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 32 
Abstract 33 
Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is 34 
emerging as an important tool for identifying past exposure to individuals shedding viral RNA. 35 
Our past work has demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR 36 
(RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces 37 
such as Halloween candy, and when they have been present in hospital rooms or schools. 38 
However, the sensitivity and specificity of surface sampling as a method for detecting the 39 
presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has 40 
not been established. To address these questions, and to test whether our past observations 41 
linking SARS-CoV-2 abundance to Rothia spp. in hospitals also hold in a residential setting, we 42 
performed detailed spatial sampling of three isolation housing units, assessing each sample for 43 
SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon 44 
sequences to assess the bacterial community at each location and to the Cq value of the 45 
contemporaneous clinical test. Our results show that the highest SARS-CoV-2 load in this 46 
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setting is on touched surfaces such as light switches and faucets, but detectable signal is 47 
present in many non-touched surfaces that may be more relevant in settings such as schools 48 
where mask wearing is enforced. As in past studies, the bacterial community predicts which 49 
samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. 50 
 51 
Importance 52 
Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 53 
(COVID-19), is increasingly being used to locate infected individuals. We tested which indoor 54 
surfaces had high versus low viral loads by collecting 381 samples from three residential units 55 
where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 56 
was likely transmitted directly (e.g. touching a light switch) or indirectly (e.g. by droplets or 57 
aerosols settling). We found highest loads where the subject touched the surface directly, 58 
although enough virus was detected on indirectly contacted surfaces to make such locations 59 
useful for sampling (e.g. in schools, where students do not touch the light switches and also 60 
wear masks so they have no opportunity to touch their face and then the object). We also 61 
documented links between the bacteria present in a sample and the SARS-CoV-2 virus, 62 
consistent with earlier studies. 63 
 64 
Body 65 
Environmental monitoring for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-66 
2) RNA by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is 67 
increasingly gaining acceptance. In the Safer at School Early Alert (SASEA) 68 
(https://saseasystem.org/) project, daily surface swabbing was employed as part of an effort to 69 
detect coronavirus disease 2019 (COVID-19) cases in nine elementary schools. This study 70 
identified 89 clinically positive COVID-19 cases, 33% preceded by a room-matched surface 71 
positive (1). As pandemic response measures like SASEA become more widely implemented, 72 
understanding where SARS-CoV-2 signatures will most likely be found reduces cost and labor 73 
of surface swabbing in large facilities. Previous work has focused on sampling arbitrary surfaces 74 
in isolation and congregate care facilities, homes, and hospitals, with varying detection 75 
performance obscuring which surfaces are best for monitoring COVID-19 spread (2-6). 76 
Counterintuitively, high-touch hospital surfaces expected to accumulate viral load, including 77 
door handles and patient bed rails, can yield lower SARS-CoV-2 detection rates, presumably 78 
because they are cleaned more often (7-8).  79 
 80 
Most microbes in the built environment come from human inhabitants (9-11). Oral, gut, and skin 81 
microbiomes of COVID-19 patients change during disease (8,12-13); therefore, SARS-CoV-2 82 
positive built environmental samples may differ in bacterial communities from SARS-CoV-2 83 
negative samples. This has been documented in a hospital setting, with associations between 84 
SARS-CoV-2 status (Detected/Not Detected) and both overall microbial community and Rothia 85 
spp. specifically (8). 86 
 87 
To extend these results to a residential setting and understand how SARS-CoV-2 is distributed 88 
in the living space of an infected individual, we performed environmental sampling in the 89 
apartments of three people who recently tested positive for COVID-19 (Sup. Fig. S1) while 90 
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quarantined in an isolation facility. On the day of swabbing, each quarantining individual 91 
provided an anterior nares swab sample (Average Cq: 29.5, 28.4, 28.6 for Apartments A, B, and 92 
C respectively). Although apartments differed in size, floor plan, and features (furniture, 93 
appliances, etc.), similar features at similar densities were swabbed across all three 94 
(n=140,116,125).  95 
 96 
Each sampled surface was swabbed twice in immediately adjacent locations: first with a swab 97 
