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Triple-negative breast cancer (TNBC) is associated with poor prognosis and invalid
therapeutical response to immunotherapy due to biological heterogeneity. There is an
urgent need to screen for reliable indices, especially immunotherapy-associated
biomarkers that can predict patient outcomes. Pyroptosis, as an inflammation-induced
type of programmed cell death, is shown to create a tumor-suppressive environment and
improve the chemotherapeutic response in multiple tumors. However, the specific
therapeutic effect of pyroptosis in TNBC remains unclear. In this study, we present a
consensus clustering by pyroptosis-related signatures of 119 patients with TNBC into two
subtypes (clusterA and clusterB) with distinct immunological and prognostic
characteristics. First, clusterB, associated with better outcomes, was characterized by
a significantly higher pyroptosis-related signature expression, tumor microenvironment
prognostic score, and upregulation of immunotherapy checkpoints. A total of 262
differentially expressed genes between the subtypes were further identified and the Ps-
score was built using LASSO and COX regression analyses. The external GEO data set
demonstrated that cohorts with low Ps-scores consistently had higher expression of
pyroptosis-related signatures, immunocyte infiltration levels, and better prognosis. In
addition, external immunotherapy and chemotherapy cohorts validated that patients
with lower Ps-scores exhibited significant therapeutic response and clinical benefit.
Combined with other clinical characteristics, we successfully constructed a nomogram
to effectively predict the survival rate of patients with TNBC. Finally, using the scRNA-seq
data sets, we validated the landscape of cellular subtypes of TNBC and successfully
constructed an miRNA-Ps-score gene interaction network. These findings indicated that
the systematic assessment of tumor pyroptosis and identification of Ps-scores has
potential clinical implications and facilitates tailoring optimal immunotherapeutic
strategies for TNBC.
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INTRODUCTION

As the most common tumor with highmorbidity andmortality in
women, breast cancer (BC) has a poor prognosis and exacerbates
a critical social burden worldwide (Global Burden of Disease
Cancer Collaboration et al., 2017). Triple-negative breast cancer
(TNBC), accounting for 10%–17% among all BCs, is a special
subtype characterized by negative human epidermal growth
factor receptor 2 (HER2), progesterone receptor (PR), and
estrogen receptor (ER) (Lin et al., 2012). Due to the absence
of the corresponding receptors, patients with TNBC fail to benefit
from endocrine targeted therapy and HER2-targeted agents;
hence, chemotherapy and surgery remain the most common
treatment for patients with TNBC (Bergin and Loi, 2019).
Recently, the rapid rise of immunotherapy with the
combination of cisplatin or other platinum drugs, including
anti-programmed cell death (PD)-1 and PD-ligand 1 (PD-L1)
agents, has brought a new therapeutic landscape for patients with
TNBC who did not benefit from conventional chemotherapy,
radiation, or surgery (Nolan et al., 2017). However, in clinical
practice, some patients with TNBC are still lacking an effective
therapeutical response to immunotherapy due to genetic and
biological heterogeneity (Vikas et al., 2018). Therefore, it is
crucial to identify novel subtypes and screen reliable
biomarkers (especially immunotherapy-related biomarkers)
that can predict outcomes of patients with TNBC.

In the clinical setting, the TNM stage system is acknowledged
as the most frequently used tool to predict the prognosis of
patients with TNBC, which majorly depends on the inherent
anatomical abnormity, including tumor size, lymph node
situation, and distant metastatic status (Park et al., 2019).
However, the occurrence of biological and tumor genetic
heterogeneity makes it challenging for the TNM system to
predict disease progression and prognosis (Park et al., 2019).
Pyroptosis is a form of pro-inflammatory programmed cell death
(PCD) that cleaves the gasdermin D (GSDMD) protein by
classical or nonclassical pathways and triggers the production
and release of cytokines (including inactive cytokines like IL-18
and IL-1β) to induce a strong inflammatory response (Yang et al.,
2016). Pyroptosis is reported to create a tumor-suppressive
environment by releasing inflammatory factors; therefore,
inducing pyroptosis in tumors via chemotherapeutic drugs
could produce antitumor effects (Shi et al., 2015). In vitro,
Nathalia et al. demonstrate that omega-3 fatty acids can
induce pyroptosis in TNBC cells via inducing the active
CASP1 increase, further leading to the cleavage of GSDMD,
formation of membrane pores, and the release of IL-1β (Pizato
et al., 2018). However, the exact contribution of pyroptosis on the
therapeutical response of immunotherapies and its role in the
prognosis of TNBC remains unclear.

The classification of patients with TNBC based on
transcriptome profiles via next-generation sequencing is
considered a novel method to quickly indicate biological
characteristics and help screen for the most appropriate
treatment strategies (He et al., 2018). Besides conventional
expression profiles, various biological signatures are also
applied to identify novel molecular subtypes for the prognosis

of TNBC, such as autophagy-related signatures (Kim et al., 2012),
N6-methyladenosine (Wu et al., 2021), immune cell infiltration
(Harano et al., 2018), etc. In this study, we aimed to build a novel
scoring model (called Ps-scores) based on pyroptosis-related
signatures to identify clustering subtypes of TNBC and
correlate the characteristics of each subtype with prognosis,
immunotherapy, and immune cell infiltration in patients with
TNBC. Combining the Ps-scores and other classical clinical
features, the predicted model was established to improve
prognostic risk stratification and facilitate the decision making
of treatments for patients with TNBC. Moreover, using single-cell
RNA sequencing (scRNA-seq) technology, we successfully
validated the potential cellular subtypes of TNBC and
expounded the predominant expression characteristics of Ps-
score-related genes in each cluster. Finally, the targeted
miRNAs were predicted by combining multiple databases with
differentially expressed miRNAs (DEmiRNAs), whereas the
miRNA-Ps-score signature interaction network was further
constructed to visualize the potential regulatory relationship.
These results imply the potential links among the pyroptosis-
related scores, immune microenvironment, prognosis, and
response to immunotherapy for patients with TNBC. Our
findings provide new insight into the prognostic signatures of
TNBC and will help develop promising strategies for TNBC
immunotherapy.

