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Abstract

Background: The relative contributions of natural selection and random genetic drift are a major source of debate in the
study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It
has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis,
which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have
used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence
evolution, as the null hypothesis of their statistical inference.

Methodology/Principal Findings: In this study, we introduced two novel theoretical models, one based on neutral drift and
the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a
variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1) our models can
reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and
Zipf’s law of the transcriptome; (2) cytological constraints can be explicitly formulated to describe long-term evolution; (3)
the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously
published observations than the model of optimized absolute mRNA abundances.

Conclusions/Significance: The models introduced in this study give a formulation of evolutionary change in the mRNA
abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a
foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time
scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.
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Introduction

It has long been hypothesized that phenotypic evolution is more

often based on evolutionary changes in gene expression regulation

than on sequence changes in proteins [1]. Prompted by this

hypothesis and the advent of genome-wide gene expression

profiling techniques, an increasing number of studies have

investigated the pattern of evolutionary change in gene expression

profiles and the evolutionary forces governing the process.

Recently, it has become evident that heritable variations in the

mRNA abundance are commonly seen in a variety of species, such

as yeast [2–5], Drosophila [6–10], mice [11,12], and humans

[13–16], along with variations between species [7,9,17–25]. This

has raised the question of how those variations are maintained in

populations and what evolutionary forces affect the pattern of

variations within and among species. In particular, the main

conflict between researchers over gene expression evolution is the

relative contribution of random genetic drift and natural selection

to evolutionary changes in mRNA abundance. Some researchers

have argued that the majority of evolutionary changes in the

mRNA abundance is selectively neutral and likely to be of little or

no functional significance (neutral hypothesis) [17,18,21,22,24–26],

while others have argued that natural selection has a substantial

effect on gene expression evolution [7,23]. According to Whitehead

and Crawford (2006) [30], among studies which provide quantita-

tive estimates, the proportion of genes which are supposed to be

subject to stabilizing selection, for example, varies from 7% to

100%. In a comparison of populations of the marine killifish

Fundulus adapting to different habitat temperatures, much of the

variation in expression level was correlated with phylogeny

regardless of the habitat temperature they adapted to

[17,18,24,25]. This result can be explained by the neutral

hypothesis. On the other hand, Lemos et al. (2005) [23] argued

that more than 96% of genes were subject to stabilizing selection in

primates, rodents, and Drosophila lineages by using the mutation-

drift equilibrium model [27–29] in which the variance in expression

levels of a given gene among species was scaled by the divergence

time.

As for the cause of this conflict, Whitehead and Crawford (2006)

[30] suggested that the linearity between gene expression

divergence and phylogenetic distance, which is expected from

the neutral hypothesis, might be lost when the divergence time
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becomes sufficiently large, and that this might confuse the analysis.

Therefore they pointed out that it is important to identify an

adequate time scale for discriminating the effect of natural

selection from that of random genetic drift of selectively neutral

variations. In order to address this problem, it is crucial to

construct a neutral model which can predict the long-run behavior

of evolutionary changes in mRNA abundance.

A neutral model of gene expression evolution was first proposed

by Khaitovich and coworkers (2004) [22]. They constructed this

model based on the observation that gene expression divergence

increases proportionally with divergence time in lineages of

primates and rodents, which is termed as a ‘‘clock-like’’ accumu-

lation of gene expression divergence. This observation can be

explained from the assumption that mutations cause changes in

relative amounts of expression levels irrespective of gene function

[22,26]. However, since those studies were confined mainly with

relatively short terms of gene expression evolution, such as between

humans and chimpanzees, the long-run behavior of the neutral

model of gene expression evolution has not been well studied.

To investigate long-run behavior, in this study we focused on a

property of the distribution of mRNA abundance. As soon as

genome-wide gene expression profiling techniques were devel-

oped, it was revealed that there is a common tendency in the

distribution of mRNA abundance: a few genes are expressed

intensely and most genes are expressed at quite low levels. It is now

known that this distribution can be well described by Zipf’s law

[31] (or its mathematical equivalent, called the power law) from

vertebrates to lower eukaryotes [32–37]. This law states that there

is a relationship between the mRNA abundance (f [copy/cell]) and

its abundance rank (r) represented by f!r{b. The exponent b is

the absolute value of the slope in a logarithmic rank-frequency

plot. It is remarkable that the value of exponent b is near 1.0 in

most normal tissues. (More specifically, the exponent b is near 1.0

in normal tissues composed primarily of a homogeneous

population of differentiated cells, such as liver and muscle. In

other normal tissues composed of a mixture of different types of

cells, including brain, testis, and kidney, the exponent b tends to be

slightly lower than 1.0, as expected [35]).