premoistened and stored in 95% ethanol, then by a second swab premoistened and stored in a 98 
0.5% SDS w/v solution (Supplementary Methods). Ethanol samples underwent 16S V4 rRNA 99 
gene amplicon (16S) sequencing, and SDS samples underwent RT-qPCR for SARS-CoV-2 100 
detection. 16S sequences were demultiplexed, quality filtered, and denoised with Deblur (14) in 101 
Qiita (15) using default parameters. Resulting feature tables were processed using QIIME2 (16). 102 
 103 
Findings 104 
We collected 381 matched 16S and SARS-CoV-2 surface samples from the three apartments, 105 
of which 178 (47%) were positive for SARS-CoV-2 (Fig 1) (Table 1). Apartments A and C had 106 
comparable positivity rates (53% and 61%, respectively), but Apartment B was substantially 107 
lower (24%). In all three apartments, the rate of detection was highest in the bedroom (72% on 108 
average vs 47% overall). We estimated surface viral load, in viral Genomic Equivalents (GE’s), 109 
from Cq’s using published regression curves (17) and mapped resulting viral loads onto 3D 110 
renderings of each apartment. High-touch surfaces, including handles and switches, had 111 
highest viral load across all apartments, followed by floor samples and then high-use objects 112 
(fridge, sinks, toilets, beds) (Fig. 1). The maps for each apartment were studied to understand 113 
patterns of SARS-CoV-2 detection and deposition by room use. In the kitchens, objects with 114 
planar faces and handles, such as the refrigerator, cabinets, and drawers, revealed that only the 115 
touched handles had detectable RT-qPCR signal (Fig. 1C inset, as an example). We could not 116 
detect viral RNA on adjacent planar faces, which were presumably breathed on but not touched.  117 
 118 
For quality control of 16S sequencing from low-biomass samples, we sequenced surface swabs 119 
from the apartments together with positive and negative controls using KatharoSeq 120 
(Supplementary Methods) (Sup. Fig. S2A) (18). Of 381 samples that underwent 16S 121 
sequencing, 121 fell below the KatharoSeq threshold and were excluded (Sup. Fig. 2C). 122 
Informed by alpha rarefaction curves (Sup Fig 2B), remaining samples were rarefied to 4000 123 
features, removing an additional 36 samples from the analysis. Therefore, 157 samples were 124 
excluded from downstream analyses (122 SARS-CoV-2 negative matched swabs, 35 positive) 125 
(Sup Fig 2C).  126 
 127 
Bacterial alpha diversity analysis demonstrated that 16S amplicon read count associated with 128 
SARS-CoV-2 detection status (Sup. Fig. S3). Forward stepwise redundancy analysis (RDA) 129 
using the unweighted UniFrac beta diversity metric identified four non-redundant variables of 130 
significant effect size (apartment, surface type, type of room, and SARS-CoV-2 detection status) 131 
which accounted for 45.4% of the variation in the data (Sup. Fig. 4B). Analyzed by apartment, 132 
only in apartment B did virus detection lack significant effect. When subsetting the entire dataset 133 
by room type, detection status had a significant effect on variability across all rooms. 134 
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 135 
To test whether the bacterial community predicted SARS-CoV-2 status, we built a random forest 136 
classifier using sOTU data. The overall Area Under the Precision-Recall Curve (AUPRC) was 137 
0.78, suggesting a statistically significant association, but insufficiently strong to predict SARS-138 
CoV-2 status of a single sample from the bacterial community (Fig. 2A). Cross-application of 139 
models trained from one apartment or room type to other apartments or room types generally 140 
performed well (AUPRC=0.7-0.96), suggesting generalizable associations (Fig. 2B). We also 141 
applied multinomial regression to our dataset to identify differentially abundant microbes 142 
between SARS-CoV-2 status groups. The top 32 features identified by the random forest 143 
classifier and the ranked log-fold-changes in feature abundance from the multinomial regression 144 
are shown in Figure 2C. Agreeing with previously published findings, Rothia dentocariosa was 145 
one of the top features identified by the classifier and was relatively positively associated with 146 
SARS-CoV-2 positive samples in the regression (8,12). Six sOTUS belonging to members of 147 
the genus Corynebacterium were also highly ranked as predictive for positive samples.  148 
 149 
Discussion 150 
Our results show that detailed spatial mapping of SARS-CoV-2 RNA abundance and associated 151 
bacterial signatures from built environment surfaces provides useful insight into potential 152 
sampling locations and associations between the viral and bacterial components of the 153 
microbiome. In the residential setting, high-touch surfaces have especially high viral loads, 154 
although confirming this with detailed spatial maps in other settings  (hospitals, isolation hotels, 155 
schools) may be useful for guiding sampling designs. We note that sensitivity of arbitrary single 156 
surface sampling to detect presence of even an unmasked SARS-CoV-2 individual is low, so 157 