MATERIALS AND METHODS

TNBC Data set Preparation and
Preprocessing
Transcriptome profiling data (FPKM value) of 1217 BC samples
with their corresponding clinical data were downloaded from The
Cancer Genome Atlas (TCGA) data sets (https://portal.gdc.
cancer.gov/). Through screening the “negative HER2, PR, and
ER” status based on clinical data, we finally identified 119 patients
with TNBC and comprehensive clinical information. Other
microarray data sets of 819 patients with TNBC and
prognostic information were also downloaded from the Gene
Expression Omnibus (GEO) data sets (https://www.ncbi.nlm.nih.
gov/geo/), including 120 ER-negative BC in GSE16446,
198 HER2-negative BC in GSE25065, 310 HER2-negative BC
in GSE25055, 107 TNBC in GSE58812, and 84 TNBC in
GSE157284. In addition, corresponding miRNA sequencing
data sets and mutation files were also obtained from the
TCGA-BRCA to investigate the miRNA regulatory
mechanism, and transcriptome profiling of 179 normal breast
tissues was obtained from the Genotype-Tissue Expression
(GTEx) database as normal controls (Carithers and Moore,
2015). The “ComBat” algorithm of the “sva” package was
further applied to remove the nonbiological technical biases
due to batch effects between different data sets (Leek et al.,
2012). To remove the false positives caused by batch effects,
we selected several stable internal reference genes (HPRT1, PPIA,
RPS13, TBP, GAPDH, and HMBS) to perform the PCA analysis,
which are reported as valid reference genes for human BC cell
lines by Liu et al. (2015). Moreover, the IMvigor210 data sets
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(Hoffman-Censits et al., 2016), including 316 metastatic
urothelial carcinomas (mUCs) with immunotherapy, were
applied to investigate the therapeutic reaction, and the scRNA-
seq data of 1534 cells from six patients with TNBC (GSE 118389)
were used to validate molecular subtypes for TNBC. Detailed
information on these data sets is listed in Supplementary
Table S1.

Identification of Pyroptosis-Related
Signatures
According to previous studies, the caspase family, especially
caspase1/4/5/8 (CASP1/4/5/8) was reported to specifically
cleave GSDMD to further activate pyroptosis (Shi et al., 2015;
Orning et al., 2018). In addition, Zhang et al. (2020), also found
that CASP3 and granzyme B (GZMB) could convert cell
apoptosis into pyroptosis through cleaving gasdermin E
(GSDME). Granzyme A (GZMA) was also considered to be
essential in inducing cell pyroptosis by cleaving gasdermin B
(GSDMB) (Zhou et al., 2020). Moreover, inflammasome-
associated families, such as absent in melanoma 2 (AIM2) and
nucleotide-binding domain and leucine-rich repeat receptor
(NLR), are demonstrated to induce the pyroptosis process
through activating CASP1 and the release of IL1β and IL18
(Man and Kanneganti, 2015; Karki and Kanneganti, 2019).
Therefore, based on the published research, a total of
33 pyroptosis-related signatures were chosen, and 24 genes
were retained for subsequent analysis after filtering out the
signatures with low expression (sum FPKM value of all
samples less than one).

Consensus Cluster Analysis for
Pyroptosis-Related Signatures in TNBC
Based on the expression of pyroptosis-related signatures, we
performed hierarchical clustering analysis and applied the
“ConsensusClusterPlus” R package (Wilkerson and Hayes,
2010) to conduct unsupervised clustering based on Euclidean
distance and Ward’s linkage methods 1000 repeated times to
ensure the classification stability. During the process, the clusters
from 2 to 9 were performed, respectively, and the optimal
clustering model was determined based on the consensus
cumulative distribution function (CDF) plot. Moreover, we
performed multiple comparisons among different pyroptosis-
subtypes, including for the tumor microenvironment (TME),
prognosis, and vital clinical-pathological phenotypes to explore
their characteristics. The R packages “survival” (Therneau and
Lumley, 2015) and “survminer” (Kassambara et al., 2017) were
used to perform Kaplan–Meier survival analysis and draw
survival curves between pyroptosis subtypes.

Identification of Differentially Expressed
Genes (DEGs) and Functional Enrichment
Analysis
To identify the DEGs between pyroptosis subtypes, the empirical
Bayesian algorithm was applied through the “Limma” R package

(Smyth, 2005), and the significance cutoff was set as adjusted
p < .05 and absolute fold-change >1. To clarify the biological
function and characteristics of pyroptosis clusters, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was performed by using the “ClusterProfiler” R
package (Yu et al., 2012), and the results were visualized using
the “ClueGO” plugin in Cytoscape v3.7.1 (Bindea et al., 2009).

TME Cell Infiltration and Gene Set Variation
Analysis
To evaluate the immune cell infiltration (ICI) characteristics
of TNBC tissues, we used the “CIBERSORT” R package (Chen
et al., 2018) to quantitatively analyze the infiltration levels of
different immune cells with the LM22 signatures by 1000
random permutations. The tumor purity scores, ICI levels,
and stromal contents in different samples were evaluated via
the “ESTIMATE” algorithm (Yoshihara et al., 2013).
Moreover, through the “c2. cp.kegg.v6.2. symbols” data sets
downloaded from the MSigDB database, we performed GSVA
using the “GSVA” R package and drew a heatmap to exhibit
the different immunogenic pathways (Hanzelmann et al.,
2013).

