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Abstract

Large-scale genome sequencing studies have identified a wealth of mutations in human tumors 

and have dramatically advanced the field of cancer genetics. However, the functional 

consequences of an altered gene in tumor progression cannot always be inferred from mutation 

status alone. This underscores the critical need for complementary methods to assign functional 

significance to mutated genes in cancer. Transposons are mobile genetic elements that serve as 

powerful tools for insertional mutagenesis. Over the last decade, investigators have employed 

mouse models with ondemand transposon-mediated mutagenesis to perform unbiased genetic 

screens to identify clinically relevant genes that participate in the pathogenesis of human cancer. 

Two distinct DNA transposon mutagenesis systems, Sleeping Beauty (SB) and PiggyBac (PB), 
have been applied extensively in vivo and more recently, in ex vivo settings. These studies have 

informed our understanding of the genes and pathways that drive cancer initiation, progression, 

and metastasis. This review highlights the latest progress on cancer gene identification for specific 

cancer subtypes, as well as new technological advances and incorporation of the CRISPR/Cas9 

toolbox into transposon-mediated functional genetic studies.

Introduction

Insertional mutagenesis screens in worms, flies, and mice have yielded fundamental 

discoveries in biology and led to the identification of critical signaling pathway components 

[1,2]. The molecular reconstruction of a Tcl/mariner DNA transposon from fish 

revolutionized the field and generated new opportunities for in vivo genome engineering. 

This re-awakened element, called Sleeping Beauty (SB), was the first synthetic transposon 

to be mobilized in mammalian cells [3●●,4]. Successful applications include germline and 
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somatic mutagenesis in mice [5–9]. PiggyBac (PB), another DNA transposon originating 

from the cabbage looper moth, was subsequently shown to be active in mammalian cells and 

developed for in vivo somatic mutagenesis [10,11].

The SB and PB systems utilize two components, an engineered transposon that harbors a 

mutagenic gene trap element, and an enzyme termed the transposase. When both 

components are present in the same cell, the transposase binds the inverted repeat/direct 

repeat sequences and catalyzes mobilization of the transposon. For in vivo studies, 

independent transgenic mouse lines are bred to induce transposon mobilization. Insertion of 

the transposon harboring the gene trap into a new genomic location disrupts gene function 

by introducing gain-of-function or loss-of-function mutations depending on the orientation 

and location of the element (Figure 1). Bioinformatic analysis identifies common insertion 

sites (CISs) representing genomic windows with more transposon insertions than predicted 

by chance [12–15], revealing genes that accelerate tumorigenesis when their functions are 

altered.

Remarkably, tumors that arise from transposon mutagenesis in mice accurately model the 

anatomical and histological features of human cancers. Early whole-body mutagenesis 

screens using a ubiquitous SB transposase knocked into the Rosa26 locus identified genes 

that promote hematopoietic cancers and sarcomas [5,7]. This was followed by screens in the 

liver and gastrointestinal system using tissue-specific Cre mouse lines that direct expression 

of the SB transposase to individual tissues [16,17]. In recent years, screens have been 

performed for many other tumor types including melanoma, neurofibroma, 

medulloblastoma, breast, prostate, and thyroid cancers (Table 1). Transposon mobilization 

has been shown to promote tumorigenesis alone or in cooperation with sensitized genetic 

backgrounds.

Several important factors must be considered for any transposon screen, including the choice 

of the transposon gene trap and transposase, the selection of the Cre driver line used to 

induce tissue-specific expression of the transposase, the scale and duration of the genetic 

screen, and the specific methods used for the identification and analysis of transposon 

insertions (Figure 2). A number of excellent studies have examined important statistical 

considerations for transposon mutagenesis screens and will not be discussed in detail here 

[12,18,19].

