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With the rising societal demand for more information-processing capacity with lower
power consumption, alternative architectures inspired by the parallelism and robustness
of the human brain have recently emerged as possible solutions. In particular,
spiking neural networks (SNNs) offer a bio-realistic approach, relying on pulses,
analogous to action potentials, as units of information. While software encoded
networks provide flexibility and precision, they are often computationally expensive.
As a result, hardware SNNs based on the spiking dynamics of a device or circuit
represent an increasingly appealing direction. Here, we propose to use superconducting
nanowires as a platform for the development of an artificial neuron. Building on an
architecture first proposed for Josephson junctions, we rely on the intrinsic non-
linearity of two coupled nanowires to generate spiking behavior, and use electrothermal
circuit simulations to demonstrate that the nanowire neuron reproduces multiple
characteristics of biological neurons. Furthermore, by harnessing the non-linearity of the
superconducting nanowire’s inductance, we develop a design for a variable inductive
synapse capable of both excitatory and inhibitory control. We demonstrate that this
synapse design supports direct fan-out, a feature that has been difficult to achieve in
other superconducting architectures, and that the nanowire neuron’s nominal energy
performance is competitive with that of current technologies.

Keywords: artificial neuron, superconductor, nanowire, spiking neural network, artificial synapse

INTRODUCTION

The human brain has long been a subject of fascination due to the wide variety of complex
operations made possible by groups of a single component—the neuron. Now, as computation
needs are rapidly approaching the limits of traditional von Neumann architectures, the neuron’s
unique features have led it to become a source of inspiration for new directions for the
advancement of computing. Unlike conventional computing schemes, the human brain benefits
from characteristics such as extensive parallelism and robustness to errors, allowing it to operate
efficiently despite slow speeds on the order of a few Hz (Furber and Temple, 2007). These appealing
qualities have spurred the development of technologies that use the brain as a platform for
information processing, ranging from small scale modeling of single neuron dynamics to large-scale
parallel computing.
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At the heart of this concept are spiking neural networks
(SNNs), which seek to mimic the spiking dynamics of the brain
in order to encode information, with the additional benefit
of possibly offering new insight into the brain’s functionality.
In this scheme, spikes serve as the tokens of information,
while neurons act analogously to logic gates, producing a
single output in response to a combination of multiple inputs
(Furber and Temple, 2007). Synapses, which connect neurons,
also play a crucial role in the overall architecture by enabling
learning and allowing for adaptable networks. Past approaches
to SNNs vary both in degree of bio-realism and in how
the spikes are implemented. While software approaches that
hard-code spiking dynamics offer flexibility and precision,
they are computationally expensive. As a result, other SNNs
have used a hardware implementation, relying on devices
with intrinsic dynamics that replicate neuron behavior as a
means of reducing computation costs. Hardware approaches
have been explored in a wide variety of platforms, including
CMOS (Sourikopoulos et al., 2017), magnetic materials (Li
et al., 2017), memristors (Querlioz et al., 2011; Thomas, 2013),
and superconducting Josephson junctions (Crotty et al., 2010;
Schneider et al., 2018). CMOS circuits provide large-scale
integration, but suffer from high power dissipation and need
many components to achieve biological realism. Memristors
have characteristics which are similar to biological synapses,
but need to be paired (Jeong and Shi, 2018) with spiking
neurons made from CMOS circuits for SNNs and thus have
similar limitations with their power dissipation. Magnetic
materials can produce spiking from the spin-torque effect
(Matsumoto et al., 2019), but have yet to be integrated into
a full system with synapses and will most likely not be
as energy efficient as superconductors. Josephson junctions
are a fast and energy-efficient technology, but need more
components in large networks due to poor fan-out/fan-in
properties (Mukhanov et al., 1978; Likharev and Semenov,
1991; Katam and Pedram, 2018); furthermore, their weak
action potentials are unable to be viewed directly, making
diagnostics difficult.

These developing technologies highlight several
characteristics that are critical for an artificial neuron: (1)
inherent device dynamics that are capable of producing spiking
behavior; (2) tunable synapses between neurons to allow for the
expansion into larger networks with adjustable connectivity; and
(3) low power dissipation, both in the dynamic firing state of the
neuron and in the static state. As has been emphasized in prior
literature (Sourikopoulos et al., 2017), optimizing static power
dissipation is particularly vital to the goal of creating an energy
efficient network.

