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Abstract

Background: The nature of protective immune responses elicited by immunization

with the candidate malaria vaccine RTS,S is still incompletely understood. Antibody

levels correlate with protection against malaria infection, but considerable variation

in outcome is unexplained (e.g., children may experience malaria despite high anti-

circumsporozoite [CS] titers).

Methods and Findings: We measured the avidity index (AI) of the anti-CS

antibodies raised in subgroup of 5–17 month old children in Kenya who were

vaccinated with three doses of RTS,S/AS01E between March and August 2007. We

evaluated the association between the AI and the subsequent risk of clinical

malaria. We selected 19 cases (i.e., with clinical malaria) and 42 controls (i.e.,

without clinical malaria), matching for anti-CS antibody levels and malaria

exposure. We assessed their sera collected 1 month after the third dose of the

vaccine, in March 2008 (range 4–10 months after the third vaccine), and at 12

months after the third vaccine dose. The mean AI was 45.2 (95% CI: 42.4 to 48.1),

45.3 (95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3) at 1 month, in March

2008 (4–10 months), and at 12 months after the third vaccination, respectively

(p50.9 by ANOVA test for variation over time). The AI was not associated with

protection from clinical malaria (OR50.90; 95% CI: 0.49 to 1.66; p50.74). The AI

was higher in children with high malaria exposure, as measured using the weighted

local prevalence of malaria, compared to those with low malaria exposure at 1

month post dose 3 (p50.035).

Conclusion: Our data suggest that in RTS,S/AS01E-vaccinated children residing in

malaria endemic countries, the avidity of anti-circumsporozoite antibodies, as
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measured using an elution ELISA method, was not associated with protection from

clinical malaria. Prior natural malaria exposure might have primed the response to

RTS,S/AS01E vaccination.

Introduction

RTS,S consists of 19 copies of the central tandem repeats and C-terminal region of

the P. falciparum circumsporozoite protein (CS) fused to hepatitis B surface

antigen (HBsAg), and co-expressed with unfused HBsAg in Saccharomyces

cerevisiae cells [1]. The protein encodes both B and T cell epitopes. The antigen is

administered with Adjuvant system (AS01), a liposome-based adjuvant system

that contains 3-O-desacyl-49-monophosphoryl lipid A and the saponin Quillaja

saponaria Molina, fraction 21 ‘‘(QS21, Antigenics Inc., a wholly owned subsidiary

of Agenus Inc., Lexington, MA, USA)’’.

RTS,S is highly immunogenic [2, 3, 4, 5], inducing both high titers of CS

antibodies (anti-CS) and CS-specific CD4 T cell responses. There is evidence that

anti-CS titers correlate with protection in controlled human malaria infection in

malaria-naı̈ve adults [2, 6], and natural malaria infection in adults and children in

malaria-endemic regions [7, 8]. We have recently demonstrated a non-linear

association between anti-CS titers and protection from clinical malaria in children

5–17 months residing in malaria-endemic countries [9], and in children aged 6–

10 weeks anti-CS titers were found to be correlated with protection from clinical

malaria [10]. However there was no association between anti-CS titers and

protection from clinical malaria in children 1–4 years old in Mozambique [11].

Even in trials where correlations between anti-CS titers and outcome were

observed, considerable variation in outcome remained unexplained (e.g. children

may experience malaria despite high titers). Some studies suggest an association

between cell-mediated immune responses (specifically CD4 T cell responses) and

protection against clinical malaria in children, albeit of lesser importance than

antibody responses [12]. However, substantial variability in protection remains

unexplained even after accounting for anti-CS antibody and CD4 T cell responses

(i.e. there are unprotected children with high titer antibodies and strong CD4 T

cell responses).