Here it should be noted that if evolutionary forces affect the

mRNA abundance of each gene, they inevitably affect the

distribution of it. Moreover, the distribution of mRNA abundance

can be expected to be generated by the long-term effect of

evolutionary forces on gene expression regulation. Therefore, if

most evolutionary changes in the mRNA abundance can be

explained by the neutral hypothesis, then the above two mentioned

phenomena, namely the clock-like accumulation of gene expression

divergence and Zipf’s law of the transcriptome, should be explained

with the same neutral model. Indeed, Ogasawara et al. (2003) [35]

suggested that Zipf’s law of the transcriptome might originate from

a process which is quite similar to the neutral model introduced by

Khaitovich et al. (2004) [22]. However, as pointed out in this study,

the previous model cannot explain the uniformity of the exponent b,

which suggests that long-run behavior of previous models is not

consistent with observations. In this study we propose refined

models which can explain the two phenomena simultaneously by

adding a few cytological constraints to the previous models.

Results

A Neutral Model of Gene Expression Evolution and the
Genesis of Zipf’s Law-Like Distribution in mRNA
Abundance

Consider the mRNA abundance fi(t) (number of mRNA

molecules in a cell) of gene i in a given cell type at generation t.

We regard fi(t) as a heritable quantitative trait whose value is

determined solely by the genetic effect, and we do not take account

of the fluctuation caused by physiological and environmental

factors. We assume that mRNA abundance fi(t) is affected by

mutations with proportionality to the abundance before mutation.

This can be expressed as follows:

fi tð Þ~ 1zkitð Þfi t{1ð Þ

where kit is a mutually independent and identically distributed (iid)

random variable with mean 0 and variance s2, and is also

statistically independent of fi(t). This assumption means that the

probability of evolutionary change, from say 1.0 copy/cell to

2.0 copies/cell, is equal to the probability of change from

10 copies/cell to 20 copies/cell, and not to the probability from

10 copies/cell to 11 copies/cell. The neutral model of gene

expression evolution introduced by Khaitovich et al. (2004) [22] is

also based on essentially the same idea.

In this study, we refer to the model assuming that evolutionary

changes in mRNA abundance are irrelevant to the function of the

proteins as neutral model of gene expression evolution. On the

other hand, we refer to the model assuming that the range of

evolutionary changes is confined depending on the function of the

protein as the natural selection model of gene expression

evolution. We use the terminology from previous studies [22,26],

but it should be noted that the neutral model of gene expression

evolution and Kimura’s neutral model of molecular evolution are

different concepts. Kimura’s neutral theory asserts that the

majority of DNA sequence polymorphisms observed within a

species has no effect on the fitness, because the majority of harmful

mutations are eliminated from the population by negative

selection. Therefore it is obvious that both the natural selection

model and the neutral model of gene expression evolution do not

conflict with Kimura’s neutral model of molecular evolution.

Assuming that the absolute value of kit is small compared

with 1, we approximate from the Taylor expansion of

ln 1zxð Þ~xzO x2
� �

that

ln fi(t)~ln fi 0ð Þz
Xt

j~1

kij

Since we assume that kij (j = 1, 2,…, t) is iid random variables,

according to the central limit theorem,
P

kij will be approxi-

mately a normal distribution with mean 0 and variance sk
2 = s2t

when t??. Therefore, ln fi tð Þ is asymptotically normally

distributed and hence fi(t) is lognormally distributed. In general,

a positive random variable Z is said to be lognormally distributed

with two parameters, mean m and variance s2, if X~lnZ is

normally distributed with them. It is known that when s2 is

sufficiently large, the lognormal distribution would appear almost

linear on both a log-log plot of the probability density function

(power-law plot) and on a Zipfian plot (Figure 1). This is the model

of the genesis of Zipf’s law of the transcriptome suggested by

Ogasawara [35], and this process is generally known as the Gibrat

process or the law of proportionate effect which was first

introduced as an explanation of firm size distribution [38–41].

However, since the variance of the resultant distribution of

ln fi tð Þ is given by s2t, it increases with generation t without limit.

Consequently, the exponent b also increases with t without limit

(Figure 1 and Figure S1). Obviously this situation is unrealistic

because there is no reason for many species to have an appropriate

Gene Expression Evolution
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value of t to make b be near 1.0 concurrently. Therefore this model

is inconsistent with observations.

We refined this previous model by adding a few cytological

boundary conditions. First, we assume that the total number of

mRNA molecules (M) in a given cell is constant throughout a

specific evolutionary process. Secondly, the number of expressed

genes (N) in a given cell type is constant throughout this

evolutionary process. In typical mammalian cells, M and N are

estimated to be 300,000–500,000 and 10,000–30,000, respectively

[42–44]. This assumption implies that the mRNA abundance in a

cell is determined by the relative, instead of absolute, affinity of the

gene regulation proteins and the cis-elements among the genome,

since those proteins would ‘‘choose’’ their target from a collection

of cis-elements in the gene expression process. This corresponds to

the normalization step in this model (see Materials and Methods).

