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Purpose:Cataract surgery is themost commoneye surgery. Appropriateoptimizationof
intraocular lens (IOL) calculation formulae can result in improved patient outcomes. The
purpose of this article is to describe a methodology of optimizing existing IOL formulae
and develop hybrid formulae based on artificial intelligence (AI).

Methods: Preoperative biometric and postoperative outcomes data were obtained
from medical records at a single institution. A numeric computing environment was
used to analyze these data and refine IOL formulae using supervised learning AI. The
mean absolute error of each IOL formulae with andwithout AI enhancement was deter-
mined, as well as the number of eyes within 0.5 diopter of the predicted refraction.

Results: AI algorithms improved the mean absolute error as well as number of eyes
within 0.5 diopters of predicted refraction for each of the formulae tested (P < 0.05).

Conclusions: A novel methodology is described that uses AI to improve existing IOL
formulae. This methodology has the potential to improve clinical outcomes for cataract
surgery patients.

Translational Relevance: Artificial intelligence can be used to improve existing IOL
formulae.

Introduction

Cataract surgery is the most common surgical
procedure performed in the United States and world-
wide each year. Calculating the most accurate power of
the intraocular lens (IOL) is a critical factor in optimiz-
ing patient outcomes. Unlike most medical interven-
tions, the outcome of cataract surgery is precise,mathe-
matical, and typically known within a few weeks of the
procedure.

IOL calculation formulae have evolved over multi-
ple generations. For instance, the original SRK
was a first-generation formula that was based on

regression data only.1 Second-generation formulae
included factors that scaled the prediction based
on axial length (AL).1,2 Third-generation formulae
such as the Holladay 1, Hoffer Q, and SRK/T are
theoretical mathematical formulae that are based on
both vergence optics and a prediction of the effec-
tive lens position of the IOL.1,3 Further genera-
tions of formulae such as the Barrett Universal
II and Haigis used the measured anterior chamber
depth (ACD) as a predictor of the effective lens
position.4,5 The original Ladas super formula (LSF)
combined multiple formulae to enhance accuracy by
using the most appropriate formula for a specific
eye.6
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The use of artificial intelligence (AI) in IOL calcula-
tions has beenmentioned within the literature and little
has been published as to the exact methodology. The
concept of using a neural network came from Clarke
and Burnmeister more than 20 years ago.7 There was
no specific description of the algorithm and the main
disadvantage as they pointed out was the requirement
of “substantial computing power and memory.”More
recently, other calculation methods that use some form
of AI include the Hill-RBF,8 the most recent version
of the Kane formula,9 the Sramka,10 and the Pearl-
DGS.11

Machine learning is a subset of AI that uses statis-
tical methods to learn from outcome data. Super-
vised learning can be categorized as either classifica-
tion or regression algorithms. Whereas classification
algorithms attempt to “label” data, regression super-
vised learning attempts to use outcome data to predict
or adjust outcomes to a desired result.

Methods of supervised nonlinear regression
machine learning include support vector regression
(SVR), extreme gradient boost, and neural networks
among others. SVR creates a predictive model based
on both input variables and outcome data. The model
then predicts the inner nonlinear relationship between
the input variables and outcome as a continuous
variable rather than a binary classification.12 Extreme
gradient boosting (XGBoost) is one of the gradient
boosting methods that assemble many weak prediction
models used typically in decision trees.13 XGBoost
combines many decision trees to reveal the relationship
between the input variables and output. An artificial
neural network (ANN) is built up by nodes and layers.
Each node is a nonlinear filter and each layer is built
up by parallel nodes. The input will go through the
network of those nodes and the weights of the connec-
tions will be learned by training the ANN model.14
The combination of those nodes thus finally reveals the
nonlinear relationship between the inputs and output
to predict the outcome.

The purpose of the present article is to describe a
methodology that can be utilized to improve existing
formulae and create hybrid–AI formulae.

Methods

After appropriate institutional review board
approval was obtained for a retrospective study, the
patient records for eyes undergoing uncomplicated
cataract surgery at a single institution (Massachusetts
Eye and Ear Infirmary) and using a single type of
IOL (AcrySof SN60WF, Alcon, Ft. Worth, TX) were

obtained. Billing data were used to identify 9185
routine cataract surgeries (current procedural termi-
nology code 66984) occurring at Massachusetts Eye
and Ear Infirmary between April 2016 and December
2018. Data were collected from the electronic medical
record (Epic Systems Corporation, Verona, WI). The
eyes were further selected based on implantation
of 1 type of IOL (SN60WF) and a postoperative
best corrected visual acuity of 20/25 or better. Eyes
were also excluded from the data base search if the
words “posterior capsular rupture,” “tear,” “hole,”
or “rent” were noted in the operative report. This
resulting dataset included the following parameters:
AL, keratometry, ACD, lens thickness, sex, age, and
postoperative manifest refraction. The postoperative
“actual” result was obtained from the medical record
and was at least 1 month after cataract surgery. Eyes
were also excluded for insufficient data or the inability
to calculate an outcome because an input parameter
was beyond what a particular formula would allow
(i.e., a keratometry of >55 diopters). A total of 1391
remained for analysis.