In addition to the quantity of antibodies, quality of antibodies may determine

protection following vaccination against diverse pathogens [13]. In early phase of

adaptive immune response antibody-secreting cells usually produce antibodies of

low affinity. These cells then proliferate within germinal centers where somatic

hypermutation of V(D)J immunoglobulin gene and antigen-driven selection of

high-affinity antibody-producing B cells occurs. Antibody affinity is difficult to

measure since it requires monoclonal antibodies, purified antigen, and it must be

carried out under strict chemical conditions. However antibody avidity can be

used as the surrogate marker for affinity following vaccination. Avidity is defined
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as the antigen binding capacity resulting from the addition of all epitope-specific

affinities of antibodies in a serum [14]. High avidity antibodies appear important

in the protection conferred by Haemophilus influenza type b vaccine, Hepatitis B

vaccine and Pneumococcal conjugate vaccine [15, 16, 17]. The avidity of anti-CS

antibody contributes to protection against malaria in a mouse model [18].

To date, no study has investigated the role of avidity of RTS,S-induced anti-CS

antibodies in protection against malaria infection among RTS,S vaccinees in the

field. Here we report the results of such study in children 5–17 month residing in

Kilifi, Kenya who were immunized with RTS,S/AS01E.

Materials and Methodology

Vaccine and subjects

Serum samples from a phase IIb randomized controlled trial originally designed to

determine the efficacy of RTS,S/AS01E against Plasmodium falciparum clinical

malaria in 5–17 month old children were used (ClinicalTrials.gov number,

NCT00380393) [12, 19]. All children received all three doses of RTS,S/AS01E

between March and August 2007. The candidate vaccine was given intramuscu-

larly in the right deltoid area in a 0, 1, 2 month schedule. Blood samples were

collected at screening, at 1 month after the third dose of vaccine, in March 2008

(range 4–10 months (mean 8 months) post dose 3) and at 12 months after the

third dose of vaccine for the assessment of antibodies to P. falciparum CS repeat

region (anti-CS antibodies).

Informed written consent was obtained from parents of the study participant

using approved Swahili or Giriama consent forms. All the parents signed the

informed consent and were provided with the copy of informed consent and

participant information sheet. Illiterate parents thumb printed the forms with

independent literate witness countersigning. The original study was approved by

the Kenya Medical Research Institute National Ethics Committee, Western

Institution Review Board and Oxford Tropical Research Ethics Committee.

Study design

A nested case-control study was conducted to investigate the association between

vaccine-induced anti-CS antibody avidity and protection from clinical malaria.

Cases were defined as children who had at least one episode of clinical malaria

(axillary temperature $37.5 C̊ and P falciparum parasitaemia .2500/mL) during

the 15 months of follow-up beginning 2 weeks after the 3rd dose of vaccine while

controls were children who did not experience any clinical malaria episodes.

The study was conducted in villages of Junju and Pingilikani in Kilifi district.

The two areas have moderate malaria transmission based on parasite prevalence

rates [20]. Malaria exposure was measured as the weighted local prevalence of

malaria cases within a 1 km radius of each index child, or ‘‘exposure index’’, as

previously described [21]. Malaria exposure was considered ‘‘high’’ if the
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exposure index was above the cohort mean and ‘‘low’’ if the exposure index was

below the cohort mean.

Due to cost and allowable time to accomplish the study, only a fraction of the

available samples could be analyzed. We randomly selected 19 cases and 42

controls from 295 RTS,S/AS01E vaccinees with immunogenicity data matching

for the level of peak anti-CS levels and malaria exposure. The selected sample size

was enough to provide 80% power to detect an odds ratio of 3 between cases and

controls given 50% probability of exposure (antibody avidity with protective

effect) among controls and an alpha of 0.05. In an exploratory analysis we

compared the avidity indices of controls (protected children) who had low

antibody level (in the lower tertile) and high malaria exposure with cases to

determine if the avidity index could explain the protection. All selected cases and

controls had their samples assessed for the anti-CS avidity at three time points i.e.

1 month, March 2008 (range 4–10 months) and at 12 months post dose three.

Avidity was not measured in screening samples because anti-CS titers were

undetectable before vaccination.

Anti-CS antibody titers

Anti-CS antibody titers were determined by standard enzyme-linked immuno-

sorbent assay (ELISA) developed by GSK Biologicals [22]. Plates were adsorbed

with the recombinant antigen R32LR, which contains the sequence

[NVDP(NANP)15]2LR and antibody titers were calculated using a reference

standard curve and expressed in ELISA units (EU) per mL. A cut-off point for

positive titers was 0.5 EU/mL.