Definition of Immune Characteristics
Between High and Low Ps-Score Groups
To further identify a novel index representing the characteristics of
the pyroptosis subtypes, we conducted univariate Cox proportional
hazards regression analysis for overall survival (OS) to preliminarily
screen significant genes through using the “coxph” function in the
“survival” R package. Subsequently, to remove the multicollinearity
among these candidate genes, LASSO regression was applied to
screen independent prognosis-related genes with the optimal
penalty parameter and a minimum 10-fold cross-validation
(Ranstam and Cook, 2018). After further adjustment, the
multivariate Cox regression (stepwise model) was conducted to
identify hub genes, and the coefficients obtained from the
regression algorithm were used to acquire the Ps-score based on
the following formula: Ps score � val(Gene1) × β1 + val(Gene2)
× β2 + . . . + val(Gene n) × βn. The val (Gene) represents the
expression FPKM value of each gene and β the corresponding
regression coefficient. Moreover, according to the above formula,
the Ps-scores of patients with TNBC were separately calculated, and
the patients were divided into high and low subgroups according to
the median value as the cutoff value (Sullivan et al., 2004). We also
made similar comparisons between high and low Ps-score groups,
including the TME, ICI, clinical phenotypes, pyroptosis-related
signatures, and correlation of GSVA pathways based on the other
four GEO data sets described earlier.

Construction and Evaluation of the
Pyroptosis-Related Prediction Model
The multivariate Cox regression (stepwise model) was applied
to construct the prognostic model for TNBC-combined Ps-
scores and other clinical features, including age, clustering
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subtypes, clinical stages, and TNM stages. Variables with
p-values < .05 were included in the Cox regression model,
and the nomogram was further constructed to predict the
probability of 1-, 3-, and 5-year survival in patients with
TNBC using the “survival” R package. To evaluate and
validate the prediction capability of the nomogram, we
calculated the concordance index and plotted the calibration
curves for 3- and 5-year survival through a bootstrapping
method with 1000 resamples. To further investigate the
expression of the Ps-score-related genes at the protein level,
the Human Protein Atlas (HPA) (Ponten et al., 2008) was used
to display the results of the immunohistochemistry (IHC)
technique. The detailed information of patients is included in
Supplementary Table S17.

Exploration of the Significance of Ps-Scores
in Response to Clinical Immunotherapy
Based on the IMvigor210 data sets with atezolizumab treatment,
we performed a comprehensive comparison between different Ps-
score subgroups, including response to immunotherapy, immune
phenotype, and clinical remission rate. Moreover, to evaluate the
potential therapeutic value of Ps-scores in chemotherapy for
TNBC, we calculated the half-maximal inhibitory
concentration (IC50) of common chemotherapeutic drugs
based on the Genomics of Drug Sensitivity in Cancer (GDSC)
databases (Yang et al., 2013). Antitumor drugs such as 5-
fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel
are recommended for BC treatment by current clinical
guidelines. Differences in IC50 of these chemotherapeutic
drugs between Ps-score subgroups were compared by
Wilcoxon test with the results exhibited in box diagrams using
the “ggpubr” R package (Whitehead et al., 2019).

Validation of Molecular Subtypes Based on
scRNA-Seq Analysis
To validate molecular clusters and further seek biomarkers of
each cluster, the Seurat pipeline was selected for subsequent
analysis. Using the Seurat package v3.0 (Butler et al., 2018), we
transformed the data matrix into a “Seurat object” through the
“CreateSeuratObject” R function and performed the necessary
quality control. The violin diagram exhibited the number of
sequencing reads per sample and the expression of
mitochondrial genes (Supplementary Figure S2A). Further,
to remove the influence from mitochondrial and extreme
genes, we kept the number of sequenced genes at
200–10,000, directly including the majority genes, and
removed the cells with average gene expression <10 and
mitochondrial genes >5%. Then, we conducted data
standardization through the “NormalizeData” function with
the method of “LogNormalize” and used the top 1500
variable counts to perform PCA using the “RunPCA”
function (Supplementary Figures S2B,C). Subsequently,
t-distributed statistical neighbor embedding (tSNE) was
applied to visualize the density clustering, and the “SingleR”
package was applied for cell-subtype annotation based on the

marker genes (Aran et al., 2019). Moreover, the pseudotime
trajectory analysis was further performed using the “Monocle”
package v2.0 to expound the potential inner relationship among
these cell clusters (Trapnell et al., 2014).

Prediction of Potential miRNA Targets for
Prognosis-Associated Signatures
The miRNAs targeting Ps-score-related genes were predicted
based on the following databases: TargetScan (http://www.
targetscan.org/), starBase (http://starbase.sysu.edu.cn/starbase2/
index.php), miRTar (https://mirtarbase.cuhk.edu.cn/), and
miRDB (http://www.mirdb.org/). The expression of TNBC
miRNA was downloaded from the TCGA-BRCA data sets,
and the DEmiRNAs were further identified by the “Limma” R
package. Subsequently, we identified the intersection of predicted
miRNA by four databases and DEmiRNAs as regulated miRNAs
for each hub gene and further visualized the miRNA–mRNA
interaction network using Cytoscape v3.7.1.