It should be noted that by assuming the maximum capacity of

mRNA in a cell (M), a limitless increase in the variance of the

mRNA abundance by the Gibrat process leads most genes to

decrease their mRNA abundances without limit. That is, most

genes will lose their gene expression ability eventually (Figure 1

and Figure S1). Obviously this seems unrealistic and contradicts

the assumption of the constancy of N. To avoid this, we make a

third assumption that an individual who loses gene expression of

functional genes will be eliminated from the population by

negative selection. We formulate this assumption by prohibiting

the mRNA abundance of each gene from being lower than a

certain limit L; in the formula, fi tð Þ§L for any i and t (Materials

and Methods). Some genes may have a different lower limit L from

other genes according to their function; however, we ignore these

as minor cases for the purpose of modeling gene expression

evolution.

We next investigated the long-run behavior of the refined model

by a series of Monte Carlo simulations. The simulations indicate

that the process approaches the steady-state, Zipf’s law-like

distribution regardless of the initial state distribution when model

parameters are set to the typical value of mammalian cells

(M = 300,000, N = 20,000), and the lower limit of expression level

L is set to 1.0 [copy/cell] (Figure 1C). The consistency of the

model (with L = 1.0, M = 300,000, and N = 10,000) and data has

been tested by the generalized chi-square goodness-of-fit test [45].

We use the EST-based gene expression profiles of livers of human,

mouse, chicken, and Xenopus laevis, since liver tissue is composed

primarily of a homogeneous population of differentiated cells.

Estimating the discrepancy measure d from human liver EST

profiles (d = 0.0268), the P-values of the generalized goodness-of-fit

tests of human, mouse, chicken, and X. laevis were 1.0 (n = 2,384),

0.997 (n = 762), 0.794 (n = 935), and 0.999 (n = 1304), respectively

(df = 4). Even with a rather conservative assumption that the

relative error in the EST profiles is only 3% for each bin

(d = 9.061024), P-values of human, mouse, chicken, and X. laevis

were 0.68, 0.46, 0.0025, and 0.10, respectively (see Materials and

Methods). In conclusion, the model is not rejected by the data.

The relatively small P-value of the chicken data in the latter case

can be readily explained by the measurement error of EST-based

profiling.

We also show by simulation that the standard deviation of the

random coefficient kit has little effect on the form of the steady-

state distribution, as expected from the central limit theorem, but

that it affects the evolutionary rate. That is, the number of

generations required for convergence increases as the standard

deviation of kit decreases (Figure S2). This result implies that the

exponent b is solely determined by the model parameters L, M,

and N. Therefore, we examined the relationship between the

values of L, M, N, and the resultant exponent b of the steady-state

distribution (Figure 2). The result of the Monte Carlo simulation

shows that exponent b is much more susceptible to L but hardly

Figure 1. Log (rank) versus log (frequency) plot for mRNA abundance. (A) The mRNA abundance of human (red), mouse (green), chicken
(blue), and X. laevis (light blue). (B) Result of the Monte Carlo simulation, L = 0.0. (C) Result of the Monte Carlo simulation, L = 1.0. At the initial state,
the mRNA abundance of all genes is set to M/N. Other model parameters of (B) and (C) are: M = 300,000, N = 20,000, and sk = 0.05. The line shows
y = 0.1/x
doi:10.1371/journal.pone.0007943.g001
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affected by M and N. The exponent b takes a value close to 1.0

over a wide range of M and N if and only if L is near 1.0 copy/cell.

From this result, the uniformity of exponent b can be explained

as follows. The number of expressed genes N and total number of

mRNA molecules in a cell M may differ among cells, but those

parameters have little effect on the value of b. On the other hand,

the lower limit L might be common across a variety of cells,

because if fi(t) becomes under 1.0 copy/cell by mutation, that

means the transcript can no longer exist at every moment in the

cytoplasm. This situation would, in effect, be similar to the gene

being lost; hence, it would be subject to negative selection.

Therefore L would have a similar value across a variety of cells,

and consequently b would be the same across a variety of cells.

Loss of Clock-Likeness in the Long-Run Behavior of Gene
Expression Divergence under the Neutral Model

It is well known that Zipf’s law-like distributions can be

generated by a variety of stochastic processes [40,41,46,47]. Those

processes include the law of proportionate effect which is described

above, the theory of breakage studied by Kolmogoroff [48], the

preferential attachment process studied by Yule [49] and Simon

[50], the optimization theory of the genesis of Zipf’s law studied by

Mandelbrot [51], and the distribution of powers and products of

normal variables studied by Haldane [52]. On the other hand,

some people even believe the superstition that a Zipf’s law-like

distribution can be generated ‘‘without cause’’. Needless to say,

this belief is not true. The truth is that in some phenomena the

cause of the genesis of the distribution is not known, and in some

phenomena the cause is trivial and rather disappointing.

Regardless of how many models were introduced previously, the

law of proportionate effect is currently a good starting point

available for the explanation of the genesis of the Zipf’s law-like

distribution in mRNA abundance, since it is the basis for the

model of the clock-like accumulation of gene expression

divergence [53–55]. It should be recalled that if evolutionary

forces affect the mRNA abundance of each gene, they inevitably

affect their distributions. Therefore, the explanations of the clock-

like accumulation and the Zipf’s law-like distribution must be

based on the same set of mechanisms.

