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Abstract: Invasive fungal disease (IFD) associated with Coronavirus Disease 2019 (COVID-19) has
focussed predominantly on invasive pulmonary aspergillosis. However, increasingly emergent
are non-Aspergillus fungal infections including candidiasis, mucormycosis, pneumocystosis, cryp-
tococcosis, and endemic mycoses. These infections are associated with poor outcomes, and their
management is challenged by delayed diagnosis due to similarities of presentation to aspergillosis or
to non-specific features in already critically ill patients. There has been a variability in the incidence
of different IFDs often related to heterogeneity in patient populations, diagnostic protocols, and
definitions used to classify IFD. Here, we summarise and address knowledge gaps related to the
epidemiology, risks, diagnosis, and management of COVID-19-associated fungal infections other
than aspergillosis.
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1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible
for Coronavirus Disease 2019 (COVID-19), was first identified in December 2019 in Wuhan,
China and declared a pandemic by the World Health Organization (WHO) in March
2020 [1]. Despite the rapid development of pathogen-specific therapies and vaccinations
beginning with emergency use authorisation of the Pfizer-BioNTech (Pfizer Inc., New
York, NY, USA) COVID-19 mRNA BNT162b2 vaccine in December 2020 [2], there remains
ongoing worldwide transmission of SARS-CoV-2 accelerated by the emergence of WHO
designated variants of concern (VOC) [3] strains, which have fuelled increased risks to
public health. The clinical spectrum of COVID-19 ranges from asymptomatic infection
to severe respiratory illness and multiorgan failure; extrapulmonary disease may also
occur [4,5]. Furthermore, morbidity is compounded in that COVID-19 per se, as well as
the therapeutic agents used for its treatment, predisposes to other infections including
fungal infections, which may co-exist or follow COVID-19 [6]. Uncommon early in the
pandemic [6], fungal coinfections are now increasingly reported [7,8] of which the most
well characterized is invasive aspergillosis (IA) [9–13].

Opportunistic invasive fungal disease (IFD) in the setting of severe respiratory viral
illness is not novel, being well described in the context of severe influenza, parainfluenza,
and respiratory syncytial virus infections, and now, COVID-19 [10,14–18]. Whilst COVID-
19-associated pulmonary aspergillosis (CAPA) [13] was the first IFD to be reported and
is the most well-established clinical entity, reports of fungal coinfections due to yeasts
and non-Aspergillus filamentous fungi have increased [19–22]. The recognition of these
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IFDs is essential for early and targeted treatment, as antifungal drug choices differ from
those for aspergillosis. In turn, this hinges upon the rapid, accurate identification of the
etiological pathogen by laboratory tests given the common symptoms (fever, cough, and
dyspnoea) [23] and radiological findings e.g., ground glass opacities [23,24] in CAPA and
non-CAPA IFD. However, laboratory diagnosis is challenged by reticence in perform-
ing procedures such as bronchoscopies and induced sputum collection to prevent the
nosocomial transmission of COVID-19.

Despite improvements in the understanding of CAPA and other COVID-19-associated
fungal infections, knowledge gaps related to diagnosis, management, and prevention re-
main. We first briefly describe the pathophysiology of COVID-19 lung disease and the risks
for IFD in COVID-19 patients (Sections 2 and 3). Then, we review COVID-19-associated
IFD caused by fungi other than Aspergillus spp. focussing on the epidemiology, diagnostic,
and management approaches (Section 4). Finally, we summarise the more pertinent mi-
crobiological and imaging findings that may assist the diagnosis of non-Aspergillus IFD in
COVID-19 patients (Section 5).

2. Pathophysiology of COVID-19 Lung Disease

There are several pathophysiological mechanisms by which SARS-CoV-2 as well as
its treatment can predispose to IFD, although our understanding of these pathways is
incomplete. SARS-CoV-2 infection may be transmitted through contact, droplet, airborne,
fomite, faecal–oral, bloodborne, mother-to-child, and animal-to-human routes [25]. Each
SARS-CoV-2 virion has an outer surface covered with spike proteins. The S1 subunit
hosts the receptor-binding domain (RBD) and is responsible for binding to the human
angiotensin-converting enzyme 2 (ACE2) receptor, which is expressed in the lungs and
other body sites for cell entry [26,27]. The S2 subunit allows viral fusion with the host
cell membrane. Following this, SARS-CoV-2 utilises transmembrane serine protease 2
(TMPRSS2) or cathepsin L to merge the viral and cell membranes. The use of TMPRSS2
pathways leads to more rapid infection [28] as does an intact furin cleavage site within the
S protein, as seen in infection with the Alpha and Delta VOC.