RESULTS

Overview of Genetic and Biological
Characteristics of Pyroptosis-Related
Signatures in TNBC
After a series of rigorous screening and quality control steps, a
total of 24 pyroptosis-related signatures remained for subsequent
analysis in our study (Supplementary Table S2). Combined with
the normal tissues in GTEx data sets, we first compared the
expression of pyroptosis-related signatures between patients with
TNBC and normal controls. We found that most pyroptosis-
related genes were significantly upregulated in TNBC groups,
including CASP1/3/5/8, GSDMA/C, NLRC4/P3/P7, IL18, IL1β,
and TNF (Figure 1A). PCA indicated that the expression of these
pyroptosis-related signatures could be used to divide the TNBC
samples and controls into two distinct clusters (Figure 1B). In
addition, the PCA of internal reference genes revealed that
nonsignature genes failed to discriminate TNBC and control
cohorts, indicating that the separation created a true
distinction based on the pyroptosis-related DEGs in patients
with TNBC (Supplementary Figure S1A). Moreover, the
KEGG functional enrichment analysis revealed that these
pyroptosis-related genes were predominantly focused on
infectious diseases, immune response, and cellular signal
conditioning mechanisms, including the NLR signaling
pathway, p53 signaling pathway, TNF signaling pathway, and
apoptosis (Figure 1C, Supplementary Table S3). In terms of
genetics, 148 of the 203 samples (72.91%) manifested pyroptosis-
related signatures in mutations and the NLR families, especially
NLRP3 and NLRP7, exhibiting the highest frequency of
mutations (Figure 1D, Supplementary Table S4). Moreover,
the top 10 pyroptosis-related genes with the most frequent
mutations were located on the 24 human chromosomes
(Figure 1E).
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FIGURE 1 | Characteristics of pyroptosis-related signatures in patients with TNBC. (A) The expression of pyroptosis-related signatures between normal tissues
and TNBC tissues from GTEx and TCGA data sets; Wilcox test, *p < .05, **p < .01, ***p < .001; ns, not statistically significant. (B) PCA showing pyroptosis-related
signatures sorted TNBC and control tissues into two clusters. (C) The KEGG functional analysis of pyroptosis-related signatures. (D) The landscape of mutation profiles
in patients with breast cancer from TCGA-BRCA cohort. (E) The location of the top 10 pyroptosis-related signatures with the most frequent mutations on the 24
human chromosomes.
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FIGURE 2 | Identificationofpyroptosis-relatedsubtypes inTNBC. (A)Consensusclusteringmatrix fork=2 inpatientswithTNBC. (B)Kaplan–Meier curvesofOS forpatientswith
(Continued )
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Identification of a TNBC Cluster Pattern
Based on Pyroptosis-Related Signatures
Based on the expression of pyroptosis-related signatures, we used an
unsupervised clustering method to identify the subtypes of patients
with TNBC and identified k = 2 as the optimum clustering model
from k = 2 to k = 9 clustering with the least area under the consensus
CDF curve for 69 patients in clusterA and 50 patients in clusterB
(Figure 2A, Supplementary Table S4; Supplementary Figure S1B).
To further clarify the intrapatient heterogeneity of patients with
TNBC, we performed a comparison in the clinical differences
between subtypes and found that patients in clusterB were
negatively associated with severe clinical stages, including the
pathological and TMN stages. Furthermore, the survival analysis
showed that patients in clusterB had a longer median survival time
than those in clusterA with more patients in clusterB also receiving
radioactive treatments, indicating that patients with TNBC in
clusterB might have a better prognosis (Figure 2B). There was
no significant difference in other clinical indexes including age, sex,
M stage, and the ratio of pharmaceutical and surgical therapies
(Supplementary Figure S1C). Notably, the expression of
pyroptosis-related gene signatures was significantly increased in
patients in clusterB compared with that of the clusterA cohort
(Figure 2C). In terms of the immune infiltration scores, adaptive
immune response-related lymphocytes (including memory B cells,
activated memory CD4+ T cells, plasma cells, CD8+ T cells, and
gamma delta T cells) were significantly increased in patients in
clusterB compared with the clusterA cohort. However, innate
immunity and immunoregulation-related cells were significantly
infiltrated in clusterA cohorts, including neutrophils, activated
natural killer cells, resting memory CD4+ T cells, and regulatory
T cells (Tregs) (Figure 2D, Supplementary Table S5). Higher
stromal scores and immune scores with lower tumor purity were
also detected in patients in clusterB compared with the clusterA
groups (Figures 3A,B).

Identification of DEGs Based on
Pyroptosis-Related Clusters
Considering the biological characteristics of immune subtypes in
TNBC, we conducted a DEG analysis between the two subtypes.
Through comparing clusterA with clusterB groups, a total of 262
DEGs (including 13 clusterA- and 249 clusterB-related genes) in
TNBC were identified (Figure 3C, Supplementary Table S6). To
further interpret biological processes and pathways of pyroptosis-
related subtypes, these DEGs were chosen to perform KEGG
functional analysis. The results showed that clusterA-related
genes were not enriched in any significant pathways while the
clusterB-related signatures were predominantly enriched in
immune activation-associated pathways, including natural
killer cell–mediated cytotoxicity, the toll-like receptor signaling
pathway, chemokine signaling pathway, cytokine–cytokine

receptor interaction, NF-kappa B signaling pathway, TNF
signaling pathway, Th17 cell differentiation, and Th1 and Th2
cell differentiation (Figure 3D, Supplementary Table S7).

Development of Ps-Score and
Characteristic of Ps-score-related
Subgroups
After successively including the 262 DEGs in univariate Cox
regression, LASSO regression, and multivariate Cox regression
analysis as candidate prognosis-associated genes, we identified six
hub genes (including CFB, IFITM1, EPSTI1,MARCO, CXCL13, and
CCL5) from the Ps-score signatures based on their β coefficients
(Figures 3E,F, Supplementary Table S8). In addition, the expression
of these hub genes was higher in clusterB subgroups. Based on the
IHCdata from theHPAdatabase, the expression of these hub genes at
the protein level was further validated in BC, especially CFB, ESPIT1,
and IFITM1 (Figure 3G,Figure 6C). Based on the expression of these
genes and their corresponding β coefficients, the Ps-score was defined
by the following formula: Ps score � −0.365 × CFB −
0.45 × IFITM1 − 0.298 × EPSTI1 − 0.461 × MARCO − 0.26 ×
CXCL13 + 0.439 × CCL5 (Supplementary Table S9, the gene
name represents the corresponding gene expression FPKM
values). Subsequently, those patients with TNBC were divided
into a high and low Ps-score subgroups withmedian value (–5.28)
as the cutoff; the high Ps-score cohorts exhibited a worse
prognosis than that of low Ps-score patients in the TCGA data
sets (Figure 4A). To prove the universal value of the Ps-score in
TNBC, we also performed survival analysis of this score in four
extrinsic GEO cohorts and obtained the same results (Figure 4B).