Both the distribution of mRNA abundance in a cell (A) and the

gene expression divergence (B) are solely determined from the

gene expression profiles (C), where a gene expression profile is a

list of the mRNA abundance of each gene fi(t), where i = 1, …, N,

at a given t. Namely, (A) and (B) are two different features of the

same source (C). Therefore, if a model insists that it can explain (A)

through a formulation of (C), the model should explain (B)

simultaneously, and vice versa. One may say that fi(t) can change

among species without any effect on the overall distribution of fi(t)

in a cell; say f1(0) = 1.0, f2(0) = 2.0 to f1(1) = 2.0, f2(1) = 1.0. Even in

such cases, the source of the constraints which force the

distribution into being unchanged should be explained from the

time-course of fi(t) formulated by the model.

Therefore, we examined whether the refined model, which has

been introduced to explain the Zipf’s law-like distribution, can also

regenerate another independently found phenomenon—the clock-

like accumulation of gene expression divergence discovered by

Khaitovich et al. (2004) [22]. The Monte Carlo simulation showed

that when the previous model (specifically, in the case of L = 0.0,

M = 300,000, and N = 20,000) is assumed, it follows that gene

expression divergence increases linearly without limit (Figure 3A). On

the other hand, the refined model (L = 1.0 copy/cell) predicts that at

first gene expression divergence increases linearly, then the increasing

rate decreases gradually, and eventually converges to an upper limit

near 0.4, although it exhibits substantial stochastic fluctuations

(Figure 3B). The upper limit is found to be unaffected by the standard

deviation sk of the distribution of kit (Figure 3B), and slightly affected

by M and N (data not shown), similar to the case of the genesis of

Zipf’s law-like distribution. This prediction of the presence of the

upper limit is one of the discriminating features of the refined model

which can be used as a criterion for its falsification.

The time-course of gene expression divergence reported in

Khaitovich et al. (2004) [22] exhibits signs of an upper limit.

According to the neutral theory [56] and the generation time effect

hypothesis [57–59], the evolutionary rate is a function of the

number of generations rather than chronological time. From a

human-orangutan comparison, the divergence increases about 0.3

in about 2T = 1.2 million generations, but from human-orangutan

and human-macaque, the divergence increases only by about 0.1

Figure 2. Relationship between model parameters L, M, N, and exponent b. (A) M is fixed to 300,000. (B) N is fixed to 20,000. Each point
shows the exponent b averaged over 50 repetitions of the simulation, where sk = 0.05 and t = 10,000. At the initial state, the mRNA abundance of all
genes was set to M/N. The rectangle shows the range of the parameters in typical mammalian cells.
doi:10.1371/journal.pone.0007943.g002
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in about additional 2.3 million generations (Figure 4) [22]. Here

we assume that divergence of human-chimpanzee, human-

orangutan, and human-macaque takes approximately some 6,

13, and 23 million years, respectively [60], and that average

generations in human, chimpanzee, orangutan, and macaque are

28, 22, 20, and 11.4 years, respectively [61,62].

In addition, an upper limit can be clearly seen in the time-

course of gene expression divergence based on a subset of genes

which has the largest evolutionary rate (25% of genes that has the

largest human variation among 2,926 genes measured). From a

human-chimpanzee comparison to human-orangutan compari-

son, the divergence increases about 0.44, but from human-

orangutan to human-macaque, the divergence increases only

about 0.06 [22]. Therefore, at present, the refined model appears

to be more consistent with observations than previous models.

Moreover, our model supports the suggestion by Whitehead and

Crawford (2006) [30] that the inconsistency of results from several

previous studies is caused by the loss of linearity between gene

expression divergence and generation over the long-run. There-

fore our model might be used for predicting appropriate time

scales for distinguishing the effects of random drift and natural

selection in the primate lineage.

The estimate of standard deviation sk under the neutral model

can be obtained from the expression divergence data of primates

[22] as follows. Monte Carlo simulations indicate that the number

of generations needed for gene expression divergence to reach a

given value, say 0.3 (human-orangutan), decreases rapidly and that

the evolutionary rate of the previous model (L = 0.0) is generally

larger than that of the refined model (L = 1.0). The relationship

between sk and the number of generations is well fitted to

2T = 4.79 sk
22.02 (L = 1.0) and 2T = 1.67 sk

21.99 (L = 0). From this

formula, the standard deviation sk of the primate lineage was

estimated from the observations of Khaitovich et al. (2004) [22] as

about 2.1561023 under the neutral model (Figure 4).