Here, we propose an artificial neuron based on
superconducting nanowires operating at cryogenic temperatures.
Superconductors are prime candidates for generating low-
power spiking behavior due to their inherent non-linearity and
negligible static power dissipation. Building on an architecture
first implemented in Josephson junctions (Crotty et al., 2010),
we rely on the coupling between two shunted nanowires to act
analogously to a two-channel model for an action potential. We
start by describing the non-linear dynamics of superconducting

nanowires, and then present the architecture of the nanowire-
based neuron. Using electrothermal circuit simulations, we
demonstrate that the device is able to replicate several behaviors
of a single neuron. Finally, we present a synapse design and
discuss the advantages of the nanowire neuron, including fan-out
and an energy figure of merit four orders of magnitude better
than that of competing technologies, which are critical in moving
toward the parallelism of the human brain.

THE NANOWIRE NEURON MODEL

Superconducting nanowires possess an inherent non-linearity
that serves as the building block of our artificial neuron model.
We begin by briefly describing this non-linearity in a single
nanowire, and then present the nanowire neuron circuit and its
basic operation principles.

Relaxation Oscillations
The intrinsic non-linearity of superconducting nanowires
makes them ideal candidates for the hardware generation of
spiking behavior. When a bias current flowing through a
superconducting nanowire exceeds a threshold known as the
critical current (Ic), superconductivity breaks down and the
nanowire becomes resistive, producing a voltage. The nanowire
only switches back to the superconducting state once the bias
current is reduced below a level called the retrapping current (Ir),
and the resistive portion (the “hotspot”) cools down. When the
nanowire is placed in parallel with a shunt resistor, this switching
process participates in electrothermal feedback with the shunt,
producing relaxation oscillations (Toomey et al., 2018).

Relaxation oscillations can be viewed in the context of a
simplified action potential. Like the Na+ influx and K+ outflux
currents of a neuron, the influx and outflux currents from
the nanowire to the shunt resistor are governed by different
timescales, τ1 and τ2. As shown in Figure 1A, the rising edge
of the output voltage is defined by τ1 = L/(Rs + Rhs), where
L is the inductance of the nanowire, Rs is the shunt resistance,
and Rhs is the resistance of the nanowire hotspot, usually on
the order of ∼1–10 k�. Conversely, the outflux current occurs
when the nanowire is no longer resistive and the bias current
is redirected from the shunt; this reduced resistance results in a
slower time constant τ2 = L/Rs which defines the falling edge of
the output voltage. For typical nanowires devices, τ1 ∼ 100 ps
and τ2 ∼ 1 ns. The two currents are “gated,” as shown by the
insets in Figure 1A, by the state of the nanowire—when the state
is resistive (producing a voltage), the influx current flows into the
shunt, and when it is superconducting, the outflux current flows
back to the nanowire.

The inductance of superconducting nanowires is dominated
by an intrinsic material property known as kinetic inductance
(Kerman et al., 2006), and is defined per unit length of the
structure. As a result, it is possible to tune these time constants by
changing the length of the nanowire, with a longer wire leading to
a higher inductance and thus a longer timescale. Figure 1B shows
a scanning electron micrograph of a typical superconducting
nanowire with a meandering geometry designed for maximizing
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FIGURE 1 | Relaxation oscillations in superconducting nanowires, which serve as the foundation of the nanowire neuron’s spiking behavior. (A) Simplified model of a
relaxation oscillation. The output voltage is defined by two time constants. The rising edge occurs when the superconducting nanowire has switched into the
resistive state (Rhs > 0), and the bias current is redirected to the shunt resistor. The falling edge takes place after the nanowire regains superconductivity (Rhs = 0),
and the bias current is redirected from the shunt resistor. (B) Example of a superconducting nanowire in a long, meandered design for obtaining a high kinetic
inductance. (C) Experimentally measured relaxation oscillations in a long superconducting nanowire shunted by 50 �.

the total device inductance. An example of experimentally
observed relaxation oscillations for such a device is displayed
in Figure 1C.