To investigate the biological characteristics of the Ps-scores, we
compared the expression of pyroptosis-related genes and ICI between
different Ps-score groups and further explored the correlation
between significant clinical phenotypes and the Ps-scores. The
results reveal that clusterB possessed a lower level of Ps-scores
associated with pharmaceutical and surgical therapy as well as
lower pathological stages in patients with TNBC (Figure 4C&E).
Interestingly, the expression of pyroptosis-related signatures was
significantly increased in the low Ps-score groups, including the
CASP, GSDM, and NOD families, as well as inflammatory factors,
suggesting the potential role of pyroptosis activation in the low-score
of TNBC cohorts with better prognosis (Figure 4D). Moreover, ROC
analysis showed 1-, 3-, and 5-year AUC values of the Ps-scores for
predicting the prognosis of patients with TNBC of 0.867, 0.867, and
0.906, respectively, in the TCGA sets (Figure 5A). Furthermore,
immune infiltration analysis revealed that substantial immune cells
were significantly inhibited in the high Ps-score groups, including
that of CD8+ T cells, follicular helper T cells, activated CD4+memory
T cells, and plasma cells (Figure 5D). The correlation analysis also
indicates that the Ps-scores were significantly positively associated
with the levels of tumor purity (R = 0.57, p < .001) but negatively

FIGURE 2 | TNBC divided into two subtypes. ClusterB was negatively associated with severe clinical stages, including pathological and TMN stages. (C)Heatmap showing the
expression of pyroptosis-related signatures upregulated in ClusterB subtypes. (D) Boxplots show the difference in immune cell infiltration between ClusterA and ClusterB. Wilcox test,
*p < .05, **p < .01, ***p < .001.
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FIGURE 3 | Identification of DEGs based on pyroptosis-related clusters. (A–B) Box plot showing higher stromal and immune scores with lower tumor purity
detected in patients of clusterB than the clusterA group. (C) Volcano plots displaying the up- and downregulated DEGs between two subgroups in TNBC cohorts. (D)
Bubble diagram showing the results of KEGG enrichment analysis of the subtypes. (E) LASSO coefficient profiles of 12 prognostic related genes and 10-times cross-
validation for tuning parameter selection in the LASSO model. (F) Forest map displaying the HR and p-value of six hub genes after multivariate Cox regression
analysis. (G) Heatmap showing the distinct expression of six hub genes between pyroptosis-related clusters.
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associated with stromal and immune scores (R = –0.48, p < .001 and
R = –0.50, p < .001, respectively) (Figure 5E).

Based on the Ps-scores and some primary clinical
characteristics, multivariate Cox regression analysis was
conducted to construct a nomogram that could accurately
predict the probability of the 1-, 3-, and 5-year survival for
patients with TNBC. The Ps-scores, age, pyroptosis-related
cluster, and clinical stages were considered as related
predictors for the prognosis of patients with TNBC and
incorporated into the nomogram with significant regression
coefficients and p-values (Figure 5B, Supplementary Table
S10). From the nomogram, we could observe that the Ps-score
contributed the most to the total score with a 0.716 concordance
index (Figure 5B, Supplementary Table S11). Calibration curves
exhibited that the nomogram had a good prediction capacity in
both 3- and 5-year OS for patients with TNBC (Figure 5C).

Significance of Ps-Scores in the Prediction
of Response to Immunotherapy and
Common Chemotherapeutics
The alluvial diagram visualized the status changes in the different
characteristics of patients (Figure 6A).We found that patients with a
lowPs-score in clusterB subtypes had a higher ratio of survival status.
When using the TCGA and other external GEO data sets, the results
of GSVA demonstrated the coincident negative correlation between
Ps-scores and immunoregulation-related pathways, such as the toll-
like receptor signaling pathway, antigen processing and presentation,
rig I-like receptor signaling pathway, T cell receptor signaling
pathway, NOD-like receptor signaling pathway, and JAK-STAT
signaling pathway (Figure 6B, Supplementary Table S12).

To further explore the role of Ps-scores in predicting the
therapeutic benefit in TNBC, we first calculated the Ps-scores of
patients who accepted anti-PD-L1 immunotherapy from the
GSE157284 and IMvigor210 cohorts before assigning them
into high or low Ps-score groups. From the GSE157284 data
set, patients with an effective response rate to anti-PD-L1 therapy
showed lower Ps-scores, whereas the relative expression of
immune-checkpoint genes was significantly increased in the
high Ps-scores groups (Figures 6D,E, Supplementary Table
S13). Congruously, we also found that the low Ps-score group
had higher expression of immune-checkpoint genes in the
IMvigor210 cohort and effective anti-PD-L1 responders also
exhibited lower Ps-scores (Figures 6F,G). In metastatic
urothelial cancers of the IMvigor210 data sets, distinct
immunological subtypes might result in opposite therapeutic
responses. Therefore, we also compared the Ps-score levels
among these subtypes and found that the lowest Ps-score was
in the inflamed subtypes (Figure 6H). Moreover, the rate of
complete remission (CR) after immunotherapy was also increased
in the low Ps-score cohort compared with the high Ps-score cohort,
with the low Ps-score group validated to have a better prognosis for
metastatic urothelial cancers (Figures 6I,J). All these results
suggested that the Ps-score might serve as a significant indicator
in immunotherapy decision making for cancers.

Besides checkpoint blocker therapy, we also investigated the
potential associations between the Ps-scores and the curative

efficacy of common chemotherapeutics in treating BCs. The IC50

value was calculated for five common anti-BC chemotherapeutic
drugs obtained from the GDSC databases, including 5-
fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel
(Supplementary Table S14). Notably, all the drugs exhibited
lower IC50 values in the low Ps-score groups, indicating patients
with low Ps-scores might obtain a better curative efficacy from
common chemotherapy (Figure 6K). Collectively, these
outcomes indicate that Ps-scores could be associated with the
response to immunotherapy and common chemotherapy.