Figure 4. Time development of gene expression divergence of primate brains. (A) The number of generations required for gene expression
divergence to be 0.3. Each point is the mean value averaged over 100 repetitions. The red line is L = 1 and the blue line is L = 0. (B) Time development
of gene expression divergence. Red points are the gene expression divergence between humans and other primates reported by Khaitovich et al [22].
Black points are the result of the simulation averaged over 10 repetitions, and error bars represent standard deviation. In the both panels, model
parameters are: L = 1.0, M = 300,000, and N = 20,000. Initial distribution (t = 0) of the simulations followed Zipf’s law.
doi:10.1371/journal.pone.0007943.g004

Figure 3. Time development of gene expression divergence. Each point shows the gene expression divergence averaged over 100 repetitions
of the simulation. (A) L = 0.0. (B) L = 1.0. Other model parameters are: M = 300,000 and N = 20,000. Initial distribution (t = 0) of the simulations follows
Zipf’s law.
doi:10.1371/journal.pone.0007943.g003
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Models of Gene Expression Evolution with Natural
Selection

In the previous sections, we discussed neutral models of gene

expression evolution in which evolutionary changes in mRNA

abundances are assumed to be irrelevant to the functions of the

proteins. However, since it is evident that adequate regulation of

the mRNA abundance is a prerequisite for efficient protein

function, it is necessary to extend the model to account for the

effect of natural selection which optimizes the mRNA abundance.

As we mentioned previously, the distributions of mRNA

abundance in cells are similar in a variety of species, including

mammals, insects, plants, and lower eukaryotes. It seems that this

distribution is not easily explained from a natural selection model

of gene expression evolution, because these species having

different sets of genes are adapted to different environments and

different ways of life. If those genes have their own optimum

mRNA abundance (mi) according to their functions, then the

observed distribution of mRNA abundance in cells would differ

among the various species. There is no reason that each of the

optimum values {mi} (i = 1,…,N) follows Zipf’s law-like distribu-

tion. Rather, {mi} can take any shape, even one far from the Zipf’s

law-like distribution depending on the functions of the proteins,

since distantly related species, such as insects and plants, have

different sets of genes and are adapted to different environments

with different ways of life. The problem here is how these two

seemingly contradictory phenomena can be explained simulta-

neously from a unified model.

First, we examined whether the steady-state distribution can be

altered, assuming the optimum mRNA abundance for each gene.

Since Zipf’s law-like distributions are observed in a variety of

phenomena, one may expect that this type of distribution is so

robust that it is not altered by additional factors such as natural

selection. To examine this hypothesis, we undertook the Monte

Carlo simulation with random mating populations with finite

population size comprised of sexually reproducing diploid

organisms. We assume that the mRNA abundance of each locus

is determined by the average effect of two genes on the locus, and

that fitness of each individual is determined by the mRNA

abundance of a given set of genes.

At present, there is insufficient information on ‘‘the distribution of

the optimum mRNA abundances’’ for simulation. We can only

conjecture that there is no reason for a variety of species to have an

identical optimum value distribution. Therefore, we assume that the

optimum value distribution has a slightly distorted shape from the

Zipf’s law-like distribution with the optimum value distribution

given as 10X+1, where X is a random variable having a skewed

normal distribution (Figure 5). Then we examined whether the

steady-state distribution converges to the Zipf’s law-like distribution.

The Monte Carlo simulation demonstrated that the steady-state

distribution is readily altered by the effect of natural selection,

although only when a small number of genes (about 0–100) is

assumed to be at their optimum did the process converge into a

Zipf’s law-like distribution (Figure 5). It should be noted that in

these simulations the selection intensity (defined as the reciprocal

of the proportion of individuals selected from a population to be

used as parents) was the same across different values of n, the

number of loci undergoing the natural selection (Materials and

Methods).

This result showed that the Zipf’s law-like distribution was not

robust against the effect of natural selection under the absolute

optimum value model. This suggests that it is not easy to explain

the universality of the Zipf’s law-like distribution under the

absolute optimum value model without assuming that the

optimum value distribution itself follows Zipf’s law. However,

there is no reason to think that this additional assumption holds.

Rather, if there exists an optimum value distribution, it seems

natural that distantly related species would have different optimum

value distributions as mentioned above.

Bedford and Hartl (2009) [55] reported that, in several

Drosophila species, average pairwise variance in the mRNA

abundance as they defined it was saturated at around 0.3. They

pointed out that the variance is expected to equal 1.0 under the

neutral model of gene expression. Indeed, the expectation of our

refined neutral model is also 1.0. For an explanation of this

observation, Bedford and Hartl (2009) [55] proposed an

evolutionary model based on the Ornstein-Uhlenbeck (OU)

process described as following a stochastic differential equation:

dxi tð Þ~ mi{xi tð Þð ÞlidtzdidW tð Þ,

where, xi(t) = log2fi(t) and fi(t) is the mRNA abundance of gene i at

time t, and mi is the log of optimum mRNA abundance of gene i.

W is the standard Brownian motion (also called a Wiener process),

and li and di are positive constants corresponding to the strength

of natural selection and random genetic drift acting on gene i,

respectively. In other words, Bedford and Hartl argued that

evolutionary change in the mRNA abundance can be described by

the balance between the drift of Brownian motion and natural

selection pulling the mRNA abundance toward its optimum.