The Neuron Model
Although a shunted nanowire on its own produces oscillations
analogous to action potentials, as the bias current increases,
the output signal eventually accumulates a voltage offset. This
effect deviates from true neuron behavior, as the cell must
maintain a constant resting potential (approximately −70 mV).
To overcome this difference, we have implemented a neuron
architecture based on one that was first proposed for Josephson
junctions (Crotty et al., 2010), as shown in Figure 2. The circuit
consists of two shunted nanowires—the main oscillator and the
control oscillator—linked together in a superconducting loop.
A bias current Ibias is applied to both oscillators such that
they are each biased right below their critical currents, but in
opposite directions. To trigger an action potential, a small input
current pulse Iin (Figure 2A) is applied and sums with the bias
current to exceed Ic of the main oscillator, causing it to switch
(Figure 2D). The control does not fire since the input opposes
the direction of its bias.

Once the main oscillator switches, current is added to
the superconducting loop in the counterclockwise direction
(Figure 2B), which sums with the bias current to fire the
control oscillator (Figure 2C). The control oscillator removes
counterclockwise current from the loop, allowing the main
oscillator to fire again. Without the presence of the control
oscillator, the main oscillator would only be able to fire once,
since the counterclockwise current added to the loop would
reduce the total current through the nanowire of the main
oscillator below its Ic. The voltage from the main oscillator node
(Figure 2E) serves as the spiking output that is carried down to

the next neuron via the synapse. Unlike the output from the single
shunted nanowire, the output of the two-nanowire circuit does
not accumulate a bias offset, making it a suitable spiking signal.

In the context of the two-channel neuron model, the main
oscillator acts analogously to the Na+ influx current by adding
flux to the superconducting loop in the form of a circulating
current. The control oscillator acts analogously to the K+ outflux
current by reducing the circulating current, resetting the neuron
and allowing the main oscillator to fire again. As described in
Toomey et al. (2018), the rate at which each oscillator fires
depends on the magnitude of the bias current, paralleling the
voltage-dependent rate constants of ion gates in the Hodgin-
Huxley model (Ermentrout and Terman, 2010).

SINGLE NEURON CHARACTERISTICS

Neurons display a wide variety of traits unique to certain
populations, allowing them to collectively interact to achieve
varied and complex tasks. While no single neuron possesses
all possible traits, the basic functionality of an artificial
neuron can be evaluated by demonstrating some common
bio-realistic characteristics. Here we present multiple neuron
behaviors that can be achieved with the nanowire neuron,
using electrothermal circuit simulations conducted in LTSpice.
The simulations implement material-specific characteristics and
nanowire hotspot dynamics as described in previous literature
(Kerman et al., 2009; Berggren et al., 2018), and have been shown
to reliably reproduce experimental data pertaining to nanowire
relaxation oscillations (Toomey et al., 2018).

Threshold Response
A general characteristic of biological neurons is their inability to
fire unless the input signal exceeds a certain threshold. Figure 3A
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FIGURE 2 | Circuit simulations of the two-nanowire soma, where the two oscillators act analogously to the two ion channels in the simplified neuron model. (A) Input
pulse, Iin = 4 µA. (B) Current through the loop inductor. (C) Current through the control nanowire. The control nanowire reduces the amount of counterclockwise
current circulating in the loop, allowing the main nanowire to fire again. (D) Current through the main nanowire. (E) Output voltage pulse that is sent to the synapse.
For these simulations, the critical current of the control nanowire is Ic,control = 30 µA, the critical current of the main nanowire is Ic,main = 30 µA, and Ibias = 58.6 µA.

FIGURE 3 | Firing threshold of the two-nanowire neuron. (A) Peak output voltage as a function of input current under a constant bias (Ibias = 58.6 µA). The plot
illustrates that the neuron does not spike until the input current exceeds 4 µA, at which point it fires with output voltages of the same amplitude. Inset shows the time
domain voltage output of the neuron for different input currents. (B) Input to the neuron, leading to a reduction in firing threshold by a preceding negative pulse.
(C) Spiking output of the neuron in response to the inputs of (B), demonstrating that the nanowire neuron’s firing threshold is variable. For this simulation,
Ibias = 57.62 µA, the positive inputs Iin = 4.6 µA, and the negative input Iin = –4.3 µA.