Validation of Cellular Subtypes in TNBC
Through scRNA-Seq Analysis
To validate the potential subtypes of patients with TNBC, the
GSE118389 data set along with 1534 cells from six TNBC tissues
were used to identify concrete cellular subtypes and
corresponding marker genes. A total of 12 distinct cellular
clusters were identified through tSNE analysis (Figure 7A)
with the marker-genes of each cluster listed in Supplementary
Table S15. Moreover, the results of cell-type annotation using the
“SingleR” package indicated these cell clusters fell into six cellular
subtypes, including epithelial cells, erythrocytes, CD8+ T cells,
fibroblasts, endothelial cells, and monocytes, of which the
epithelial cells were the most common cell type with six
subtypes (Figure 7B). Notably, of the six Ps-score-related
genes, five genes were identified as marker genes, and their
expression in each cellular subtype is shown in a bubble
diagram (Figure 7C). The expression of CCL5 and IFITM1
were generally increased in nearly all cellular subtypes and
significantly higher than the expression of other signatures.
Although the expression of remanent genes was relatively
lower in these cells, significant cellular specificity was found in
these Ps-score-related genes. For example, MARCO was
particularly expressed in the epithelial cell subtype 4 and
monocytes while CFB was particularly expressed in the
fibroblast subtype 2 as well as epithelial cell subtypes 3 and 4.
Interestingly, EPSTI1 was significantly expressed in immune-
related cellular subtypes including monocytes and CD4+

T cells, consistent with the results of IHC. In addition, the
pseudotime trajectory analysis also revealed the arrangement
of different cellular subtypes that formed a certain rule based
on its spatial relationships (Supplementary Figure S2E).
Concretely, the trajectory analysis of epithelial cells revealed
that a small quantity of epithelial cell subtype 3 was
distributed at the start of the trajectory while mixed cells from
epithelial cell subtypes 5 and 6 were distributed at the end of the
trajectory. Moreover, epithelial cell subtype 2 was uniformly
located behind epithelial cell subtypes 1, whereas epithelial cell
subtype 4 nearly existed throughout the trajectory (Figure 7D).

Prediction and Validation of miRNAs
Interacted With Hub Ps-Score Genes
To further explore the potential regulatory role of miRNAs
targeted to these Ps-score-related genes in TNBC, we found
223 probable miRNAs and successfully constructed the
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miRNA-hub gene interaction network based on the prediction of
the TargetScan, starBase, miRTar, and miRDB databases
(Figure 7E, Supplementary Table S16). In addition, to
validate the regulatory role of miRNAs in TNBC, we also
identified 37 DEmiRNAs between pyroptosis-related clusters,

before screening the top 20 miRNAs serving as vital regulatory
factors (Figures 7F,G). Finally, we successfully simplified the
interaction network with 20 miRNAs and four targeted genes to
verify that ESPIT1 and CXCL13 are the most active targets
regulated by massive DEmiRNAs (Figure 7H).

FIGURE 4 |Characteristics of Ps-scores and correlation to pyroptosis in TNBC. (A–B) Kaplan–Meier curves of overall survival (OS) for the patients with TNBC in the
high- and low-Ps-score groups in the TCGA (A) or GEO data sets (B). (C, E) The box plots show that ClusterB possessed a lower level of Ps-scores associated with
pharmaceutical and surgical therapies, and lower pathological stages. (D) Box diagram displaying the expression of pyroptosis-related signatures significantly increased
in the low Ps-score groups. (F) Heatmap used to visualize pathways analyzed by GSVA showing the active biological pathways in distinct pyroptosis-related
clusters.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 78867010

Li et al. Pyroptosis-Related Subtypes in TNBC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 5 | Establishment and evaluation of the Ps-score-related prognostic model for patients with TNBC. (A) Time-dependent receiver operating curves of 1-, 3-, and 5-
year survival for patients with TNBC using Ps-scores. (B) Combined nomogram for predicting the probability of 1-, 3-, and 5-year survival for patients with TNBC. (C) Calibration
curve of the established nomogramwith 3- and 5-year survival, respectively. (D) Immune infiltration analysis revealed that substantial immune cellswere significantly inhibited in high
Ps-score groups. (E) Correlation analysis shows the Ps-scores significantly positively associated with the levels of tumor purity (R = 0.57) and negatively associated with
stromal and immune scores (R = –0.48 and R = –0.50, respectively).
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FIGURE 6 | The significance of Ps-scores in the prediction of response to immunotherapy and common chemotherapeutics for TNBC. (A) Alluvial diagram
visualizing the status changes from different characteristics of patients. (B) Correlation analysis of Ps-scores and GSVA pathways in TCGA and GEO data sets. The size
of nodes represents the correlation coefficient, and the red or green represents positive or negative correlation, respectively. (C) The immunohistochemical results of Ps-
score-related genes from the HPA database. (D) The box plots displayed patients with better responses to PD-L1 treatment exhibited higher Ps-scores using
GSE157284. (E) The relative expression of immune-checkpoint genes was significantly increased in the high Ps-scores groups of GSE157284 data sets. (F) The relative
expression of immune-checkpoint genes was significantly increased in the high Ps-scores groups of IMvigor210 cohorts. (G) The box plots indicated patients with better

(Continued )
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DISCUSSION

As a malignant tumor with high mortality, TNBC is known for its
poor prognosis, which stems from ineffective therapeutic
response to immunotherapy due to tumor biological
heterogeneity. Recently, the IMpassion130 trial demonstrated
that the combination of atezolizumab, a PD-L1 inhibitor, and
nab-paclitaxel could prolong the OS in PD-L1- patients with
positive advanced TNBC, heralding the emergence of
immunotherapy as an effective treatment strategy for TNBC
(Schmid et al., 2018). In addition, The U.S. Food and Drug
Administration (FDA) also approved SP142, a PD-L1 IHC
assay, as an auxiliary test to identify eligibility for
atezolizumab therapy in patients with advanced TNBC.
However, the results of IHC staining are still short of high
interlaboratory reproducibility with subjective judgment. For
example, the IHC levels of PD-L1 were investigated in a total
of 443 patients with BC by (Wang et al., 2017) but only ~16% of
these tumors exhibited positive PD-L1 levels. Although the PD-
L1 test plays a potentially significant role in the management of
multiple advanced carcinomas, objective standardization for this
test has not been achieved; hence, its current use in the clinical
practice poses a twofold risk to patients: false positive could result
in potentially toxic therapies resulting in unforeseen
complications, such as miscarriages, or PD-L1 false negatives
would benefit from therapy but are excluded from receiving
treatment (Reisenbichler et al., 2020). Therefore, identification
of novel immunotherapy-related subtyping and reliable objective
prognostic indicators for immunotherapy in TNBC is urgently
needed.