Using the IOL power implanted from the record
and the User Group for Laser Interference Biometry
suggested A-constant for this specific lens and each
formula, a predicted outcome was obtained for each
eye. The formulae used were the SRK, the Holladay I,
and the LSF.

Next, supervised learning algorithms were devel-
oped to predict the error between each formula’s
predicted outcome and the actual outcome. The
supervised learning algorithms tested were the SVR,
XGBoost and ANN. The predicted error from each
of these algorithms was used to adjust the specific
formula for each eye individually to come up with a
new predicted outcome. For instance, if an individual
eye had a predicted outcome of −0.5 diopters using
the SRK formula and the actual outcome was –1.0
diopters, the prediction error was (−0.5 to −1.0 = 0.5
diopters) for that particular eye. This was done for
each eye and each formula. Next, the variables of AL,
ACD, and the average keratometry were used with each
machine learning model to help predict that error for
each eye.

The dataset was randomly separated into 10 equal
parts. Nine of the 10 sets were used to train the
algorithm and tested on the remaining tranche. The
software used was (Python 3.7 with scikit-learn
package) and the variables that were given to refine
the formula were AL, keratometry, and ACD. This
was sequentially done 10 times with each tranche being
used as the testing set.

The hyperparameters for each model were as
follows: for the SVR: C = 1, epsilon = 0 and the
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Table. Patient Demographics

Variables N or Mean ± SD

Patients 1107
Eyes 1391
Female sex 860
Age, years 70.00 ± 8.76
AL, mm 24.10 ± 1.33
AL subgroups

<22.0 n = 35
22–26 n = 1230
>26 n = 126

Average keratometry, diopters 43.75 ± 1.62
ACD, mm 3.41 ± 0.47
IOL power 20.17 ± 3.54

kernel function was the radial basis function). For the
XGBoost: Max depth = 3, number of estimators =
30, colsample_bytree = 1, scale_pos_weight = 0.8. For
the ANN, the hidden layers were set at (10, 10, 10).
The relu function was used for the input layer and the
limited-memory Broyden–Fletcher–Goldfarb–Shanno
as the solver. Themodels were tuned using a grid search
within a specified subset of hyperparameters. If the
result reached the edge of the initial range, the range
was expanded and the grid search was applied again.
Overfitting of the models was prevented by applying
a five-fold cross-validation within the training dataset.
The Shapiro-Wilk test was applied to verify a normal
distribution of the data.

The mean absolute error (AE) ± standard devia-
tion, as well as percentage of eyes within 0.5 and 1.0
diopter of prediction for each formula and the super-
vised learning hybrid formula were calculated.

Statistical analysis was performed by Excel. The
Wilcoxon signed rank test was used to compare the
mean AE by the various methods. The Bonferroni
correction was used to control for multiple compar-
isons. A P value of less than 0.05 was considered statis-
tically significant.

Results

Patient demographics are shown in Table.
Figure 1 shows the mean AE for each formula without
AI enhancement. As expected, the mean AE was
progressively better for each generation of formula
(SRK = 0.499 ± 0.012; Holladay 1 = 0.392 ± 0.013;
LSF= 0.355± 0.017;P< 0.5). Further, the percentage
of eyes within 0.5 diopters of the predicted refraction
improved with each generation (SRK= 62%,Holladay
1, =72% and LSF = 76%).

Figures 2A–C shows the baseline mean AE for
each formula compared to its own version of an AI
enhanced formula. Each type of supervised learn-
ing algorithm statistically improved the mean AE for
each formula. The MAE was significantly lower than
the baseline formula for each algorithm tested. SRK
baseline = 0.499 ± 0.012, SRK + SVR = 0.325
± 0.023, SRK + XGB = 0.314 ± 0.022, SRK +
ANN = 0.439 ± 0.026) Holladay 1baseline = 0.392
± 0.013, Holladay 1 + SVR = 0.307 ± 0.021, Holla-
day 1 + XGB = 0.309 ± 0.022, Holladay + ANN =
0.326 ± 0.022. LSF baseline = 0.355 ± 0.017, LSF
+ SVR = 0.311 ± 0.021, LSF + XGB = 0.310 ±
0.024, LSF + ANN = 0.319 ± 0.024. There was no
instance that the improvementwith this dataset was not