The pathological features of COVID-19 are similar to those seen in infection with
SARS-CoV and Middle Eastern respiratory syndrome-Coronavirus (MERS-CoV) [5,29], and
they are characterised by cell injury and death by pyroptosis [30]. In brief, viral entry and
replication leads to the activation of proinflammatory cytokines and chemokines such as
interleukin-6 (IL-6), interleukin-8 (IL-8), type II interferon, and monocyte chemoattractant
protein 1 [31]. In turn, this leads to the pulmonary recruitment of macrophages and
dendritic cells, which are the key components for host innate defences against respiratory
infections [32] with the direct viral infection of macrophages and/or dendritic cells [33] or
phagocytization of apoptotic-infected cells [34]. These pathways result in further cytokine
and chemokine release, whilst the late phase T cell-mediated response is initiated by
antigen presentation via dendritic cells and macrophages to promote the production of
virus-specific antibody and CD8+ T cells that kill infected alveolar cells. Finally, IL-8, a
chemoattractant for neutrophils and T cells, can contribute to lung injury [35,36], with up
to 5% of patients experiencing severe lung damage [37].

3. COVID-19 Therapies and Risk of IFD

Therapies used to treat patients with SARS-CoV-2 infection comprise three main
categories: (i) antiviral treatments, (ii) immune modulators such as corticosteroids and janus
kinase (JAK) inhibitors, and (iii) monoclonal antibody treatments; these can prevent SARS-
CoV-2 from entering cells, hence causing serious disease. Immunotherapies are increasingly
used, and whilst they block undesired inflammatory effects, they have the potential to
increase the risk of IFDs—in particular, corticosteroids such as dexamethasone are routinely
used in patients with COVID-19 infection who are receiving oxygen to modulate the
systemic inflammatory response [38]. IL-6 inhibitors e.g., tocilizumab, reduce the cascade of
cytokine release and JAK inhibitors e.g., baricitinib inhibit cell signalling processes [39]. The
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currently available drugs including repurposed drugs to treat COVID-19 and their reported
associations with IFD are summarized in Table 1. Broadly, immunotherapies increase risk of
IFDs through resultant cytopaenias, inhibition of cell signalling, and inhibition of function
of T cells, B cells, and/or phagocytes, all of which can lead to increased airway colonization
of fungus [40]. Since many of the novel therapies for COVID-19 only have emergency use
authorisation rather than full regulatory approval, close monitoring of their use is required
to identify adverse consequences including that of subsequent IFD.

Table 1. Summary of therapies used for COVID-19.

Drug Category Drugs Mechanism of Action Fungal Infections Reported

Antiviral drugs remdesivir, (Veklury®,
Gilead Sciences Inc.)

Nucleoside anti-proviral drug
Inhibits SARS-CoV-2 replication via
RNA-dependent RNA polymerase (RdRp)

Nil reported

Immune
modulators

Glucocorticoids
e.g.,
predinisone
prednisolone
dexamethasone

Decrease vasodilation, permeability of
capillaries, and leukocyte migration
Inhibit neutrophil apoptosis and
demargination; inhibit phospholipase A2
function, and inhibit NF-Kappa B and
inflammatory transcription factors
Promote expression of anti-inflammatory
genes such as that for IL-10.

Candidiasis
Pneumocystosis
Invasive aspergillosis
Mucormycosis
[41,42]

baricitinib,
(Olumiant®, Eli Lilly and
Company)

JAK inhibitors:
Bind to JAK, which prevents the activation of
the JAK–STAT signalling pathway, which
reduces the production of proinflammatory
cytokines

Candidiasis
Pneumocystosis
Histoplasmosis
Cryptococcosis **
[43,44]

tofacitinib,
(Xeljanz®, Pfizer)

Oesophageal candidiasis
Cryptococcosis
[45–47]

Monoclonal
antibodies (mAb)

tocilizumab, (Actemra®,
Roche)

IL-6 receptor antagonist.
Results in reduction in cytokine and acute
phase reactant production.

Invasive candidiasis
Cryptococcosis
Pneumocystosis
[47–49]

sotrovimab,
(Xevudy®,
GlaxoSmithKline)

Engineered human IgG1 monoclonal
antibody that binds to the spike protein
receptor binding domain (RBD) of
SARS-CoV-2

Nil reported to date

sarilumab, (Kevzara®,

Sanofi and Regeneron
Pharmaceuticals, Inc.)

IL-6 receptor antagonist.
Results in reduction in cytokine and acute
phase reactant production.

Candidiasis
Pneumocystis. **
[50]

casirivimab and
imdevimab
(REGEN-COV™,
Regeneron
Pharmaceuticals, Inc.)