Breast cancer

Significant effort has focused on the identification of genes that contribute to breast cancer 

pathogenesis. Several key advantages of insertional mutagenesis over other functional 

approaches can be highlighted using recent Sleeping Beauty studies as examples. Invasive 

lobular carcinoma (ILC), the second most common breast cancer subtype, is characterized 

by loss of E-cadherin (CDH1). Cdh1 null mice do not develop mammary tumors, suggesting 

that additional mutations are required for ILC development. One SB screen performed in 

mammary-specific Cdh1 deficient mice uncovered recurrent and mutually exclusive 

insertions in genes implicated in actin cytoskeleton regulation in ILC [20●●]. This revealed 

driver mutations that were not readily identified in human datasets. For example, 
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heterozygous inactivating insertions were identified in Nonmuscle myosin Ha heavy chain 9 
(Myh9), resulting in dosage reduction of MYH9. Yet, driver mutations in MYH9 were not 

readily detected in human ILC because the gene is rarely mutated or exhibits shallow 

deletions, which are putative heterozygous deletions. Analysis of human ILCs revealed that 

MYH9 was commonly altered by heterozygous copy number loss, which correlated with 

reduced expression of MYH9 mRNA. Experimental validation confirmed that Myh9 
haploinsufficiency induced ILC formation in vivo. Consistent with this, it has been proposed 

that haploinsufficiency of candidate genes in commonly deleted regions may have detectable 

tumor suppressing activity only in the context of cooperating genetic events [21,22]. Given 

the heterogeneity of transposon-induced tumors which mimics the complexity of human 

cancers, similar screens may uncover additional context-dependent alterations in other tumor 

types.

Another advantage provided by a recent SB transposon mutagenesis study was the ability to 

pinpoint two candidate cancer genes (Transformation related protein 53 binding protein 2 
(Trp53bp2) and Protein Phosphatase 1 Regulatory Subunit 12B (Ppp1r12b), encoding 

Protein Phosphatase PP1-targeting subunits) with orthologues that are present in a large 

region on human chromosome 1q, which is known to be frequently amplified in human 

breast cancer [20●●]. The large size of this amplicon made it particularly difficult to 

identify critical driver gene(s). Subsequent validation studies showed that SB insertions in 

these two genes caused truncation of the PP1-targeting subunits, and that expression of the 

truncated subunits induced tumor formation in genetically engineered mice. This 

demonstrates the power of integrating CIS gene lists with available copy number data to 

prioritize driver genes that are present in large windows of amplifications or deletions in 

human cancer.

SB screens on different mutant backgrounds identified additional breast cancer susceptibility 

genes. Classification of SB-induced tumors in Pten mutant mice identified a collection of 

different breast cancer subtypes, including basal-like (triple negative), luminal A, and HER2 

positive tumors [23]. Functional validation studies identified eight tumor suppressor genes, 

including Transcriptional Repressor GATA Binding 1 (Trps 1) as a metastasis tumor 

suppressor in triple negative breast cancer (TNBC). Interestingly, multiple independent 

breast cancer (BC) screens used the K5-Cre transgenic mouse line to drive expression of the 

SB transposase [23–25]. The K5 Cre drives expression in all mammary epithelium cell 

populations, including basal cells and luminal cells, that likely contributed to the 

development of different breast cancer subtypes in these studies.

Chen and colleagues performed SB mutagenesis in breast epithelial cells alone or in 

combination with stabilized N-terminally truncated β-catenin [24]. Integration of this 

screening approach with survival prediction analysis led to the identification of six gene 

pairs with prognostic value that could stratify breast cancer subtypes. This demonstrates the 

utility of incorporating functional mutagenesis screens with expression and survival data to 

identify novel subtyping biomarkers.
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Liver cancer

One of the most frequently modeled tumors using the SB system is hepatocellular carcinoma 

(HCC). This is likely due to the availability of excellent mouse models, prevalence of the 

disease, and accessibility of tumor tissues for genomic and histopathologic analysis. The 

first liver-specific screen for HCC, performed on a mutant Tp53 background, identified 

known driver genes (Epidermal growth factor receptor, Egfr, and Tyrosine-protein kinase 
Met) and new potential therapeutic targets including Ubiquitin conjugating enzyme E2H 
(Ube2h) [16]. Retrotransposon-like 1 (Rtl1), initially identified in a T2/Onc3-induced screen 

[26], was subsequently validated as a novel gene that promotes HCC development [27]. 