Figure 1. Mean AE for each baseline formula. * P < 0.05.
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Figure 2. (A–C) Mean AE for the (A) SRK formula, (B) Holladay 1 formula, (C) LSF; and with each supervised learning algorithm. * P < 0.05.

statistically significant. This result was also true for
the median AE. Figure 3 shows the percentage of
eyes within 0.5 diopter of predicted refraction for each
formula both with and without each supervised learn-
ing algorithm. The percent of eyes within 0.5 diopter
of the predicted refraction for the SRK increased
from 61% to a maximum of 81% with the XGB
algorithm (Fig. 3). The Holladay 1 increased from
72% to 82% with both the SVR and XGB algorithms.

The LSF increased from 76% to 82% with the XGB
algorithm.

Discussion

Our baseline data are consistent with outcomes
recently reported in the literature for current theoretical
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Figure 3. Eyes within 0.5 diopters of predicted refraction with the baseline formula and each supervised learning algorithm.

formulae. In particular, the mean AE for the Holla-
day I formula was 0.397 diopter with 70% and 94%
of the eyes within 0.5 and 1.0 diopter, respectively.9
This outcome is similar to our results demonstrating
a mean AE of 0.392 and 72% and 95% within 0.5 and
1.0 diopter of prediction with the standard Holladay
I formula. The range of all mean AEs in the study
by Darcy et al.9 was 0.377 to 0.410 diopter for all of
the theoretical formulae. The mean AE for the Kane
formula was 0.377 and the Barrett Universal II was
0.390. The greatest number of eyes within 0.5 diopter
of predicted refraction with any formula was 72%. The
LSF was not included in that particular analysis.

When we applied our unique supervised learning
algorithm to this dataset, we were able to demonstrate
a statistically significant decrease in the mean AE and
median AE with each formula and each supervised
learning method. Further, the number of eyes within
0.5 diopter of prediction increased for each formula
when our supervised learning algorithm was applied.

Additional variables have been shown to improve
outcomes when accounted for individually. For
instance, the Wang–Koch adjustment for AL has
been applied to eyes greater than 25 mm.15 However,
this important variable does not occur in a vacuum
and is likely intimately related to other variables such

as the ACD. Further, it is doubtful that any AL adjust-
ment should start and stop at exactly 25 mm. Others
have proposed incorporating additional variables to
account for a multitude of factors. In fact, the Holla-
day 2 formula released in 1992 includes additional
variables of lens thickness, white to white distance,
preoperative refraction, and age.16 Other potential
variables that have been suggested to have an effect on
IOL prediction include the equatorial lens position,
age, race, gender, aphakic refraction, relative ratio
of various eye segments, C-factor, posterior corneal
power, corneal thickness, specific lens design, and the
exact power of the IOL.1,17–22 Again, these variables
do not occur in a vacuum and may be interrelated.
Deep learning can be used to weigh the effect of
multiple variables on reaching a desired outcome.
These advancements and adjustments are unlikely to
be conceived as single variables or discrete formulae,
and progress using such approaches likely would be
inefficient compared to machine learning methods.

The approach described in this article is contrasted
from forms of deep learning such as theHill radial basis
function that attempt to back calculate an algorithm
from a fixed dataset. As mentioned, there are instances
when the Hill-RBF computes values that are unreli-
able or out of bounds where there is a paucity of data.
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The methodology described herein is different in that
there is a baseline formula and that is refined using
machine learning. Further, a formula like theHill-RBF
would not be able to add additional variables if they
were deemed important unless it started with a new
dataset. The methodology we describe could add other
variables and be tested in an ongoing manner to deter-
mine if they improved the accuracy or not. Other inves-
tigators have stated that their formulae use parts of
AI and machine learning in their algorithms, but the
descriptions are extremely limited. Perhaps the most
well-described is that by Sramka et al.,10 which used
the clinical result and machine learning to modify the
IOL power and predicted outcome. They were able to
demonstrate an improvement in the prediction error.

From a theoretical standpoint, it is also interesting
and perhaps predictable that each algorithm we tested
improved each formula to a similar threshold with this
particular dataset and the variables that were used.
Indeed, each algorithm was able to predict and adjust
each of the formula’s errors individually and for each
eye in a way that could never be written in a mathemat-
ical formula.

In conclusion, this article describes a methodology
to improve existing IOL calculation formulae using
machine learning. Future work from this group will
look to demonstrate this on additional formulae with
the inclusion of additional variables.
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