Casirivimab (IgG1κ) and imdevimab (IgG1λ)
bamlanivimab (IgG1κ) and etesevimab
(IgG1κ)
Recombinant human monoclonal antibodies
that bind to the spike protein RBD of
SARS-CoV-2, which leads to the blocking of
binding to the human ACE2 receptor, thereby
preventing viral attachment to host cells

Nil reported to date
bamlanivimab and
etesevimab (Eli Lilly and
Company)

Key: ACE2—angiotensin-converting enzyme 2; IL-6, interleukin-6; IL-10, interleukin-10; JAK—janus kinase;
STAT—signal transducers and activators of transcription; ** patients with invasive fungal infections may present
with disseminated rather than localised disease.
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4. Scope and Pathogens
4.1. COVID-19-Associated Pulmonary Aspergillosis (CAPA)

Much of the literature has focussed on CAPA detailing its burden, clinical features,
diagnosis, and outcomes [8,51–54]. Whilst the present review is directed at non-Aspergillus
IFDs, it is essential to acknowledge the lessons learned from CAPA, particularly with
regard to limitations in diagnosis [23,55]. Other notable challenges with regard to the
comparability of data include the definitions used to classify the likelihood of IFD in the
setting of COVID-19, study design, and the patient population studied. Currently, the
assignment of CAPA cases takes into consideration existing definitions for IA in critical
care and influenza-associated pulmonary aspergillosis whilst leveraging the evolving
knowledge of CAPA [18,23,55,56].

With the above limitations in mind, the estimated incidence of CAPA is reported to be
≈10% (range 3–39%) with an overall mortality of about 50% [53]; many of these patients
were in the intensive care unit (ICU). Risk factors include traditional factors for IA such
as transplants or haematological malignancies but also those of acute respiratory distress
syndrome, mechanical ventilation, corticosteroid use [51,53,55], and possibly, tocilizumab
receipt [57]. Consensus expert opinion recommends the use of prospective, multi-modal
diagnostic approaches comprising both culture and non-culture-based antigen and nucleic
acid amplification tests (NAATs), in conjunction with chest imaging (see Table 2 for the
more common radiological abnormalities of CAPA) to be useful in diagnosis. Importantly,
the probability of CAPA increases when the positivity of these tests is seen across multiple
time points and across multiple sample types [23,55,58]. Hence, it is reasonable to envisage
that for other IFDs, similar diagnostic approaches for assigning the probability of infection
would apply. Other essential diagnostic tests are pathogen-specific biomarkers where they
exist, and histopathological examination for, and culture of pathogens from sterile sites
including blood (Table 2).

Table 2. Summary of risk factors in COVID-19 patients for invasive fungal disease and diagnostic
approaches.

CAPA IC PCP Cryptococcosis Endemic
Mycoses

Non
Aspergillius

Mould
Infections

CAM

RISK FACTORS

Corticosteroid receipt X X X X X X X

ICU MV or non MV +
(clinical deterioration) X X X X X X X

IL-6 inhibitor therapy X X X

HIV/severe lymphopenia X X

Receipt of immunosuppressive
therapies X X X X X X X

CAPA IC PCP Cryptococcosis Endemic
Mycoses

Non
Aspergillius

Mould
Infections

CAM

Poorly controlled diabetes
mellitus X

Major trauma X X

Travel to endemic region or
previous
infection with endemic mycoses

X
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Table 2. Cont.

CAPA IC PCP Cryptococcosis Endemic
Mycoses

Non
Aspergillius

Mould
Infections

CAM

DIAGNOSTIC APPROACHES

Histopathology
Characteristics
findings using

standard
stains

• • • • • • •

Hyaline,
acutely

branching
septate
hyphae

Budding yeast
cells and/or

pseudohyphae

Cysts and/or
trophozoites

Encapsulated
yeast cells

Budding yeast
cells or

spherules

Hyaline,
branching

septate
hyphae

Broad,
irregular,

pauci septate
hyphae

Culture-based

Characteristic
findings on
microscopy

• • • • • • •

Hyaline,
acutely

branching
septate
hyphae

Budding yeast
cells and/or

pseudohyphae

Cysts and/or
trophozoites

Encapsulated
yeast cells

Budding yeast
cells or

spherules

Hyaline,
branching

septate
hyphae

Broad,
irregular,

pauci septate
hyphae

Respiratory
tract • • • • • •

Sterile sites
other than

blood
• • •

Blood • • •

Non-culture-
based

Aspergillus Ag •

Cryptococcal
Ag •

EIA for
antibody

detection or
Ag testing for

Coccidioides
and/or

Histoplasma

•

Serum 1,3,
β-D-glucan • • • •

Genus-specific
NAAT • • • ˆˆ • • • •

Panfungal
PCR (ITS1/2) • • • • • • •

RADIOLOGY
(typical or more common
abnormalities on chest CT)

Peripheral,
bilateral GGO

+/−
consolidation

or visible
intralobular

lines (i.e.,
crazy paving)
in early stages.