shows the threshold voltage response of the nanowire neuron
when the bias current is held constant and the input current
is varied. As evident in the plot, the neuron does not begin
firing until the input current passes a threshold, defined by
when the sum of the bias and input current through the main
nanowire exceed its Ic. Above the threshold, the peak voltage of
the spike output is essentially constant. However, as emphasized
by Izhikevich (2004), biological neurons have a threshold that
may be varied by previous activity, such as an inhibiting input
that reduces it. Figures 3B,C illustrate this process (“threshold
variability”) in the nanowire neuron; an initial subthreshold
input pulse (Figure 3B) fails to elicit a spike, while a later input
pulse of the same magnitude triggers a spike (Figure 3C) after

a smaller negative pulse reduces the firing threshold. It should
be noted that when the preceding pulse was of the opposite
polarity, no spike was triggered. This behavior is consistent with
the expectations of Izhikevich (2004).

Refractory Period
In addition to exhibiting a firing threshold, the nanowire neuron
displays a refractory period, which we define to be the minimum
time between two input pulses such that both pulses elicit a spike.
Figure 4 illustrates this response. When two pulses are separated
enough in time so that the main oscillator is biased close to its
critical current when the second input pulse arrives, then the
second pulse will cause a spike (Figure 4A). However, if the
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FIGURE 4 | Refractory period of the two-nanowire neuron. (A) Response when there is sufficient time between two inputs to each elicit a separate spike.
Parameters: Ibias = 58 µA, Iin = 6 µA, 1t = 4 ns. The pink dashed lines indicate the beginning of the rising edge of each pulse. (B) Response when there is
insufficient time between two input pulses, causing the neuron to fire only once. Parameters are the same as in (A), except 1t = 2 ns. For both cases, panel (i)
displays the current through the nanowire of the main oscillator, while panel (ii) displays the output voltage of the neuron.

second pulse arrives before the bias current has fully returned
to the main oscillator, then the sum of the second input pulse
and the bias will not be sufficient to switch the nanowire and
trigger the neuron (Figure 4B). As a result, the refractory period
is limited by the time it takes to fully bias the main oscillator
again, which is a function of the L/R time constants of the circuit
described in Section “Relaxation Oscillations,” as well as the series
inductance in the loop. The inductance values stem from the
kinetic inductance of the superconducting film, and are therefore
dependent on the choice of material, film thickness, and nanowire
width and length.

Class I Behavior
Biological neurons differ in their response to varying signal
strengths. Whereas Class I neurons have a spiking frequency
that increases with increasing input strength, Class II neurons
maintain a constant firing rate (Izhikevich, 2004; Crotty et al.,
2010). Figure 5 illustrates the spiking behavior of the nanowire
neuron at different levels of bias current. Figure 5A shows the
time-domain voltage output of the neuron as the bias current
is increased, and suggests an increase in spiking frequency.
This response is confirmed by observing the voltage output’s
frequency spectrum displayed in Figure 5B, which shows a shift
in the spiking frequency to higher levels with increasing bias.
Consequently, the nanowire neuron has Class I behavior. The
modulation of spiking frequency by bias current demonstrates
that the frequency of the nanowire neuron output may be used
to glean information about its input conditions.

Axon: Transmission Line Characteristics
After an action potential occurs in a biological neuron, the
output signal propagates down the axon as if sent through a

delay line (Furber and Temple, 2007). This delay is valuable in
that it preserves time domain information, potentially facilitating
behaviors that rely on the recognition of specific spatio-temporal
patterns (Izhikevich, 2004). Such pattern recognition is often
not possible in SNNs with traditional wiring, since signals travel
too rapidly for timing information to be maintained (Furber
and Temple, 2007). This is not the case for superconducting
nanowires that are designed to act as transmission lines.
Recent work has shown that the high kinetic inductance of
superconducting transmission lines, like those made out of
niobium nitride, results in propagation speeds of ∼2% c, where
c is the speed of light in vacuum (Zhao et al., 2017b). As
illustrated in Figure 6, a simulated nanowire neuron output
sent through a superconducting transmission line model (Zhao
et al., 2018a) is delayed by ∼100–500 ps, close to the full width
of an action potential. In mammalian brains, axonal delays
like the cortico-cortical delay (Ferraina et al., 2002) are also
on the same timescale as the full width of an action potential
[typically a few milliseconds (Bean, 2007)], suggesting that the
relative delay in our system with respect to the spike duration is
appropriate. If longer delays are needed, the transmission line can
simply be made longer.

