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ABSTRACT The genus Rhizobium contains many species able to form nitrogen-
fixing nodules on plants of the legume family. Here, we report the 6.9-Mbp draft ge- Received 14 February 2017 Accepted 16
nome sequence of Rhizobium sp. strain RSm-3, with a G+C content of 61.4% and February 2017 Published 13 April 2017
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Permanent draft genome sequence of the
he genus Rhizobium, established in 1889, is a group of motile, aerobic, and Gram- French bean symbiont Rhizobium sp. strain
negative bacteria in the alphaproteobacterial group with a moderate G-+C percentage RSm-3 isolated from the Eastern Himalayan
(60%) (1, 2). Memb f th Rhizobi f bioti (ati ith . region of India. Genome Announc 5:¢00175-17.
6) (1, 2). Members of the genus Rhizobium form a symbiotic association with various httpsy/doi.org/10.1128/genomeA 00175-17.
legume plants of the Fabaceae family (3-5) and form nodules on the root surface. These Copyright © 2017 Rai et al. This is an open-
nodules are the sites of nitrogen fixation. The symbiosis between Rhizobium and legumes access article distributed under the terms of

the Creative Commons Attribution 4.0

is of great importance (6). Compared to the use of chemical fertilizers, symbiosis offers Ve -
International license.

cheaper and more effective agronomic practices by providing an adequate supply of N for Address correspondence to Louis S. Tisa,
legume-based crops (7, 8). The French bean, or common bean (Phaseolus vulgaris L.), is one louis tisa@unh.edu.
of the most important plant hosts of Rhizobium spp., with the broadest genetic base (9, 10), This is scientific contribution number 2711.
and is one of the major cultivated crops containing large amounts of protein, minerals, and
antioxidant compounds (11).
Rhizobium sp. strain RSm-3 was isolated from the root nodules of P. vulgaris
collected from the Sonada region of Darjeeling district (26.9400°N, 88.250°E; altitude,
5,157 ft) of West Bengal, India. The strain showed antagonistic activity against the
fungal pathogen Fusarium solani and resistance against most of the antibiotics tested
against it. These interesting features led us to do 16S rRNA gene sequencing, which
identified the strain as Rhizobium sp. and shared 99% identity with Rhizobium etli EBRI
21 (accession no. AY221176.1). This strain was sequenced to provide a greater under-
standing of these physiological properties and its interaction with P. vulgaris.
Sequencing of the draft genome of Rhizobium sp. strain RSm-3 was performed at the
Hubbard Center for Genome Studies (University of New Hampshire, Durham, NH) using
lllumina techniques (12). A standard Illumina shotgun library was constructed and
sequenced using the lllumina HiSeq 2500 platform, which generated 1,585,078 reads
(260-bp insert size) totaling 341 Mbp. The Illumina sequence data were trimmed by
Trimmonatic version 0.32 (13) and assembled using SPAdes version 3.5 (14), and
ALLPaths-LG version r52488 (15). The final draft assembly for Rhizobium sp. strain RSm-3
consisted of 60 contigs, with an N, contig size of 313.1 kb and 54.3X coverage of
the genome. The final assembled genome contained a total sequence length of
6,912,093 bp, with a G+C content of 61.4%.
The assembled RSm-3 genome was annotated via the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) and resulted in 6,511 candidate protein-coding genes, 46
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tRNAs, four rRNA (two 5S rRNA, one 16S rRNA, and one 23S rRNA) regions, and 111
(1.69%) pseudogenes. The genome of RSm-3 also revealed the presence of the nif and
common nod operons involved in nitrogen fixation and host plant nodulation, respec-
tively. A total of 590 signal peptide-coding genes and 1,563 enzyme-coding genes were
assigned through the annotation program.

There are two major branches of common bean, Mesoamerican and Andean (16),

and a third genetic diversification of the common bean is found in the Peru-Ecuador
region (17). A new species of Rhizobium, R. ecuadorense, has been proposed for the
microsymbiont of the Peru-Ecuador common bean. The average nucleotide identity
(ANI) score for Rhizobium sp. strain RSm-3 was 98% similarity with the R. ecuadorense
type strain (CNPSo 671) (18) suggesting that it is a subspecies of R. ecuadorense.

Accession number(s). This whole-genome shotgun sequence has been deposited

at DDBJ/EMBL/GenBank under the accession number MAWZ00000000. The version
described in this paper is the first version, MAWZ01000000.
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