Multifocal
GGO (round)

+/−
consolidation
or intralobular
lines at peak

stage.
Reverse halo

sign +/−
organising

pneumonia at
late stage **

As directed by
clinical

findings;
organ

involvement
rare

Diffuse GGO
Interstitial

infiltrates (pre-
dominantly
upper lobes

and perihilar
regions)

Nodules (1 or
more)

Cryptococcomas,
Pulmonary
infiltrates

Focal or
diffuse

airspace
disease

Upper lobe
cavitation

thick-walled
bullae,

lymphadenopathy

Similar to
CAM and

CAPA

GGO,
mass lesions

+/− cavitation
Consolidation,
Reverse halo
sign may be
present. ##

Key: Ag—antigen; CAPA—COVID-19-associated pulmonary aspergillosis; CAM—COVID-19-associated mu-
cormycosis; CT—computerised tomography; EIA—enzyme immunoassay; GGO—ground glass opacities; HIV—
human immunodeficiency virus; IC—invasive candidiasis; ICU MV or non MV—intensive care unit admission
with mechanical ventilation or without mechanical deterioration + clinical deterioration (e.g., pulmonary desatura-
tion, sepsis-like syndrome); IL-6 (interleukin 6, i.e., Tocilizumab, and Sarilumab); ITS—internal transcribed spacer
region; NAAT—nucleic-acid amplification test; PCP—Pneumocystis jirovecii pneumonia; X—denotes the presence
of the risk factor well established to be associated with the fungal infection; •—denotes a recommended test;
ˆˆ—quantitative PCR; ** Findings can be atypical; lobular or segmental consolidation in predominantly cavitating,
tree in bud opacities with peri hilar nodules; ##—in suspected CAM—other sites including the sinuses and brain
must also be imaged in addition to the chest.
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4.2. Invasive Candidiasis

After CAPA, invasive candidiasis (IC) is the second most reported fungal coinfec-
tion with COVID-19, [9,10,59–61] including infections caused by drug-resistant Candida
species [60,62]. Risk factors for IC are inevitably present in critically ill COVID-19 pa-
tients admitted to the ICU and include mechanical ventilation, indwelling devices, broad-
spectrum antibiotic therapy, and glucocorticoid use [63,64]. The incidence of COVID-19-
associated candidiasis (CAC) has ranged from 0.7% (7/989) in Spain to 12.6% (17/135)
and 23.5% (4/17) in the United Kingdom and China, respectively [63]. Candidemia has
predominated amongst the clinical forms of IC with a higher frequency in ICU settings.

Reports suggest there has been a two to 10-fold increase in the incidence of candidemia
in patients with COVID-19 with candidemia developing earlier (within two weeks of
hospitalisation in the ICU) than in patients without COVID-19 [41,59,65]. The reasons
for this are uncertain as differences in underlying comorbidities, disease severity, and
classical risk factors for IC between these cohorts have not been identified. Instead, the
higher rate may reflect an additive effect of multiple risk factors that may be prolonged and
protracted e.g., ICU stay and invasive mechanical ventilation [59,66]. In a large US study of
251 patients with candidemia, 25.5% (64/251) were coinfected with COVID-19 [67]. These
patients were less likely to have underlying conditions such as chronic liver disease, solid
organ malignancies, as well as traditional risks e.g., prior surgery but more likely to have
risk factors linked to treatment for severe COVID-19 that is, tocilizumab and corticosteroids,
and mechanical ventilation compared with those without COVID-19; the mortality rate was
62.5% vs. 32.1% [67]. Of note, Kayaaslan et al. demonstrated that corticosteroid treatment
was an independent risk factor associated with mortality in patients with candidemia [41].
Other studies have reported mortality rates among patients with Candida and COVID-19 of
46–92.5%; the highest rates were in those with C. glabrata and C. auris infections [41,63,65,68].

C. albicans has been the most common pathogenic species 44.1% (19/43), followed
by C. auris 23.2% (10/43), C. glabrata, C. parapsilosis, and C. tropicalis 4.6% (2/43) each [63].
However, in India, multi-drug-resistant C. auris was the most prevalent species [63], and
this species has also recently displaced C. albicans as the most common Candida species in at
least one hospital in Spain [69]. It is curious that at the present time of heightened infection
prevention measures in hospitals, C. auris has emerged as one of the more frequent causative
species in hospitals. One hypothesis, yet unproven, is that with enhanced infection control
approaches in the COVID-19 setting, paradoxically, those that minimise the exchange of
certain practices e.g., keeping on a base layer of gown between patients, may possibly
promote the spread of C. auris [70].