THE SYNAPSE

The collective dynamics of a neural network depend on the ability
of a neuron to influence the behavior of another downstream
neuron via a synapse. Here we introduce an inductive synapse
that can be integrated with the nanowire neuron to facilitate
downstream control. We start by demonstrating excitatory and
inhibitory control, and then present a scheme for tuning the
synaptic strength.
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FIGURE 5 | Effect of bias current on spiking frequency. (A) Time domain simulations of the two-nanowire neuron with different bias currents. Iin = 6 µA for all
simulations. Traces have been shifted from one another in the y-axis for clarity. (B) Fourier transform of the voltage output for each biasing condition. The shift in
peak frequency with bias current indicates that the circuit acts like a Class I neuron.

FIGURE 6 | A superconducting transmission line as an axon. Simulations of a superconducting transmission line show that the spikes can be delayed on the order
of ∼0.5 ns, depending on the length of the structure. This could enable the storage of timing information in addition to frequency information. Transmission line
parameters: nanowire inductance Ln = 0.3 nH/µm, nanowire capacitance Cn = 0.1 fF/µm, propagation speed v = 1.9% c, transmission line length l = 2.5 mm.
Shorter transmission lines on the order of 800 um still had delays of ∼140 ps.

The Inductive Synapse
Figure 7A illustrates the circuit schematic of an inductive synapse
that may be implemented in the nanowire neuron. Similar to
the slow release of neurotransmitters in response to an action
potential, the inductive synapse relies on the slow charging of a
large inductor in response to the nanowire neuron’s more rapid
voltage spikes. The energy stored in the large synapse inductor
is then discharged as current into the input port of the target
neuron, modulating its behavior.

The effect of the inductive synapse can be either excitatory
or inhibitory based on the sign of the bias current applied to
the upstream (main) neuron. These two cases are shown in
Figures 7B,C, which displays the voltage outputs of the main

and target neurons, as well as the current through the synapse
inductor. In the excitatory case (Figure 7B), the upstream neuron
is positively biased such that the inductive synapse discharges
a positive current, causing an under-biased target neuron to
fire. In the inhibitory case (Figure 7C), the upstream neuron is
negatively biased, causing a negative current to be sent from the
synapse to the target, turning off a target that was biased in the
firing state. Consequently, the inductive synapse allows for both
types of control between neurons.

Variable Strength Synapse
Although the inductive synapse of Figure 7 can be engineered for
both excitatory and inhibitory control of a downstream neuron,
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FIGURE 7 | Nanowire neuron with an inductive synapse. (A) Circuit schematic. The output voltage of the neuron charges the large synapse inductor Lsyn. The
inductor discharges current into the input port of the downstream target neuron, modulating its behavior. A series resistor Rseries is in place to reduce backaction into
the main neuron. (B) Excitatory downstream control. Parameters: Ibias,main = 59 µA, Rseries = 14 �, Rsyn,1 = 40 �, Lsyn = 0.265 µH, Rsyn,2 = 40 �,
Ibias,target = 57.17 µA, Iin = 4.6 µA. (C) Inhibitory downstream control. Parameters Ibias,main = –58.6 µA, Rseries = 24 �, Rsyn,1 = 45 �, Lsyn = 0.23 µH, Rsyn,2 = 40 �,
Ibias,target = 57.68 µA, Iin = 4.6 µA. For both cases: Panel (i) displays the output voltage of the main neuron, with the red dashed lines indicating the rising and falling
edge of the input signal; Panel (ii) displays the current through the synapse inductor; Panel (iii) displays the output voltage of the downstream target neuron.