multiple samples or samples from selected surfaces should be collected. These results reinforce 158 
the utility of surface sampling as a cost-effective method for locating SARS-CoV-2 signals in the 159 
environment. 160 
 161 
Our findings also corroborate SARS-CoV-2 associated changes in the microbiome published 162 
previously. Rothia dentocariosa specifically has been identified across different sample types in 163 
diverse settings, although reasons for these associations remain unclear. We also see multiple 164 
sOTUs belonging to the genus Corynebacterium predictive of a SARS-CoV-2 detection event, in 165 
contrast to the findings of another study that found Corynebacterium significantly decreased in 166 
the oral microbiome of individuals with COVID-19 (12). We hypothesize that Corynebacterium 167 
signal in this study might be evidence of human skin contamination of indoor surfaces through 168 
contact, leading to SARS-CoV-2 deposition on surfaces. It has been established that the 169 
occupants of a room contribute to the environmental microbiota, but our findings are among the 170 
first to demonstrate that disease-associated changes in the microbiome are mirrored in the built 171 
environment.  172 
 173 
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Figure Legends: 179 

Supplementary Figure 1. Timeline of events from first positive test to the end of the individual’s 180 
quarantine period. Apartment C has no move in date because the individual quarantined in 181 
place. 182 
 183 
Supplementary Table 1. Environmental samples with detectable SARS-CoV-2 per apartment 184 
and room type. 185 
 186 
Figure 1. Distribution of SARS-CoV-2 viral load in isolation dorm apartments. (A-C) Floor plans 187 
for each apartment highlighting where SARS-CoV-2 RNA signatures were detected. (Inset) 3D 188 
rendering of the kitchen in Apartment C showing SARS-CoV-2 viral load in Genomic 189 
Equivalents (GEs) mapped to features in that room. 190 
 191 
Supplementary Figure 2. Exclusion criteria for low biomass samples. (A) Diluted stock of a 192 
KatharoSeq positive control was sequenced along with the environmental samples and the 193 
resultant reads underwent pre-processing as detailed in the Supplementary Methods.The 194 
KatharoSeq Threshold (dashed lined), a minimum number of reads derived from a fitted 195 
allosteric sigmoidal curve, corresponds to a sequencing depth where at least 80% of the 196 
positive control reads are taxonomically classified to the appropriate target organisms (B) Top 197 
panel: Rarefaction curve showing observed features (alpha diversity metric) as a function of 198 
sequencing depth. Bottom panel: Graph showing how many samples would be included in 199 
downstream analysis as a function of rarefaction depth. (C) Table showing how many samples 200 
were removed at the KatharoSeq and Rarefaction thresholds and overall. 201 
 202 
Supplementary Figure 3. Correlation between microbial biomass/diversity and SARS-CoV-2 203 
detection. (A) Number of 16S reads in SARS-CoV-2 positive samples shows significant 204 
correlation with SARS-CoV-2 viral load (GE’s) (Pearson correlation, r=0.3, p=3x10-5). (B) Read 205 
counts are significantly different between positive and negative samples when compared within 206 
room types (Mann-Whitney U tests,  p≤0.003). (C) Alpha diversity (Faith’s PD) shows a weaker 207 
significance between positive and negative samples when compared within room types with 208 
only the bedroom and kitchen showing a significant difference between positive and negative 209 
samples (Mann-Whitney U tests, p=0.01). 210 
 211 
Supplementary Figure 4. Beta diversity analysis identifies the factors that contribute most to the 212 
separation of the data. (A) Principal coordinates analysis of the Unweighted Unifrac distance 213 
matrix shows that a major driver in the separation of this data is which apartment the samples 214 
came from. (B) Barplot showing the statistically significant effect sizes for non-redundant 215 
variables returned by RDA analysis. The largest effect size was explained by apartment (30.7%, 216 
p=0.0002), followed by surface material type (10.7%, p=0.0002), room type (3.2%, p=0.0004), 217 
and SARS-CoV-2 detection status (0.84%, p=0.01). 218 
 219 
Figure 2. (A) Area under the precision-recall curve showing the overall prediction performance 220 
of the random forest classifiers when trained on the features from two apartments and cross 221 
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validated on the remaining apartment. (B) Confusion matrix showing per-room type classifiers 222 
when cross-applied on the remaining room types. The diagonal represents self validation. (C) 223 
Phylogenetic tree visualization (EMPress) where the differentially-abundant features between 224 
SARS-CoV-2 status groups identified by multinomial regression (Songbird) are plotted on the 225 
inner ring, and the ranked sOTUs identified as important by the random forest classifier are 226 
indicated on the outer ring.  227 
  228 
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