Another study identified genes that cooperate with MYC to accelerate liver tumorigenesis, 

revealing a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor 

Coactivator 2 (Src-2/Ncoa2) [28]. Interestingly, SRC-2 promotes survival and metastasis in 

other tumor types, suggesting a tissue-specific and context-dependent role for SRC-2 in 

tumorigenesis [29]. Suresh and colleagues recently illuminated the mechanisms of tumor 

suppression by SRC-2 in liver and provided evidence that SRC-2 may exhibit oncogenic or 

tumor suppressor activity depending on the target genes and nuclear receptors that are 

expressed in distinct tissues [30].

Chronic infection with hepatitis B virus (HBV) is the most common risk factor for 

developing HCC. To identify genes that cooperate with HBV-induced liver inflammation in 

HCC development, Jenkins and colleagues performed a SB mutagenesis screen using 

transgenic mice expressing the HBV surface antigen (HBsAg) [31]. This near-saturating 

screen identified early-stage and late-stage drivers of tumorigenesis, including many CIS 

genes involved in cellular metabolic processes. Recently, two studies have been performed in 

the context of chronic liver damage and hepatic steatosis, recapitulating additional settings in 

which HCC frequently develops [32,33]. Interestingly, chronic liver injury enhanced tumor 

penetrance and significantly altered SB insertion profiles, reflecting distinct selective 

pressures exhibited by this tumor type.

PiggyBac mutagenesis

PiggyBac serves as a complementary mutagenesis system to SB and has several important 

distinctions. First, SB integrates into ‘TA’ dinucleotides whereas PB requires ‘TTAA’ motifs 

that occur less frequently in mammalian genomes. Second, SB has no preference for 

insertion into genes [34], while PB more frequently integrates into active transcription units 

[35–37]. Third, PB transposase activity is more efficient in mammalian genomes and has the 

capability to mobilize larger payloads. Fourth, unlike SB, PB mobilizes without creating 

footprint mutations. This means that an excision event restores the DNA sequence that 

existed before the insertion occurred. While this may cause less genomic damage during 

mutagenesis, it may also preclude the identification of some PB insertions. Finally, SB 
exhibits more local hopping, whereby the transposon favors mobilization to sites in 

proximity to the donor concatemer in transgenic mice. This allows for a higher mutational 

coverage across the genome and may be exploited for targeted regional mutagenesis. 

However, Rad and colleagues have suggested that PB may be superior for regional 

O’Donnell Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2018 December 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutagenesis because it produces fewer nonspecific insertions around the donor locus 

[38●●].

Although fewer PB screens have been performed to date, a versatile PB mutagenesis 

platform was generated by developing a series of transgenic mouse lines that carry different 

transposon constructs. Most transposon lines carry PB and SB inverted terminal repeats, 

allowing mobilization with either transposase [11,38●●]. Transgenic lines with three 

distinct promoter/enhancer elements were generated, each with the transposon concatemer 

present in a broad range of copies and on different chromosomes. Interestingly, the selection 

of the promoter used in the transposon line skews the tumor spectrum in whole body 

screens, with the murine stem cell virus (MSCV) 5’LTR inducing primarily hematopoietic 

cancers, the CMV early enhancer/chicken beta actin (CAG) promoter producing more solid 

tumors, and the phosphoglycerate kinase (PGK) promoter generating a mix of both tumor 

types. This phenomenon has also been observed in SB screens. Early SB screens using the 

T2/Onc or T2/Onc2 mouse strains, which utilized the MSCV promoter, exhibited a tendency 

to develop hematopoietic tumors. Replacing the MSCV promoter with the CAG or PGK 

promoters increased the incidence of solid tumors [26]. This modularity provides 

investigators great flexibility by offering the ability to alter the tumor type and incidence 

when performing whole body or tissue-specific SB and PB screens.