The diagnosis of IC may be challenging, relying on both conventional culture from
blood or other samples, and culture-independent tests including Candida mannan and
anti-mannan IgG, serum (1,3)-β-D-glucan (BDG), and NAAT-based assays, such as the
T2Candida assay [71] (Table 2). The diagnostic sensitivity and specificity may be further
increased when serum BDG is combined with procalcitonin to help differentiate fungal
from bacterial infections [72]. The high negative predictive value of BDG for diagnosing IC,
in the ICU population, may guide the early discontinuation of empiric antifungal therapy
if pre-treatment serum BDG is negative [73]. As patient inflammatory responses (e.g.,
fever) may be blunted following the receipt of immune-modulating agents, a high index of
suspicion for IC is required particularly for critically ill COVID-19 patients. Cultures from
blood and other sties should be undertaken (Table 2), and empiric anti-Candida therapy
may be initiated according to institutional protocols.

The treatment of candidemia and other forms of IC is informed by available guidelines,
as is addressing modifiable risk factors for source control and to prevent the occurrence
of candidemia [68,74]. Echinocandins (anidulafungin, caspofungin, or micafungin) have
been the primary antifungals used to treat CAC with liposomal amphotericin B and the
azoles (e.g., fluconazole, isavuconazole, posaconazole, and voriconazole) are used as
second line alternatives informed by susceptibility test results [64]. As for non-COVID-19
patients with candidemia, the removal of indwelling vascular catheters is essential where
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possible [63]. Infections due to multi-drug-resistant species, particularly C. auris, remain a
management challenge.

4.3. Pneumocystis Pneumonia

Uncommon in COVID-19 patients compared with CAPA, Pneumocystis jirovecii pneu-
monia (PCP) coinfection was first diagnosed by real-time PCR at autopsy in a patient
with severe dyspnoea [75]. Since then, positive PCR tests for PCP have been increasingly
reported in association with COVID-19, including in patients with underlying human im-
munodeficiency virus (HIV) infection [76–80]. Reported frequencies of positive P. jirovecii
PCR findings have ranged from 1.4% (2/145) [81] to 9.3% (10/108) [82], but the true in-
cidence of P. jirovecii infection as opposed to the detection of P. jirovecii DNA in clinical
samples which can represent colonisation only is unknown [83]. A review [77] of 12 COVID-
19 patients with PCP found all required invasive mechanical ventilation, and many had
HIV (58.3%) or were in receipt of long-term immunosuppressive agents such as corticos-
teroids (91.7%). In the above patients, severe lymphopenia (<1000 cells/mm3) was present
with a CD4+T cell count of <200 cells/mm3 [77], where severe CD4+ lymphopenia is a
well-known risk for PCP [80]. It is hypothesised that the development of lymphopenia
requiring adjunctive steroids and/or immunomodulatory therapies in COVID-19 patients
may re-activate or “activate” asymptomatic P. jirovecii infection in colonised patients [82].

The diagnosis of PCP is similar to that in non-COVID-19 populations with combined
assessment of clinical features, radiologic findings, and laboratory tests. Diagnosis is chal-
lenging because of the similar clinical (e.g., cough, dyspnoea) and radiological presentations
of PCP and COVID-19. Undertaking chest computerised tomography (CT) scanning is es-
sential, with extensive diffuse ground glass opacities and interstitial infiltrates being typical,
most predominantly in the upper lobes and perihilar regions [76,84]. However, it is impor-
tant to acknowledge that imaging abnormalities cannot distinguish PCP from COVID-19
pneumonia, and establishing a diagnosis of PCP relies on microbiological approaches. The
detection of P. jirovecii cysts and/or trophozoites in tissue, bronchoalveolar lavage (BAL)
fluid, or expectorated sputum using conventional microscopy or immunofluorescence
staining provides a definitive diagnostic of infection but lacks sensitivity, particularly in
non-HIV patients [71]. However, the diagnosis of PCP by PCR alone is not sufficiently
definitive, as it is unable to discriminate between colonisation and infection; although
quantitative PCR (qPCR) allows an estimate of fungal burden, clinical cut-off values have
not been established. Nonetheless, a negative qPCR result can rule out PCP. A high fungal
load is helpful to establish probable disease, but a lower fungal load detected by qPCR
requires additional diagnostic indicators [71,85]. A positive serum BDG (≥80 pg/mL) result
can contribute to the diagnosis, particularly when combined with a positive PCR result,
and negative BDG results can exclude infection in at-risk patients [71,86]. In COVID-19
patients, the utility of serum BDG to diagnose PCP is particularly appealing as it negates
the need to perform invasive procedures [80]. However, more study is required to assess
the clinical utility of both qPCR and BDG testing in COVID-19/PCP coinfections. Finally,
the occurrence of PCP reminds us of the importance of testing for HIV/AIDS, regardless of
COVID-19.