However, since the Bedford-Hartl model assumed an optimum

value mi (i = 1, …, N) of the mRNA abundance for every gene, it is

not easy to explain the Zipf’s law-like distribution of mRNA

abundance in cells from this model. In our simulation scheme, a

selection intensity of 1.67 is necessary for constraining the

Bedford’s average pairwise variance to around 0.3; however, the

steady-state distribution of mRNA abundance departs from the

Zipf’s law-like distribution under this selection intensity

(Figure 6).

In order to reconcile this apparent inconsistency, we introduce

another model of gene expression evolution. In this model, we

assume that the genes have no intrinsic optimum mRNA

abundance such as mi. Instead, the mRNA abundance suitable

for their function is determined by their relative relationship to the

other genes, such as fi.fj. Such relationships would reflect the

whole structure of gene regulatory pathways, and would thus be as

complex. Here we assume that the relationships are f1.f2.….fn,

for simplicity. The Monte Carlo simulation demonstrated that this

model can explain both the Bedford’s average pairwise variance

and the Zipf’s law-like distribution simultaneously (Materials and

Methods, Figure 7).

The behavior of the relative abundance model can be

summarized as follows: the distribution of mRNA abundance in

a cell is determined both by random genetic drift and by

cytological constraints, and the rank of mRNA abundance of each

gene is optimized by natural selection.

Discussion

In this study, we introduce a novel, explicitly defined model of

gene expression evolution. Our model assumes that (1) the mRNA

abundance is affected by mutations proportional to the abundance

before mutation; (2) the number of expressed genes and total

number of mRNA molecules in a cell type is nearly constant

throughout a specific evolutionary process; (3) the mRNA

abundance of each gene has a lower limit near 1.0 copy/cell;

and (4) the mRNA abundance of each gene (fi) suitable for its

function is determined by its relative relationship to other genes,

i.e., fi.fj.
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A series of Monte Carlo simulations demonstrated that this

model can explain the following three phenomena simultaneously:

(i) the clock-like accumulation of gene expression divergence

reported by Khaitovich (2004) [22]; (ii) the diminished upper limit

of the average pairwise variance reported by Bedford (2009) [55];

(iii) the Zipf’s law-like distribution of mRNA abundance in a wide

variety of species.

Although the effect of cytological constraints on the time

development of gene expression divergence has been predicted by

Lemos et al (2005) [23], an explicit formulation of cytological

constraints has not been given in previous works. The present

work introduces a formulation of cytological constraints (assump-

tions 2 and 3) and a scheme of natural selection optimizing the

mRNA abundance (assumption 4), based on the relationship

between the evolutionary change in the mRNA abundance and

the distribution of mRNA abundance in a cell.

One feature of this model is that locus-specific gene expression

divergence should not increase linearly with generation number;

on the contrary, it behaves like a random walk. Therefore the

distribution of locus-specific gene expression divergence should

exhibit a rather different and complex shape depending on the

divergence time. On the other hand, Khaitovich’s gene expression

divergence was defined by the average value over all loci

comprising the transcriptome, instead of being locus-specific. In

this case, the divergence should increase linearly with generation

time; that is, a clock-like accumulation of gene expression

divergence. This is an essential difference between our model

and an infinite site model of neutral polymorphisms of nucleotide

sequences in which locus-specific divergence accumulates propor-

tionally with generation time.

Although our model currently focuses on describing the

evolutionary process of a single cell for simplicity, this model

might also be applicable for describing the gene expression

evolution of multicellular organisms. The results of genome-wide

gene expression profiling of higher eukaryotes, including humans,

indicate that most genes can be clearly classified into two well-

Figure 5. Distribution of mRNA abundance under the optimum mRNA abundance model. (A) Optimum value distribution dassumed in
the Monte Carlo simulation. (B–F) Steady-state distributions of mRNA abundance where n genes are subject to natural selection. Red points represent
genes undergoing natural selection. Blue points are neutral genes. Model parameters are: L = 1.0, M = 300,000, N = 20,000, and sk = 0.01. Population
size (Ne) is 100. t = 50,000. The selection intensity is 1.67.
doi:10.1371/journal.pone.0007943.g005
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known categories, housekeeping genes and tissue-specific genes,

which are expressed in a small number of cell types. This suggests

that the distribution of mRNA abundance among different types

of cells is not independent, but rather that the mRNA abundance

of housekeeping genes in one cell type evolves to be larger, and

would therefore become larger in other cell types in most cases.

On the other hand, in the case of tissue-specific genes, the

evolution of the mRNA abundance in the cell type where the gene

is expressed would not affect the mRNA abundance of other cell

types, because by definition it would be confined to the smallest

expression level. The evolutionary change of the anatomical

pattern of gene expression [63–67] is another interesting area to

investigate, although for this purpose our model should be

expanded for evaluation of the effects of gene duplication.

