine (n = 4, Fig. 2B), a non-

competitive antagonist of nAChRs. Both GABA- and L-gluta-

mate-induced currents at the same holding potential were

attenuated by bath-applied 10 mM fipronil, a phenylpyrazole

insecticide known to block the chloride channels of GABA- and L-

glutamate-gated chloride channels in insects (Fig. 2C (n = 4), D

(n = 4)) [9,10].

To examine if asperparaline A activates any of ligand-gated ion

channels expressed in the silkworm neurons, it was applied alone

to the neurons at 10 mM. Asperparaline A had no effect on the

membrane current amplitude to clamp the membrane potential of

the B. mori larval neurons at 260 mV (n = 4, Fig. 2E). In addition,

the compound was also ineffective on the resting membrane

potential of the neuron when tested under the current clamp

condition (n = 5, data not shown). Hence, it was bath-applied for

1 min, prior to co-application for 2 s with ACh (10 mM), GABA

(30 mM) and L-glutamate (30 mM) (These neurotransmitter

concentrations are close to EC50), to explore any possible

antagonist actions on any ligand-gated ion channels present on

the neurons. Asperparaline A markedly and reversibly blocked the

ACh-induced current when applied at 1 mM (Fig. 2F). However,

the alkaloid barely affected the peak current amplitude of the

GABA (n = 5, Fig. 2G)- and L-glutamate (n = 5, Fig. 2H)-evoked

responses.

Effects of repeated application of ACh and pre-
application on the blocking action of asperparaline A

To examine whether the blocking action of asperparaline A was

use-dependent, asperparaline A was continuously bath-applied at

30 nM, during which ACh was also applied at 10 mM for 2 s every

minute. In such experiments, the blocking action was not

accelerated by repeated ACh-application over a 10 min period

(n = 4, Fig. 3A, B).

Figure 4. Effects of pre-application on the antagonist action of
asperparaline A. (A) Asperparaline A was co-applied at 30 nM with
10 mM ACh for 2 s without pre-application, or applied for 1, 2 and 5 min
prior to co-application with 10 mM ACh. (B) The antagonist action of
asperparaline A with and without pre-application for 1, 2 and 5 min.
Each bar graph represents the mean 6 standard error of the mean
(n = 4) of the peak current amplitude of the ACh-induced response
normalized by that taken before the application of asperparaline A. The
pre-application of asperparaline A significantly enhanced the antago-
nist action (p,0.05, One-way ANOVA, Tukey’s test), but there were no
significant differences in the blocking action between 1, 2, and 5 min
pre-applications.
doi:10.1371/journal.pone.0018354.g004

Figure 5. Concentration-inhibition curves for asperparaline A
in terms of attenuation of the responses to ACh of the
silkworm larval neurons. (A) The ACh-induced responses recorded
before and after bath-application of asperparaline A for 1 min prior to
co-application with 10 mM ACh. The peak and slowly desensitizing
currents are indicated by ‘‘a’’ and ‘‘b’’, respectively. (B) Concentration-
inhibition curves for asperparaline A. Data were normalized to the
maximum response to ACh (10 mM). Each plot represents the mean 6
the standard error of the mean of 4 experiments. The concentration-
inhibition curves were obtained by fitting the data to Eq. (1) (see
Materials and Methods). The pIC50 ( = log(1/IC50) values for the peak and
slowly desensitizing currents were 7.6960.02 (n = 4, IC50 = 20.2 nM) and
7.4060.04 (n = 4, IC50 = 39.6 nM), respectively. These two values are
significantly different (p,0.05, t-test).
doi:10.1371/journal.pone.0018354.g005
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The antagonist potency of asperparaline A observed without

pre-application was significantly lower than when pre-applied

(n = 4, p,0.05, one-way ANOVA, Tukey’s test, Fig. 4A, B). Thus,

the effects of three different pre-application times (1, 2 and 5 min)

on the blocking action were examined. No significant difference in

the blocking action was observed between the pre-application

times tested (n = 4, Fig. 4A, B).

Mode of blocking action of asperparaline A on B. mori
nicotinic acetylcholine receptors

It has been shown that a neonicotinoid insecticide imidacloprid

differentially modulated two phases (desensitizing and non-desen-

sitizing) of the ACh-induced currents in the American cockroach

neurons [11]. Hence we examined whether asperparaline A

differentially blocks the peak and slowly desensitizing currents.

Using the 1 min pre-application protocol, the pIC50 ( = log(1/IC50)

of asperparaline A for the peak and slowly desensitizing current

amplitudes were determined to be 7.6960.02 (n = 4, IC50 =

20.2 nM) and 7.4060.04 (n = 4, IC50 = 39.6 nM), respectively

(Fig. 5). A significant difference was observed between the two

IC50 values ((p,0.05, t-test).

To explore further the blocking action, the concentration-

response relationship of ACh was measured in the presence and

absence of 100 nM asperparaline A (Fig. 6) using the 1 min pre-

application protocol for the alkaloid application. It reduced the

normalized maximum response to ACh to approximately

25.7%, while scarcely influencing pEC50 (with 100 nM asper-

paraline A, 4.9860.14, n = 4, EC50 = 10.5 mM; without asper-

paraline A, 4.9460.04, n = 7, EC50 = 11. 4 mM). No significant

shift in EC50 was observed by the presence of 100 nM

asperparaline A.