Antifungal therapy should follow a similar approach to patients without COVID-
19 [87]. Trimethoprim–sulfamethoxazole often in conjunction with corticosteroids remains
the preferred first-line treatment of PCP [87,88], although there is debate as to whether to
treat patients coinfected with COVID-19 or not, as some patients have improved without
treatment [81–83]. When there is a high clinical suspicion for PCP, treatment can be initiated
before making a definitive diagnosis, and clinical improvement can be expected within
4–8 days [77]. To date, the use of trimethoprim–sulfamethoxazole has not been associated
with adverse outcomes.
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4.4. Non-Aspergillus Mould Infections

In comparison with CAPA, coinfection or superimposed infections with less com-
mon mould pathogens are less frequently reported but should be considered, given the
easy access of a myriad of airborne fungi to the respiratory tract and underlying severe
COVID-19-induced lung damage. Infections include those due to the Mucorales, Fusarium,
Scedosporium/Lomentospora, and dematiaceous moulds. Where a non-Aspergillus mould
infection is suspected (e.g., poor response to anti-Aspergillus therapy), additional diagnostic
evaluation of respiratory tract specimens for these agents is recommended, which may
include extended mycological culture and non-culture-based PCR tests [12].

A review of the literature indicates that the majority of non-Aspergillus mould infec-
tions are caused by the Mucorales [89–91]. Notably, the number of case reports and small
case series of COVID-19-associated mucormycosis (CAM) has increased substantially with
the rise of infection with COVID-19 in India in mid 2021 with many infections developing in
patients recovering from COVID-19 [92–95]. Only one case each of invasive fusariosis and
mixed mould infection are reported [96,97] and as of yet, there are no reports of fungemia
caused by mould pathogens.

Risk factors for the acquisition of non-Aspergillus mould infections are similar to those
for CAPA. In addition, for CAM, poorly controlled diabetes mellitus and trauma, in addition
to underlying haematologic malignancy and allogeneic haematopoietic stem-cell transplan-
tation (HSCT), have comprised the majority of co-morbidities; all are well-established risks
for these infections [98]. In patients with CAM without traditional risk factors, many had
hypertension, had end-stage kidney disease, and had received corticosteroid treatment
for COVID-19. A recent review of 41 cases of CAM showed that underlying diabetes was
present in 94% of cases and associated with severe COVID-19 in 95% cases [99], as did
that of Selarka et al. of 47 patients across three centres (76.6%, 91.55%) [100]. As expected,
corticosteroid use was a key risk for mucormycosis from resultant hyperglycaemia [101].
Furthermore, the high expression of ACE-2 receptors in pancreatic isolates with resultant
insulin resistance may predispose to diabetes. The hyper-ferritinemic state and intracel-
lular iron load of severe COVID-19 as well as the presence of endothelialitis poses risk
for mucormycosis, as summarized in John et al. [99]. Contaminated medical supplies,
equipment, and environmental factors have been suggested as risk factors for community
and nosocomial CAM in India [102].

Case reports have identified that mucormycosis usually develops 10–14 days after
hospitalisation and in some cases was detected only at postmortem. Clinical presentation
comprises mostly rhino-orbital/rhino-orbital cerebral (ROCM) disease, which is typical of
that seen in patients with diabetes mellitus. In contrast to CAPA, nearly all CAM infections
have been classed as proven infections [99]. As invasive mucormycosis and fusariosis
both share many common features with CAPA in critically ill COVID-19 patients, clinical
vigilance is paramount in recognising these serious mimickers of CAPA where even in
survivors, morbidity is high including loss of vision; in-hospital mortality was 49% [99].
The absence of reports of coinfections with the Scedosporium/Lomentospora may reflect
limitations in diagnostics. These pathogens are important in hospital epidemiology and
should be considered in all vulnerable immunocompromised patients such as those with
haematological malignancy, stem cell, and solid organ transplantation [103,104].

The diagnosis of non-Aspergillus mould infections follows similar principles to those
for other IFDs [98,105,106]. Clinical suspicion should prompt appropriate imaging and
examination of clinical specimens (sputum, tracheal aspirates, BAL fluid, skin lesions) by
histology, direct microscopy, culture for fungi, and employment of antigen and NAAT-
based approaches. Fusarium and Scedosporium/Lomentospora may be isolated from blood
cultures. On histological examination and direct microscopy, Mucorales demonstrate broad
pauci-septate irregular hyphae, whilst other non-Aspergillus moulds appear more slender.
The invasion of blood vessels and tissue can be seen with Grocott–Gomori’s methenamine
silver (GMS), haemotoxylin and eosin (H&E) and Periodic-Acid Schiff (PAS) stains [98,107].
Identification of the pathogen by Matrix-Assisted Laser Desorption Ionization—Time of
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Flight Mass Spectrometry (MALDI-TOF MS) systems and DNA sequencing targeting the
internal transcribed spacer region (ITS) or large ribosomal subunit may be necessary for
species identification. Panfungal PCR may be attempted on tissue specimens to directly
detect the pathogen [98,105].