a fundamental property of artificial neural networks is the
ability to modulate that control by adjusting synaptic strength.
One possible scheme for implementing such variability in the
inductive synapse is to incorporate superconducting nanowires
as a different circuit element: a tunable inductor. A nanowire’s
kinetic inductance increases with increasing bias current,
reaching an enhancement of 10–20% near Ic (Annunziata et al.,
2010). This modulation has been incorporated into the circuit
model of the superconducting nanowire used in these simulations
(Berggren et al., 2018). By placing a high inductance nanowire
with an ideal current source in parallel with the synapse inductor,
the overall parallel inductance of the synapse can be modulated,
which in turn changes the amount of current sent to the target
neuron. Figure 8 shows the simulated results for the case of an
inhibitory synapse. When a higher modulating current Imod is
applied to the nanowire inductor, the overall parallel inductance
increases, reducing the amount of current sent to the target. It
is important to note that the polarity of the modulating current
is not important, since the change in kinetic inductance depends
only on the magnitude of the modulating current in relation to

its Ic. For instance, Figure 8B illustrates that the modulation in
synaptic current for Imod = 5 µA and Imod = −5 µA is roughly
the same. As a result, it is clear that the modulation is due to
the change in kinetic inductance, and not simply an injection of
current by Imod in the opposing direction.

In conjunction with the plasticity of synapses, the high degree
of parallelism in the brain creates a densely connected, adaptable
network able to optimize and adjust for different conditions. An
example of fan-out in the nanowire neuron is shown in Figure 9.
As shown in Figure 9A, a single neuron is connected to four
target neurons through four separate tunable synapses. When
each of the four modulating currents is set to Imod = 0, the firing
of all four targets is inhibited by the main neuron, as illustrated
in Figure 9B. To weaken the connection with one of the targets
(target #4), Imod,4 is set to 8 µA, turning off the inhibiting action
on target #4 but allowing it to remain on the three other target
neurons, as shown in Figure 9C. Comparison of the synaptic
currents for each of the four targets shows that the synaptic
current for target #4 is reduced as a result of the modulated
inductance. This modulation illustrates that the nanowire neuron
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FIGURE 8 | Modulating the inductive synapse. (A) Circuit schematic of the inductive synapse with a high-inductance nanowire and ideal current source placed in
parallel. L1, L2 < < Lnanowire, Lsyn. Rseries,out has been added to further prevent backaction from the target neuron. (B) Simulation of the current through Rseries,out in
an inhibitory synapse as a function of different modulation currents. Spikes represent backaction from the firing of the target neuron. (Inset) Enlarged view of the
boxed area. Higher modulation currents increase the overall synapse inductance, reducing the amount of current sent to the target. The ±5 µA modulation currents
have nearly the same effect, showing that modulation is not polarity-dependent. Parameters: Rseries,in = 25 �, Rsyn,1 = 39 �, Rsyn,2 = 40 �, Rseries,out = 0.1 �,
Lsyn = 0.45 µH, Lnanowire = 0.275 µH, Ic,nanowire = 6 µA, L1 = L2 = 50 pH, Ibias,target = 57.65 µA, Ibias,main = –59.5 µA.

is able to be used in a parallel network where the strength of
individual synaptic connections can be adapted.

Fan-out may be one area where nanowires will be an
improvement over Josephson junctions (Crotty et al., 2010),
another superconducting technology with promise for artificial
neurons. Both nanowires and Josephson junctions have
quantized flux outputs (flux here being defined as the time-
integral of the voltage). However, Josephson devices have outputs
of only a single flux-quantum, while nanowires typically have
outputs with many more flux quanta (e.g., 70 flux quanta for
the device in Figure 2). For instance, typical niobium nitride
nanowires with critical currents in the range of 100 µA and
film thicknesses around 10 nm have flux outputs ranging from
50 to 100 flux quanta. In pushing the fan-out and fan-in to
larger systems, one expects to be eventually limited by parasitic
inductances and thermal noises. In such a case, the more
substantial signal of the nanowire neuron would permit a larger
fan-out and fan-in, leading to a higher degree of parallelism.
In addition to the fan-out, the nanowire voltage signals are
long enough and large enough to be digitized directly on an
oscilloscope, in contrast to their Josephson junction counterparts,
allowing for more direct analysis and readout. Finally, there
are a suite of three-terminal, power-control devices made from
nanowires (McCaughan and Berggren, 2014), which could be
fabricated alongside the neurons and used to boost signals and
match impedances.