In contrast to apoptosis, pyroptosis usually occurs in abnormal
cells infected by microbes as a positive programmed cell death
process, thus inducing the release of pro-inflammatory cytokines
and activating an inflammatory response (Bedoui et al., 2020).
Prompted by microbes, pyroptosis can also be converted from
apoptosis and play various roles in multiple tumors. Pyroptosis
has shown antitumor effects through inhibiting the tumor growth
in liver and gastric cancers while showing both suppression or
promotion effects in BC (Zaki et al., 2010; Chen et al., 2012; Shao
et al., 2021). Shi et al. (2015) demonstrated that the activation of
the NLRP3 (NOD-, LRR-, and pyrin domain-containing 3)
inflammasome was integral for the activation of pyroptosis by
recruiting CASP1, further leading to cleavage of GSDMD. In the
present study, we explored all the signatures and pathways
directly related to pyroptosis in TNBC and detected that the
NLRP3/CASP1/GSDMD pathway-related pyroptosis was
activated in patients with TNBC, implying that pyroptosis
might participate in the mechanism of TNBC, which was
associated with the prognosis of TNBC.

The classification of patients based on pathognomonic gene
expression profiles is considered a proven method and applied to

various studies of TNBC, including autophagy-related signatures
(Kim et al., 2012), N6-methyladenosine (Wu et al., 2021), and
immune cell infiltration (Harano et al., 2018). In this study, we
first proposed a pyroptosis-related molecular subtype based on
clustering pyroptosis-related signatures with distinct clinical and
immunological characteristics. Interestingly, the characteristics of
the two molecular subtypes manifested in significant
homogeneity. We detected that patients in ClusterB presented
a longer median survival time than those in ClusterA, whereas
patients in ClusterB also negatively associated with serious
clinical stages, including pathological and TMN stages,
suggesting these pyroptosis-related signatures were also
significantly associated with different survival risks in patients
with TNBC. Our results also reached some consensus: (1) nearly
all the pyroptosis-related signatures exhibited higher expression
in patients in ClusterB; (2) ClusterB was a specific subtype with a
better prognosis and slighter clinical pathological phenotypes; (3)
ClusterB was identified as an immune-activated phenotype with
higher TME immune scores and infiltration levels of adaptive
immune response-related immune cells.

To further explore the potential biological functional features
of the pyroptosis-related subtypes in TNBC, we investigated the
DEGs between the two subtypes and performed KEGG function
enrichment analysis. Consistent with the immunological
signatures of subtypes, functional enrichment analysis revealed
that immune-activation associated pathways, including natural
killer cell-mediated cytotoxicity, the toll-like receptor signaling
pathway, chemokine signaling pathway, cytokine-cytokine
receptor interaction, NF-kappa B signaling pathway, TNF
signaling pathway, and Th17 cell differentiation as well as Th1
and Th2 cell differentiation were significantly enriched in the
ClusterB cohorts. Of these pathways, the activation of multiple
immune pathways is reported to suppress metastatic spread in
TNBC (Zanker et al., 2020) and could be the potential mechanism
for a better prognosis of patients in Cluster B.

Furthermore, to increase the clinical application value and
create better clinical practicability, we successfully constructed a
novel pyroptosis-related scoring tool (Ps-score) to determine the
prognostic risk of TNBC based on six hub genes from two
clusters. High-expression of these risk signatures at the protein
levels was confirmed by IHC from the HPA database, and the Ps-
scores effectively stratified patients with TNBC from the TCGA
and GEO data set, respectively, into high- and low-risk groups.
Survival analysis revealed that the low-score groups had longer
OS than patients with high Ps-scores, and ROC curves exhibited a
great predictive capacity of Ps-scores for the 1-, 3-, and 5-year
survival of TNBC. In addition, the Ps-scores were significantly
decreased in the ClusterB cohorts, indicating that the Ps-score
could reflect the heterogeneity of patients with TNBC. Moreover,
the Ps-score also represented patients with different clinical
outcomes and was associated with the response to

FIGURE 6 | responses to PD-L1 treatment exhibited higher Ps-scores using IMvigor210 cohorts. (H–I) Ps-score in different ACRG subtypes and the rate of CR after
immunotherapy in IMvigor210 cohorts. (J) Kaplan-Meier curves of OS for the patients with TNBC in high and low Ps-score groups of IMvigor210 data sets. (K)
Comparison of IC50 value of 5-fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel in high and low Ps-score groups using GDSC databases.
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FIGURE 7 | Validation of cellular subtypes in TNBC through scRNA-seq analysis. (A) Visualization of tSNE colored according to cell types for TNBC single-cell
transcriptomes. (B) Heatmap revealing the scaled expression of top 10 marker-genes for each cluster defined in (A). (C) Dot plots showing the expression of indicated
Ps-score-related genes for each cell cluster. (D)Monocle pseudospace trajectory analysis revealing the cellular lineage progression of Epithelial cells subtypes in patients
with TNBC colored according to different Epithelial cell clusters. (E) The miRNA-hub genes interaction network based on the prediction of four databases. The
round node represented the miRNA and the rhomb represented the Ps-score-related genes. (F) Volcano plots displayed the upregulated and downregulated
DEmiRNAs between two subgroups in patients with TNBC. (G) Venn diagram of the predicted miRNA and DEmiRNAs.
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immunotherapy. The patients with high Ps-scores exhibited
worse clinical prognosis and lower expression of immune
checkpoints. TME ICI analysis also demonstrated that the Ps-
score was significantly negatively correlated with the infiltration
levels and tumor purity, suggesting its value in immunotherapy.
Finally, a correlation analysis of the Ps-score and pathways based
on GSVA results demonstrate a coincident negative relation in
both TCGA and other GEO data sets, implying the activation of
the various immune-related processes might occur more
frequently in low Ps-score cohorts. Notably, besides immune-
related pathways activated in low-score patients, massive
activation of signal regulatory pathways was observed in high
Ps-score groups, including TGF-β1, Wnt, Notch, and the MAPK
signaling pathway, which is reportedly involved in the
mechanism of TNBC and as target pathways for drug
treatments (Giltnane and Balko, 2014; Kim et al., 2016; Pohl
et al., 2017; Giuli et al., 2019).