Approaches to imaging are dependent on the site of involvement; in cases of suspected
CAM where there is lung involvement, it is expected that abnormalities typical of mucormy-
cosis in other patient groups will be present (Table 2). On chest CT, these include ground
glass opacities and mass lesions with or without cavitation and consolidation (see Figure 1,
which shows some of these abnormal features). The reverse halo sign, considered to be
pathognomonic of pulmonary mucormycosis, may or may not be evident. Vascular occlusion
on chest angiography may be present. Detailed descriptions are beyond the scope of this
review but can be found in a recent international guideline of managing mucormycosis [98].
In addition, where CAM is suspected, imaging of the sinuses and brain is essential as well as
of other body sites as clinically indicated [98]. Imaging abnormalities in the lung for other
mould infections may be expected to mimic both CAM and CAPA [105] (Table 2).

Similarly, the principles of prompt antifungal therapy and early surgical debridement
apply as for other patients with these infections [98,105]; however, surgery may not be
feasible in COVID-19 patients for the same reasons why performing diagnostic procedures
such as bronchoscopy may be problematic. There are no data on the impact on patient
outcomes of specific therapies in the setting of COVID-19. For Mucorales infections, a
lipid amphotericin B formulation, typically liposomal amphotericin B, is recommended
as first-line monotherapy, with isavuconazole and posaconazole being alternatives; both
azoles may be used as salvage therapy. There is no evidence to indicate the survival benefits
of either therapy with polyene-azole or polyene-echinocandin combinations. For invasive
fusariosis, primary treatment with either voriconazole or a lipid amphotericin B formulation
is appropriate; however, combination therapy with these two agents is frequently used
because of the presence of severe disease and due to challenges in achieving therapeutic
voriconazole levels. For the treatment of other uncommon mould infections, the reader is
referred to the management recommendations by Hoenigl et al. [105].

4.5. Endemic Mycoses

Particularly in geographic regions where endemic mycoses occur, lung infection
caused by agents of these mycoses may coexist with COVID-19. As for CAPA and other
mould infections, diagnosis may be missed given the similarity of presentation. Patients
with severe COVID-19 and/or those receiving significant immunosuppressive therapy may
experience reactivation of dormant or past infection with an endemic fungus. The wide use
of corticosteroids, specifically dexamethasone, or IL-6 inhibitors, and other immunosup-
pressants to treat severe COVID-19 increase the risk of symptomatic endemic mycoses, as
summarised in Segrelles-calvo et al. [20].

At least three patients with Coccidioides and SARS-CoV-2 coinfection have been re-
ported [108–110]. Infections may be subclinical and diagnosed during the recovery phase of
COVID-19. Heaney et al. [111] have described possible social, demographic, and exposure
risk factor interactions between coccidioidomycosis and COVID-19, focusing on racial and
ethnic minorities and the role of geography [111]. In addition, chronic lung disease from
coccidioidomycosis may increase the risk of severe COVID-19, and COVID-19 may increase
the risk of reactivation of latent Coccidioides infection [111].

Four coinfections with Histoplasma and SARS-CoV-2 have been reported, all from
South America [112–115], with three cases occurring in the context of HIV infection. As
with PCP, opportunistic infections typically associated with HIV should be considered in
the differential diagnosis in patients with suggestive radiological features even if they have
received a COVID-19 diagnosis. The coinfection reported in a HIV-negative patient was in
the setting of persistent pulmonary histoplasmosis when pulmonary imaging prompted
SARS-CoV-2 testing [115]. Typical radiological abnormalities for the endemic mycoses
are summarised in (Table 2) [116]. SARS-CoV-2 coinfections with other dimorphic fungi—
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Blastomyces, Emergomyces, Paracoccidioides, Sporothrix, or Talaromyces—have not yet been
reported but would not be unexpected in the appropriate clinical context.
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Figure 1. Chest Computer Tomography (CT) scan of a patient who had recovered from COVID-19
two months prior to presenting with new onset right-sided lower chest pain. Abnormalities on
CT scan include a large mass lesion in the postero-basal segment of the right lower lobe with the
beginnings of possible cavitation (arrow). A pleural effusion is present at the right lung base. The left
lung shows consolidation with ground glass opacities. Fine needle aspiration of the right lower lobe
mass yielded Rhizopus microsporus on culture with broad, pauci-septate irregular fungal hyphae seen
on standard histopathological stains. [A]—anterior; [P]—posterior.