Benchmarking Synaptic Energy and
Speed
The energy dissipation of both the neuron and the synapse can
be calculated using LTSpice by taking the time integral of the

current-voltage product of each circuit element. Performing this
analysis, we find that the nanowire neuron has an energy of about
0.05 fJ for each action potential, while the synapse is about an
order of magnitude less at around 0.005 fJ. In large systems, it
will be the synapses that will dominate; typically if there are O(N)
neurons there will be O(N2) synapses. Hence, even though the
neuron dissipates more energy, it will be the synapses that will
dominate the power consumption of a large network.

In a SNN, the energy dissipated increases with the speed of
the system; spiking twice as often dissipates twice the energy,
assuming the energy per spike stays constant. The appropriate
figure of merit to compare different technologies is then to
take the ratio of speed and power. IBM (Merolla et al., 2014)
introduced the figure of merit of synaptic operations per second
per watt (SOPS/W). We include a constant factor of about
400 W/W for the nanowire neuron to account for the cryogenic
cooling costs. Table 1 compares both the energy per spike and
the SOPS/W for the nanowire neuron, the human brain, and
two CMOS technologies. We acknowledge that the estimate
for the nanowire neuron is a projection from a calculation
of a single component, whereas the other entries in the table
have actually been measured on large systems. However, given
that superconducting platforms have no dissipation in their
interconnects in their DC state, we believe that it is reasonable
to project in such a way. We have also assumed that the constant
applied bias current will not significantly affect the overall power
consumption, based on previously proposed superconducting
architectures that use a current dividing network made of
inductors rather than resistors to eliminate the majority of
dissipation from static biasing, as has been suggested for single
flux quantum electronics (Mukhanov, 2011). In doing so, it is
apparent that the nanowire neuron can be a highly competitive
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FIGURE 9 | Fan-out of nanowire neuron with a tunable inductive synapse. (A) Simplified circuit model of the fan-out circuit. (B) Simulation when Imod = 0 µA for all
four target neurons. (i) Output of the main upstream neuron. (ii) Current through each of the four series resistors Rseries,out to each of the target neurons. (iii) Output
voltage of the four target neurons, shifted on the y-axis for clarity. (C) Simulation when Imod = 0 µA for targets #1–3 and Imod = 8 µA for target #4. (i) Output of the
main upstream neuron. (ii) Current through each of the four series resistors Rseries,out to each of the target neurons. The current through Rseries,out for target #4 is
less than that of the other targets, showing that it has been modulated. (iii) Output voltage of the four target neurons, shifted on the y-axis for clarity. The first three
targets have been inhibited, while the inhibitory action on target #4 has been turned off. Parameters: Rseries,in = 7 �, Rsyn,1 = Rsyn,2 = 300 �, Lsyn = 0.4 µH,
Rseries,out = 1 �, Lnanowire = 0.275 µH, Ic,nanowire = 6 µA, Ibias,main = –59.5 µA, Ibias,target = 57.65 µA.

technology from a power and speed perspective, and that
operation at cryogenic temperatures does not pose a serious
disadvantage to its overall performance.

Density is also a relevant parameter for building large-scale
neural networks. At present, we offer a conservative estimate
that an initial proof-of-concept device would have a cell size of
at most 50 µm × 50 µm. We believe this area would likely be
made smaller by refining the circuit parameters, the cell layout,

and choice of materials. For instance, a superconducting film
with a higher kinetic inductance would lead to a smaller device
area. However, we imagine this technology initially being used
in a centralized cloud-based architecture, where the neuron’s
low power consumption relative to that of competing platforms
would compensate for the lower device density. This type
of tradeoff has been justified in past literature, such as the
adiabatic quantum flux parametron which similarly sacrifices
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TABLE 1 | Energy and figure of merit values for different artificial neural networks
in comparison to those of the human brain.

Human brain NeuroGrid TrueNorth Nanowire
neuron

Energy/switch 10 fJ 100 pJ 25 pJ ∼0.05 fJ

SOPS/Watt 1e14 1e10 4e10 5e14

Energy values for the human brain, NeuroGrid, and TrueNorth are taken
from Furber (2016).

device area for low-power logic (Takeuchi et al., 2013). Thus,
while the anticipated device density of the nanowire neuron can
be improved, its speed and power dissipation offer significant
advantages that could compensate for its estimated cell size.