A conditional PB mouse model identified novel oncogenic networks including FOXP1 as an 

oncogenic transcription factor in pancreatic cancer [39●●]. This screen also helped 

elucidate the genetic basis of different histologic subtypes of pancreatic cancer. Insertions in 

Fidgetin (Fign), which encodes a member of the AAA-ATPase superfamily, were 

significantly enriched in hepatoid tumors, a rare pancreatic cancer subtype. These results 

implicate altered regulation of Fign in the development of hepatoid pancreatic cancer, 

however direct evidence for this awaits validation. Interestingly, hepatoid cancers have not 

been described in pancreas-specific SB screens [40,41], and the identified CISs from these 

SB screens only partially overlapped with candidate cancer genes found in the conditional 

PB pancreatic cancer screen. This is likely due to different integration preferences, 

highlighting the complementarity of these two systems.

In addition to SB and PB, other transposable elements have been mobilized in mouse cells 

including Tol2, Minos, and a codon-optimized mouse LINE-1 retrotransposon, ORFeus 
[6,42]. Application of these systems in future studies may further expand the repertoire of 

available insertional mutagenesis platforms for cancer gene discovery.

In contrast to transposon mutagenesis, chemical mutagenesis is another complementary 

method with unique features, most notably the capability to induce point mutations that are 

typically not modeled by insertional mutagenesis approaches [43]. Although next-generation 

sequencing allows genome-wide detection of chemically-induced mutations, existing 

limitations include prohibitive costs and high background mutation rates.
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Technological advances and ex vivo screens

Since the advent of transposon mutagenesis, numerous technological advances in the 

recovery of insertions and identification of fusion transcripts have been made. Most 

transposon screens utilize ligation-mediated PCR (LM-PCR) to recover transposon 

insertions from tumor DNA. However, the use of restriction enzymes in the LM-PCR 

reaction generates bias due to uneven distribution of restriction sites across the genome. 

Shearing of genomic DNA before LM-PCR increases the insertion recovery and allows 

‘truncal’ insertions that occur early in tumor development to be distinguished from ‘branch’ 

insertions that occur later in tumor development [44]. Recently, a semi-quantitative 

transposon insertion site sequencing method using acoustic DNA shearing (QiSeq) has been 

described [38●●]. Further refinement of sequencing methods has uncovered transposon 

insertions in single tumor cells (SBCapSeq) [45●]. This powerful method detected clonal 

insertion events in a myeloid leukemia mouse model and identified cooperating events in 

individual tumor cells. RNA sequencing of SB-induced tumors has been particularly useful 

for identifying fusion transcripts between the transposon elements and endogenous 

transcripts in order to determine whether a specific SB insertion generates a gain-of-function 

or loss-of-function mutation [46].

Another clever screening approach combined targeted gene inactivation to single-copy 

transposon mobilization to identify novel genes that cooperate with Pten in suppressing 

prostate, breast, and skin tumorigenesis [47●●]. There are several unique benefits to using 

this model. First, a single-copy SB transposon limited the number of insertions to one per 

cell, which may reduce the number of passenger insertions. Second, transposition occurred 

simultaneously in the same cells that underwent Pten inactivation, potentially enhancing the 

sensitivity of the screen. Finally, unlike most other SB screens, the gene trap promoted only 

inactivating mutations but not activating mutations. Although this precluded the 

identification of putative oncogenes, this greatly simplified the interpretation of the roles of 

uncharacterized CIS genes as putative tumor suppressors. Additional studies utilizing this 

approach are warranted to gain a better understanding of how altering transposon gene-trap 

choice and copy number impacts the presence of passenger mutations and degree of tumor 

heterogeneity.