Figure 6. Optimum mRNA abundance model. (A) Time development of average pairwise variance. (B) Steady-state distributions of mRNA
abundance. Model parameters are: L = 1.0, M = 300,000, N = 20,000, sk = 0.01, and n = 20,000. Population size (Ne) is 100. t = 50,000. The selection
intensity is 1.67.
doi:10.1371/journal.pone.0007943.g006

Figure 7. Relative abundance model. (A) Time development of average pairwise variance. Each point is mean value over 25 repetitions of the
simulation. (B) Steady-state distributions of mRNA abundance. Red points represent genes undergoing natural selection. Blue points are neutral
genes. Model parameters are: L = 1.0, M = 300,000, N = 20,000, sk = 0.01, and n = 500. Population size (Ne) is 100. t = 50,000. The selection intensity is 5.0.
doi:10.1371/journal.pone.0007943.g007
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Several other models have been proposed to explain the Zipf’s

law-like distribution of mRNA abundance. Without exception,

those models were based on the dynamics of mRNA synthesis and

degradation in a cell, rather than evolutionary processes.

Furusawa and Kaneko proposed a model which asserts that the

distribution originates from the balance between the effect of up-

regulating genes and down-regulating genes in the intracellular

gene regulation network [33]. Kuznetosov assumed that the

dynamics can be described by the birth-death stochastic process

[34]. Similarly, Ueda et al. formulated this process as geometrical

Brownian motion [37]. According to the formulation of any of

those dynamic models, it follows that the expression level of every

gene would fluctuate within the full range, namely from 0.0 copy/

cell to the maximum value permitted, virtually at random. To

avoid this consequence, those models must make an additional

assumption that each gene has its own dynamic range of

expression levels. This course of thinking would lead to the basic

idea of the evolutionary model, where the gene expression level is

determined by its genome.

Materials and Methods

Estimation of mRNA Abundance Based on EST
Frequencies

We downloaded the UniGene data files of Homo sapiens (Build

#210), Mus musculus (Build #170), Gallus gallus (Build #39), and X.

laevis (Build #82) from the NCBI FTP site. With reference to the

property table of cDNA libraries provided by the BodyMap-Xs

database (http://bodymap.jp) [68], we selected cDNA libraries

having the largest number of EST sequences among the libraries

which were originated from pathologically normal tissues of adult

organisms, and which did not suffer from experimental procedures

such as normalization, subtraction, selection, and full-length

cDNA enrichment. We estimated the mRNA abundance by

dividing the number of EST sequences belonging to each

UniGene cluster in each cDNA library by the total number of

EST sequences in the cDNA library. The list of the dbEST library

IDs we used in the analysis is as follows: liver 6989 (human), 2484

(mouse), 11,222 (chicken), 5540 (Xenopus); brain 18318 (human),

12634 (mouse), 15560 (chicken), 8910 (Xenopus); testis 18476

(human), 11976 (mouse), 15563 (chicken), 12882 (Xenopus); kidney

18374 (human), 7268 (mouse), 11220 (chicken), 11985 (Xenopus).

Monte Carlo Simulation (1) Simple Stochastic Process
For the examination of the convergence to the Zipf’s law-like

distribution, we assumed that the mRNA abundance at the initial

state (t = 0) was fi(0) = M/N for each gene (i = 1,2, …, N). At the

transition to the next generation, the mRNA abundance of each

gene was altered by mutation following fi’(t+1) = fi(t) (1+kit), where kit

was the normally distributed random variable. Then we normalized

the mRNA abundance to fi
00 tz1ð Þ~M|f 0i tz1ð Þ

,PN
j~1

f 0j tz1ð Þ

in order to grant
P

j

f 0 0j tz1ð Þ~M at this time. For each gene i, if

fi0(t+1),L then the value was set to fi0(t+1) = L. Then we assigned

fi(t+1) = fi0(t+1); that is, fi(t+1) is the mRNA abundance of gene i in

the next generation.

For the time development of gene expression divergence, we

assumed that the distribution of mRNA abundance at the initial

state (t = 0) followed the Zipf’s law-like distribution generated by

the Monte Carlo simulation described above. We executed two

independent simulations described above during the same number

of generations (T), and we calculated the gene expression

divergence defined by Khaitovich et al. between those two

hypothetical species [22]. The computer program for the Monte-

Carlo simulation was developed in our laboratory and written in

Java version 1.6.0. The fitting procedure was executed using

Mathematica version 6.0.

Monte Carlo Simulation (2) Random Mating Population
with Natural Selection

Using a random mating, finite, and constant size (Ne = 100)

population of diploid organisms, we assumed that every locus was

inherited independently. We assumed that a given number of

genes (n) were subject to natural selection, and that the other genes

(N-n) were not subject to natural selection.