Diagnostic approaches should consider culture, microscopy, serologic antibody, and
antigen tests on blood or urine and NAAT as appropriate. In most patients, diagnostic test-
ing for coccidioidomycosis typically begins with antibody tests, with enzyme immunoassay
(EIA) being most widely available, and less commonly antigen testing [117]. Antibody
testing can also be used but is less reliable for histoplasmosis [118] and blastomycosis [119].
Treatment guidelines for endemic mycoses from the Infectious Diseases Society of America
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(IDSA) recommend that mild or moderate illness can be treated with triazole antifun-
gals and severe disease can be treated with amphotericin B preparations followed by
triazoles [119–121].

4.6. Cryptococcosis

Coinfection of SARS-CoV-2 and Cryptococcus has been uncommonly reported but may
reflect under-recognition. Clinical manifestations include cryptococcemia, lung infection,
and meningoencephalitis [122–124]; infection may also be disseminated [125,126]. Cryp-
tococcosis may occur concurrently or present after recovery from COVID-19 and even
diagnosed post mortem [124]. Patients had underlying immunocompromise and/or had
received corticosteroid therapy for COVID-19, but cryptococcosis may also affect appar-
ently immunocompetent hosts [123]. Imaging abnormalities in the lung in non-COVID-19
patients range from small nodules to large cryptococcomas or mass lesions, or non-specific
pulmonary infiltrates [127]; whether these features will be borne out in the COVID-19
setting is uncertain. Imaging of other body sites should be guided by clinical decisions.

Laboratory-based diagnostic approaches are similar to those in non-COVID-19 pa-
tients, with histopathology, culture, and cryptococcal antigen tests being the cornerstone
supported by molecular assays. In cases of suspected meningitis, a lumbar puncture should
always be performed and cerebrospinal fluid examined by microscopy and culture [128].
Antifungal treatment and management of complications e.g., raised intracranial pressure,
would be guided by recommendations of existing guidelines such as the IDSA [128]. A
single patient has received isavuconazole therapy, rather than fluconazole, following induc-
tion therapy with liposomal amphotericin B [122]; there are sparse data on the role of this
azole in treating patients with cryptococcosis.

5. Approach to Diagnosing a Suspected Fungal Co-Infection in COVID-19 Patients

The first step in managing any COVID-19-associated IFD is to identify high-risk pa-
tients and evaluate them for IFD. Broadly, patients with severe COVID-19 who require
mechanical ventilation are at risk for CAPA [23,53], other mould infections, and PCP. In
addition, non-ventilated COVID-19 patients in the ICU who are experiencing clinical dete-
rioration (e.g., pulmonary desaturation, sepsis-like syndrome) with no identifiable cause
should also be evaluated for IFD, including for candidemia [129]. Additional risks such as
diabetes mellitus in CAM and predisposing factors for IC are noted in their respective sub-
sections above. Travel to an endemic region or prior infection could be a risk for infection
or reactivation with an endemic mycosis during or after COVID-19 illness (Table 2). Whilst
these factors may offer diagnostic clues, they cannot replace the importance of carefully
working through the patient history and embarking on appropriate diagnostic work-up.

Diagnostic approaches are similar to those in non-COVID-19 patients, encompassing
laboratory-based methods including histopathology, culture-based, serology, and NAAT
-based methods, often in combination along with radiology to optimise the diagnostic yield.
Table 2 summarises recommendations for the use of various methods to assist with the
diagnosis of the major groups of fungal infections and includes CAPA for comparison.
As described in the sections above, the histopathological examination of tissue specimens
especially is strongly recommended where practicable, and culture remains a cornerstone
for the diagnosis of many of these IFDs. As the agents of endemic mycoses are risk
group 3 pathogens, the culture of specimens in suspected cases must be performed in a
physical containment level 3 laboratory if attempted. Serological techniques remain useful
in the diagnosis of cryptococcosis and for certain endemic mycoses (e.g., histoplasmosis).
The increasing availability of NAAT assays for a large range of fungi has good potential
to enable rapid accurate diagnosis either through panfungal or genus/species-specific
approaches. Finally, the major imaging abnormalities that can be anticipated to be present
in each group of IFD are summarised.
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6. Conclusions

As COVID-19 continues to spread worldwide, the emergence of VOC with vaccine
escape potential, slow and uneven global uptake of vaccinations, and waning immunity
in individuals vaccinated greater than 6 months ago has resulted in a largely susceptible
population globally, making it important to continue to consider coinfections including
fungi especially in the at-risk groups highlighted here in this review. Non-Aspergillus infec-
tions are a broad group of IFDs that may occur during or after the episode of COVID-19.
Diagnostic algorithms are currently largely based on standard of care approaches practiced
pre COVID-19, informed by guidelines, and encompassing multi-modal approaches. These
will need to be updated as new learnings emerge from our growing experience of these
infections in the setting of COVID-19. Antifungal and other management strategies are sim-
ilar to those in non-COVID-19 patients but may be tempered by coincident comorbidities,
accompanying drug use, and a whole patient approach.
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