Furthermore, using the IMvigor210 data sets, we also
speculated that the Ps-score might be applicable to estimate
the clinical response to immunotherapy in other tumors as well.
Besides immunotherapy, common chemotherapeutic drugs also
demonstrated lower IC50 values in the low Ps-score cohorts,
including 5-fluorouracil, cisplatin, docetaxel, doxorubicin, and
paclitaxel from the GDSC database, implying that these
chemotherapeutic drugs would be more effective in patients with
TNBCwith low Ps-scores. Overall, these findings from external data
sets validated the potential benefits of using the Ps-score system and
indicated its role in predicting curative responses to common
chemotherapies and immune checkpoint therapies.

Finally, the scRNA-seq analysis demonstrated the authentic
existence of cellular subtypes with their marker genes in patients
with TNBC and clearly showed the distribution of Ps-score-
related genes in each subtype. Admittingly, TNBC originated
from epithelial cells, and the results of the scRNA-seq also
demonstrated multiple subtypes of epithelial cells, reflecting
different clusters of tumor cells. Interferon inducible
transmembrane 1 (IFITM1) is reported to promote the
progression of TNBC through regulating integrin, NFκB, and
IL6 gene expression and might serve as a novel therapeutic target
for patients with IFITM1+ TNBC (Provance et al., 2021). Of the
Ps-score-related genes, our analysis also detected that IFITM1
exhibited relatively high expression in epithelial cell subtypes 3–5,
consistent with the above patients with IFITM1+ TNBC. In
previous studies, the epithelial-stromal interaction 1 (EPSTI1)
is also shown to modulate the extrinsic apoptotic pathway in
TNBC cell lines, which highlighted its potential as a therapeutic
target for patients with TNBC (Capdevila-Busquets et al., 2015).
Interestingly, EPSTI1 is overexpressed in monocytes and CD8+

T cells, suggesting EPSTI1 might participate in the process of
extrinsic apoptosis with the activation of the immune response.
Moreover, the pseudotime trajectory analysis displayed the
distribution of tumor epithelial subtypes and demonstrated the
existence of inner heterogeneity and potential cellular
differentiation in patients with TNBC. For the common
subtypes of BCs, microRNA profiles from different breast cells
were applied to distinguish and reflect different subtypes,
including luminal A, luminal B, and basal and malignant

myoepithelioma, indicating that the expression of genes in
cells could directly reflect the different subtypes in BCs
(Bockmeyer et al., 2011). Despite the differences in cellular
and individual subtypes, pyroptosis-related signature genes
distinguished both subtypes of TNBC based on their
differential expression. Combined with the differential
expression of miRNAs between pyroptosis-related clusters, we
ultimately constructed a miRNA–mRNA interaction network,
including 20 miRNAs and four hub genes and found that EPSTI1
and CXCL13 were the central nodes with the most miRNA
regulation.

Our study has the limitation that the high-throughput
sequencing data sets for initial analysis were relatively
insufficient as it was simply obtained from public databases.
The corresponding results and conclusions remain to be
further investigated through more external congeneric research
and should be validated via functional experiments in vivo and
in vitro. Furthermore, several conclusions of this study require
further research to confirm its reproducibility, improve the
clinical application of pyroptosis-related clusters, and elaborate
on the role of Ps-scores in predicting the response to
immunotherapy for TNBC.

CONCLUSION

Our study is the first to propose molecular subtypes based on
clustering pyroptosis-related signature expression with distinct
clinical and immunological signatures in patients with TNBC.
Moreover, we identified and validated a Ps-score system as an
effective tool to predict the OS and immunotherapy efficacy in
patients with TNBC. Finally, we preliminarily explored the
cellular subtypes using scRNA-seq data sets to demonstrate
the heterogeneity of TNBC and successfully construct an
interaction network to expound the regulatory miRNA
targeted Ps-score-related signatures. The various
transcriptomic analyses facilitated the screening of significant
genetic signatures of TNBC to provide a new clinical application
of Ps-scores in predicting prognosis and chemo-
immunotherapeutic response for patients with TNBC.
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GLOSSARY

AIM2 absent in melanoma 2

BC breast cancer

CASP1/3/4/5/8 caspase1/3/4/5/8

CDF cumulative distribution function

CR complete remission

DEGs differentially expressed genes

DEmiRNAs differentially expressed miRNAs

EPSTI1 epithelial-stromal interaction 1

ER estrogen receptor

FDA Food and Drug Administration

GDSC Genomics of Drug Sensitivity in Cancer

GEO Gene Expression Omnibus

GSDMB gasdermin B

GSDMD gasdermin D

GSDME gasdermin E

GSVA gene set variation analysis

GTEx Genotype-Tissue Expression

GZMA granzyme A

GZMB granzyme B

HER2 human epidermal growth factor receptor 2

HPA Human Protein Atlas

IC50 half-maximal inhibitory concentration

ICI immune cell infiltration

IFITM1 interferon inducible transmembrane 1

IHC immunohistochemistry

KEGG Kyoto Encyclopedia of Genes and Genomes

mUC metastatic urothelial carcinoma

NLR nucleotide-binding domain and leucine-rich repeat receptor

OS overall survival

PCA principal component analysis

PCD programmed cell death

PD programmed cell death

PD-L1 PD-ligand 1

PR progesterone receptor

scRNA-seq single-cell RNA sequencing

TCGA The Cancer Genome Atlas

TME tumor microenvironment

TNBC triple-negative breast cancer

Tregs regulatory T cells

tSNE t-distributed statistical neighbor embedding.
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