SB and PB screens have been employed to identify genes that drive metastasis [39●●,48,49] 

and therapy resistance [50–52]. Recently, Morrissy and colleagues developed a SB-driven 

mouse model of metastatic medulloblastoma that recapitulated post-treatment tumor 

recurrence. The investigators performed a mutagenesis screen in mice to identify genes that 

drive primary medulloblastoma, then resected tumors and employed image-guided 

radiotherapy, which is the standard therapy for children with this disease [53●]. Sequencing 

of SB-induced tumors revealed a poor degree of overlap between the SB insertions in 

primary mouse tumors and the insertions in tumors that recurred after treatment. Consistent 

with this, whole genome sequencing of human tumors at the time of diagnosis and at 

recurrence revealed significant genetic divergence. Striking results from the mouse and 

human data showed that the dominant clone at recurrence arose in part through clonal 

selection of a minor clone that was present at the time of diagnosis. This suggests that 

surgery and radiation generate evolutionary pressure, thereby allowing divergent clones to 
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become resistant to therapies. The authors proposed that therapeutic strategies targeting 

truncal mutations in the primary tumor are destined to fail if the mutation is lacking after 

recurrence. They also advocated that sequencing of biopsies at recurrence should guide 

future clinical trials and treatment decisions. In the future, transposon-based mutagenesis 

systems may be further refined to screen for better drug targets at recurrence for different 

tumor types.

Although in vivo transposon screens have proven to be effective for cancer gene discovery, 

they are also time and resource intensive. This prompted several groups to develop ex vivo 
based systems wherein human or mouse cells growing in culture are mutagenized and 

screened for the acquisition of specific phenotypes in vitro or in vivo. This approach relies 

upon stable or transient expression of the transposase and is easily modified for conditional 

or dose-dependent expression of the transposon or transposase in different settings. This also 

avoids local hopping, inherent to SB and PB screens. Mutagenesis of human bone explant 

mesenchymal cells utilizing a hybrid lentiviral and SB mutagenesis system generated 

myxofibrosarcomas when transplanted into mice [54]. Other cell-based screens have 

identified genes involved in transformation of neural stem cells into glioma-initiating cells 

[55] and genes driving epithelial-mesenchymal transition in immortalized mouse 

hepatoblasts [56]. One of the largest ex vivo SB screens performed to date identified genes 

that promote growth factor independence and transformation of Ba/F3 cells, an IL-3-

dependent murine pro-B cell line. Recurrent insertions were identified in JAK/STAT and 

MAPK pathway genes in addition to a large number of genes that are mutated or associate 

with survival of leukemia patients but had not previously been linked to these pathways 

[57●]. Enforced expression of individual CIS genes promoted growth factor independence 

and tumori-genesis in vivo, validating this approach. Finally, an ex vivo recellularized 

human colon model identified genes that drive colorectal cancer progression [58●]. This 

advance contributed a unique tissue-engineering method and enabled the implementation of 

forward genetic screening in human tissues under physiologic conditions.

Incorporation of the CRISPR/Cas9 mutagenesis toolbox into transposon-

mediated screens

The clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) 

mutagenesis system has emerged as a revolutionary tool for interrogating phenotypes and 

pathways in unbiased high-throughput screens [59,60]. Several groups have incorporated the 

CRISPR toolbox into transposon studies by using PB and SB to deliver individual single 

guide RNAs (sgRNAs) to mice. For example, Weber and colleagues generated a CRISPR-
SB vector with sgRNA and Cas9 cassettes flanked by SB inverted repeats, generating a 

system for multiplexed mutagenesis of large gene sets in adult mice [61]. When the 

CRISPR-SB and SB transposase vectors were delivered via tail vein injection, animals 

developed HCC and intrahepatic cholangiocarcinoma (ICC). PB was also identified as an 

efficient delivery vehicle for in vivo CRISPR library screening in mice [62].

One major difference between CRISPR screening and transposon screening is that Cas9 

derivatives are engineered for the identification of gain-of-function (GOF) or loss-of-
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function (LOF) mutations, but not at the same time. In contrast, transposon screening allows 

for simultaneous identification of GOF and LOF mutations in the same mutagenized tumor 

or clone, which may more accurately reflect the complexity of human tumors. Furthermore, 

transposon-mediated delivery provides a non-viral alternative for efficient delivery of 

CRISPR libraries in mice and for cell-based screens.