For the intensity of selection (defined as the reciprocal of the

proportion of individuals selected from a population to be used as

parents) to be the same across different values of n, we used the

following selection schemes. We assumed that at the initial state

(t = 0), the mRNA abundance followed the Zipf’s law-like

distribution generated by the refined neutral model. The initial

distribution was identical for all individuals. Here,

f1(0).f2(0).….fN(0) were satisfied. The mRNA abundance of

each gene in each individual evolved by the process described

above. The model parameters were: L = 1.0, M = 300,000, and

N = 20,000.

In the optimum abundance model, we assumed that the

optimum values distribution was given as 10X+1, where X was a

random variable having a skewed normal distribution with

parameter a = 5 (Figure 5). We generated this random number

sequence using an sn (the skew-normal and skew-t distributions)

package of R statistics system version 2.8.0. The optimum values

satisfied the inequalities h1.h2.….hn, where hi was the optimum

value of gene i. The relative fitness of an individual was given by

the reciprocal of the sum of Euclidian distances of each gene, from

the optimum values to the realized expression levels. Then a given

number of individuals having the largest relative fitness survived to

propagate the next generation.

In the relative abundance model, we assumed the optimum

relationships to be f1.f2.….fn. We tested the inequalities for all

combinations of genes (C(n,2) = n!/((n-2)!2!) times), and we counted

the number of inequalities satisfied in each individual. We used this

count as the score of the individual, and a given number of individuals

having the largest score survived to propagate the next generation.

Since huge numbers of inequalities must be tested for all individuals

in every generation, this simulation was very time consuming when

we assume that n = N = 20,000. Therefore we confined the number of

genes undergoing natural selection to n = 500. The average pair-wise

variance was calculated on the n genes undergoing the natural

selection. For those simulations, we used Endeavor Pro7000 (Epson)

Intel Core i7 3.20 GHz 64 cores and SPARC Enterprise M8000

(Fujitsu) SPARC64 VII 2.52 GHz 632 cores

Generalized Chi-Square Goodness-of-Fit Test
The consistency of the model and the data were tested by the

generalized chi-square goodness-of-fit test. A common problem of

the standard Pearson’s chi-square test is that because its power

depends on sample size, small and unimportant departures from a

specified reference distribution may be detected with large samples

in general. The generalized chi-square goodness-of-fit test assumes

that the observed distribution may contain a small discrepancy from

the reference distribution that is eventually detected as the sample

size increases [45]. The formula for the null hypothesis (H0) of the

generalized chi-square test is H0: d = d0, d0.0, where d is the

discrepancy measure defined as d~
Xk

i

pi{pið Þ2

pi

, pi is the i-th cell

probability given by the reference distribution pi~pi 1zeið Þ, where
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ei is the relative error in the i-th cell, and d0 is a constant given by the

null hypothesis. Using those symbols, the null hypothesis of the

Pearson chi-square test can be described as H0: d = 0. When there is

a discrepancy between the reference and observed distribution, the

distribution of Pearson’s chi-square statistics can be approximated

by a non-central chi-square distribution with mean nzd, where v is

the degree of freedom and d is the non-centrality parameter

calculated by d~d=n, where n is the sample size.

We used the EST based gene expression profiles of livers of

human, mouse, chicken, and X. laevis, since liver tissue is composed

primarily of a homogeneous population of differentiated cells, and

the EST frequency data can provide the estimate of the absolute

mRNA abundance. (For other tissues primarily composed of a

mixture of different kind of cells, we do not have enough

parameters necessary for the goodness-of-fit test, such as the

numbers and proportions of different kinds of cells and the degree

of discrepancy of gene expression profiles among those types of

cells.) Common logarithms of EST counts were binned into five

bins (0–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, and more than 2.0), because

the gene expression profiles based on ESTs are very sparse

sequences of discrete values of EST counts and the number of

genes.

The reference distribution of tag frequencies was obtained from

the Monte Carlo simulation with the model parameters L = 1.0,

M = 300,000, and N = 20,000 as follows. The hypothetical gene

expression profiles were generated by the Monte Carlo simulation

(sk = 0.01, 100,000 generations), and we randomly chose 10,000

tags, and binned the result as described above. This trial was

repeated 100 times and the averaged hypothetical tag frequency

were used as the reference distribution of the goodness-of-fit test.

The relative error of each bin was estimated by the CV

(standard deviation/mean) calculated from EST profile data of

human liver (dbEST library IDs: 6989, 252, 12555). The CV of

each bin was 0.037, 0.35, 0.11, 0.63, and 0.056, respectively.

Supporting Information

Figure S1 Time development of hypothetical mRNA abun-

dance generated by Monte Carlo simulations of the previous

model (L = 0.0). Other model parameters were: M = 20,000,

N = 300,000. The line shows y = 0.1/x.

Found at: doi:10.1371/journal.pone.0007943.s001 (0.37 MB

PDF)

Figure S2 Time development of hypothetical mRNA abun-

dance generated by Monte Carlo simulations of the refined neutral

model (L = 1.0) Other model parameters were: M = 20,000,

N = 300,000. The line shows y = 0.1/x.

Found at: doi:10.1371/journal.pone.0007943.s002 (0.39 MB

PDF)
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