Actions of asperparaline A on vertebrate nicotinic
acetylcholine receptors expressed in X. laevis oocytes

Asperparaline A was tested on the chicken a3b4, a4b2 and

a7 nAChRs expressed in X. laevis oocytes (Fig. 7). When tested

alone, the alkaloid showed no agonist action on these three

nAChRs, at concentrations up to 10 mM (data not shown). Thus

it was bath-applied at 10 mM for 1 min prior to co-application

with 100 mM ACh. It reduced the peak current amplitude of the

ACh-induced response of a3b4 nAChR by 33.463.3% (n = 3,

Fig. 7A), while barely influencing the amplitudes of the

responses to ACh of the a4b2 (n = 4, Fig. 7B) and a7 (n = 3,

Fig. 7C) nAChRs.

Discussion

Since the discovery of asperparaline A in 1997, its target has

remained unknown. Here we have for the first time tested

asperparaline A on ligand-gated ion channels present on the

silkworm larval neurons using patch-clamp electrophysiology.

Asperparaline A was found to selectivity reduce the ACh-

induced currents (Fig. 2F) that were also blocked by mecamyl-

amine (Fig. 2B). In addition, it barely affected the GABA

(Fig. 2G)- and L-glutamate (Fig. 2H)-induced currents, indicat-

ing a specific antagonist action on nAChRs present in the

neuron. In insects, however, cation-permeable, ionotropic

glutamate receptors mediate fast-acting neuromuscular trans-

mission and are targeted by several venoms [12]. As such, tests

of asperparaline A on this type of ligand-gated ion channels are

of importance to ensure that the toxicity of this compound to the

silkworm larvae is the result of the selective antagonist action on

nAChRs.

Asperparaline A was not an open channel blocker of the

nAChRs because there was no evidence of use-dependency in the

blocking action (Fig. 3). The ACh-induced currents consisted of

fast and slow desensitizing phases (Figs. 2–5), which may reflect

the presence of several receptor subtypes as reported for other

insect neurons [11]. The peak and slowly-desensitizing ACh-

induced currents showed different asperparaline-sensitivity

(Fig. 5). Given that the isoforms of all the silkworm nAChR

subunits resulting from splicing and RNA editing have been

elucidated [13], it will be of interest in future to examine the

affinity of asperparaline A for nAChR subtypes. Nonetheless, it is

at present difficult to express functional and robust nAChRs

consisting of only insect receptor subunits including those of the

silkworm in heterologous cells, which should be resolved

primarily.

We examined the effects of asperparaline A on the concentra-

tion-response curve for ACh. The alkaloid (100 nM) reduced the

normalized maximum response to ACh, while scarcely influencing

EC50 (Fig. 6), suggesting that ACh and asperparaline A do not

compete for the same binding site at nAChRs.

To investigate whether asperparaline A is a selective antagonist

of insect nAChRs, or equally effective on vertebrate nicotinic

AChRs, its actions on the chicken a3b4, a4b2 and a7 nAChRs

expressed in X. laevis oocytes were investigated using two-electrode

voltage-clamp electrophysiology. Although a3b4 nAChR showed

higher asperparaline A-sensitivity than others, the blocking effect

was only 33.4% of the control response at 10 mM, a concentration

about 250–500-fold higher than the IC50 for the B. mori nAChRs

(Fig. 7). Moreover, the blocking action on a4b2 and a7 was very

weak at this concentration, suggesting a high selectivity for insect

over certain vertebrate (avian) nAChRs. We cannot of course rule

out that other vertebrate nAChRs may show higher sensitivity to

this alkaloid than a3b4, a4b2 and a7 [14].

Figure 6. Effects of asperparaline A on the concentration-
response curve for ACh in the silkworm larval neurons. The
ACh-induced responses were measured at various concentrations in the
presence and absence of 100 nM asperparaline A. The concentration-
response curves were obtained by fitting the data to Eq. (2) (see
Materials and Methods). The pEC50 ( = log(1/EC50)) values determined in
the presence and absence of asperparaline A were 4.9860.10 (n = 4,
EC50 = 10.5 mM) and 4.9460.04 (n = 7, EC50 = 11.4 mM), respectively. No
significant shift in EC50 was observed by the application of asperpara-
line A.
doi:10.1371/journal.pone.0018354.g006
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In conclusion, this is the first study to have shown that

asperparaline A from A. japonicus JV-23 targets the nAChRs

among the ligand-gated ion channels expressed by B. mori neurons,

offering an explanation, at least in part, for the paralysis exhibited

by silkworm larvae exposed to this compound. The asperparaline

A acts on native B. mori nAChRs as a non-competitive antagonist,

and is highly selective to insect (silkworm), over vertebrate

(chicken), nAChRs. Future research should focus on elucidation

of the mechanism of the selectivity, which may pave a new way for

novel pest control chemicals.
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