Concluding remarks

One understudied advantage provided by transposon mutagenesis screens over cDNA 

overexpression or RNA interference screens is that important non-coding and regulatory 

regions of the genome may be detected in an unbiased manner. To date, the vast majority of 

transposon screens have focused on validating protein-coding genes. Two notable exceptions 

include the identification of competing endogenous RNAs (ceRNAs) that suppress Pten in a 

BrafV600E-induced mouse model of melanoma [63] and the identification of a Cdkn2a cis-

regulatory region in a recent conditional PB pancreatic cancer screen [39●●]. In future 

studies, transposon screens should be harnessed to identify and rigorously validate non-

coding RNAs and critical regulatory regions that drive cancer progression. However, this 

will depend on the extent to which mouse and human non-coding RNAs exhibit significant 

conservation at the primary sequence level.

In summary, transposon mutagenesis studies have provided important insights into the 

functional consequences of mutated genes in human tumors. As new technologies continue 

to emerge, these studies will undoubtedly improve our understanding of clonal evolution in 

primary tumors and metastases, the genetic basis of histologic subtypes for different tumors, 

and mechanisms underlying drug resistance. However, several key questions remain. For 

example, can we continue to improve and refine the SB and PB systems? One current 

limitation of transposon mutagenesis is that it does not faithfully reproduce the full spectrum 

of mutations seen in human cancer, namely point mutations and reciprocal translocations. In 

the future, innovative modifications to these systems may be developed for this purpose. 

Also, what is the best way to integrate the CIS gene identification with human genomic 

data? One possibility is to link transposon insertion data and associated databases [64,65] 

with existing Cancer Genome Atlas datasets (TCGA) and oncogenomic databases including 

cBioPortal, the Catalog of Somatic Mutations in Cancer (COSMIC), Oncomine, and the 

International Cancer Genome Consortium (ICGC). Direct integration of available functional 

data with human clinical datasets will accelerate the development of novel diagnostic and 

therapeutic strategies for human malignancies.
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Figure 1. Transposon mobilization disrupts gene function by introducing gain-of-function or 
loss-of-function mutations.
(a) The SB and PB systems utilize two transgenic mouse lines, one harboring a 

concatemerized mutagenic gene trap (GT) that can disrupt gene function, and a second line 

carrying a ubiquitous or tissue-specific transposase that binds the transposon ends and 

catalyzes mobilization to new genomic sites. SB mutagenesis is depicted in liver cells, 

leading to the formation of liver tumors in vivo. The gene trap can alter gene function in two 

ways. In one or both orientations, a splice acceptor is followed by a polyadenylation (pA) 

signal. When the transposon inserts into a gene, the gene trap may splice to the transcript 

and the pA signal will prematurely truncate the mRNA, thereby disrupting expression of a 

candidate tumor suppressor. Additionally, a strong promoter followed by a splice donor (SD) 

is usually present in only one orientation. Transposon insertions that utilize this 

promoter/SD may drive overexpression of candidate oncogenes. (b) Bioinformatic analysis 

identifies common insertion sites (CISs) that represent genomic windows with more 

transposon insertions than predicted by chance. CISs 1 and 2 (represented as blue and purple 

circles) are found in independent tumors. Different methods of CIS identification are used to 

uncover genes that accelerate tumorigenesis, including Monte Carlo-based and Poisson 

distribution methods, Gaussian Kernel Convolution methods, and gene-centric common 

insertion site (gCIS) analysis.
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Figure 2. Important considerations for performing transposon screens.
Critical considerations for performing transposon screens include: 1) the selection of the 

transposon gene trap vector (SB lines = T2/Onc, T2/Onc2, T2/Onc3; PB lines = ATP1, 

ATP2, ATP3 that differ based on the transposon copy number within the concatemer and site 

of integration on different chromosomes), 2) the transposase line, 3) the selection of the Cre 

driver line used to induce expression of the transposase, 4) whether transposon mutagenesis 

occurs alone or in combination with a sensitized genetic background, 5) the scale of the 

screen (depending on the number of mice and tumors that are desired for analysis), 6) the 

duration of the screen (depending on what types of CIS genes are desired at early or late 

stages of tumorigenesis), 7) the specific methods used for the identification and analysis of 

transposon insertions, and 8) whether in vivo or ex vivo mutagenesis is desired.
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