Discussion on Possible Synapse
Alternatives
Although the fan-out achieved here is far from the level
of parallelism in the human brain (where each neuron
connects to 1000s of neighbors), it suggests that nanowires
may serve a unique purpose in the development of future
superconducting neural networks, which have thus far struggled
to support fan-out. Given that nanowires can interface with
both CMOS and Josephson junction circuits (Zhao et al.,
2017a), it may be possible for nanowire neurons to serve as
intermediary devices in a network with both platforms. Indeed,
a recently proposed neural network with hybrid technologies
employed superconducting nanowires as photon detectors,
relying instead on optical signals for facilitating high fan-
out (Shainline et al., 2018; Shainline, 2019). Although our
work uses nanowires solely as electrical components, they
can easily be biased to act as photodetectors (Goltsman
et al., 2001; Marsili et al., 2011) as well, illustrating that
the two different architectures would be compatible for
integration. These two schemes thus illustrate the diverse ways
in which superconducting nanowires can be used in neural
networks, suggesting that a combination of the two technologies
may be possible.

Furthermore, while the inductive synapse proposed in
this work relies on an external modulating bias current, it
may be possible to use a superconducting memory cell to
store the value of this modulating current, or replace it
directly in the circuit. Memory cells based on superconducting
nanowire loops have been shown to reliably store states in
the form of a trapped circulating current (Murphy et al.,
2017; McCaughan et al., 2018; Zhao et al., 2018b), with recent
work demonstrating that one can program and store different
amounts of current in the loop in discrete quantities (Toomey
et al., 2019). Incorporating these programmable memory cells
into the modulating elements of the inductive synapse could
enable storage of a varying synaptic strength in each synapse,
allowing for more complex applications. It may also be
possible for nanowire neurons to connect through alternative
synapse designs, such as one based on inductive coupling.
Further analysis is needed to verify the possibility of fan-out
in such a scheme.

CONCLUSION

By taking advantage of intrinsic non-linearities in
superconducting nanowires, we have designed a platform
for a low-power artificial neuron. In this platform, the coupling
of two nanowire-based oscillators acts analogously to the two
ion channels in a simplified neuron model, producing an output
voltage spike that serves as the information-carrying token in
these circuits. Using electrothermal circuit simulations, we have
shown that the nanowire neuron is able to reproduce universal
biological neuron characteristics, such as a firing threshold, as
well as unique characteristics distinct to certain neural classes,
such as parabolic bursting (see Supplementary Material).
Furthermore, we suggested that a nanowire transmission line
with a propagation speed of ∼2% c may be used as an axon
delay line, potentially allowing spatio-temporal information to
be accessed. These collective behaviors may enable the nanowire
neuron to be used in a rich variety of operations.

In addition to harnessing the non-linearity of the nanowire’s
switching dynamics, we relied on the non-linearity of the
nanowire’s kinetic inductance in order to develop a variable
inductive synapse. We demonstrated that the total parallel
inductance of the synapse can be tuned with a modulating bias
current, thereby changing the strength of the signal sent to a
downstream target neuron. This scheme proved to be capable
of fan-out, as demonstrated by a single neuron inhibiting the
firing of four target neurons. An energy analysis of this circuit
in comparison to other spiking networks illustrated that the
nanowire neuron has competitive performance in the dynamic
firing state and a figure of merit four orders of magnitude better
than certain alternative platforms, while the static state benefits
from the lack of power dissipation by the superconducting
elements. Although experimental realization of these results is
a subject of future work, the analysis performed here suggests
that the nanowire neuron is a promising candidate for the
advancement of low-power artificial neural networks.

Looking forward, networks of superconducting nanowires
could be the basis for powerful new computer hardware. Analog
blocks of highly connected neurons could be digitally linked
to achieve networks with either scale-free or small-worlds
connectivity. With superconducting interconnects, entire chips
could be wired together with no cost in heat dissipation. The
result would be a large-scale neuromorphic processor which
could be trained as a SNN to perform tasks like pattern
recognition or used to simulate the spiking dynamics of a
large, biologically-realistic network. The combination of speed,
low power dissipation, and biological realism with only a
few components suggests that nanowires could outperform
or complement other existing and developing neuromorphic
hardware technologies.
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