Anti-CS avidity assay

We used a single concentration ammonium thiocyanate (NH4SCN) elution ELISA

to determine the avidity of the polyclonal anti-CS antibodies. Polystyrene

microtiter plates were coated overnight at 4 C̊ with 2.5 mg/ml R32LR protein in

coating buffer. Following washing, the plates were blocked with 200 ml PBS-5%

skim milk per well for 1 hour at 25 C̊ in a horizontal orbital shaker (Skatron 300).

We conducted 8-fold serial dilutions in duplicate. A pre-dilution at 1:100 was

done for all serum samples with anti-CS titer above 200 EU/mL before the

beginning of serial dilutions. Serum samples with anti-CS titer below 200 EU/mL

were not pre-diluted. Standard (serum from malaria naı̈ve adult vaccinated with

R32LR attributed an arbitrary value of 109 EU/mL provided by GSK Vaccines),

negative control (i.e. anti-CS negative serum from malaria naı̈ve adult provided

by GSK Vaccines) and positive control (i.e. a pool of anti-CS human sera

approximately at 100 EU/ml that demonstrated an AI of 43.1¡3.8, provided by

GSK Vaccines) were added in each plate and serially diluted like samples. The

plates were then incubated for 2 hours at 37 C̊.

Each serum sample was processed in two different plates; one treated with

NH4SCN, and one untreated plate. Both plates were washed twice with 0.05%
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Tween-20 in PBS (wash buffer). A 1 M solution of NH4SCN in laboratory grade

water was added in the treatment plate while 0.05% Tween-20 in PBS was added

in the control plate and both were incubated for 30 min at 25 C̊. The plates were

then washed three times with wash buffer. After a third wash, anti-human IgG

conjugated to horseradish peroxidase (HRP) was added and incubated for 30 min

at 25 C̊ before washing. After 30 min incubation with chromogen substrate

(3,39,5,5 Tetramethylbenzidine [TMB] and H2O2) at 25 C̊ (yielding a blue color),

the reaction was stopped with 50 ml of 1 N sulphuric acid changing the color to

yellow. The intensity of the color was proportional to the titer of the anti-CS IgG

antibodies contained in the sample. Absorbance at 450 nm was read by use of an

automatic microtiter plate reader. Samples Optical densities (OD’s) were

converted into EU/ml using a standard curve at the linear segment of the curve

and mean values used to estimate avidity index. Linearity of the assay was

demonstrated by the observation that for a high concentration sample, serially

diluted sample was able to reproduce the same Avidity Index (AI) over the entire

anti-CS analytical range. The AI is defined as the ratio of the quantity of anti-CS

antibodies (in EU/ml) that remained bound to the coated antigen after treatment

with NH4SCN divided by the quantity of antibodies (in EU/ml) that remained

bound to the coated antigen in the control plate. The AI for each serum represents

the composite value across all the dilutions.

TNF-a-producing CD4 T-cells immune response

Whole-blood intracellular staining assay was used to determine the frequency of

CD4 T cells producing TNF-a as previous described [12]. Stimulation of blood

was done within 3 hours after blood withdrawal and samples were stored 3 to 4

months before staining.

Statistical Analysis

Anti-CS avidity measures were not transformed in the analysis and were presented

as percentage (by multiplying the ratio by 100). The anti-CS titers and avidity

indices were presented for each group as arithmetic mean¡95% confidence

interval per group. Students T-test was used to compare the avidity indices and

antibody titers between groups. A one-way analysis of variance (ANOVA) was

used to test for the difference in antibody titers and antibody avidity during follow

up (1 month, ,8 and 12 months post dose three). Unconditional logistic

regression analysis was used to estimate odds ratios (ORs) and 95% Confidence

intervals adjusting for TNFa-producing CD4 T cells, bed net use and malaria

exposure (high or low). Cluster sandwich covariance matrix estimator was used to

account for the multiple entries per child. No adjustment was made for the

variable (i.e. anti-CS titers) used to select cases and controls to avoid bias. All

analyses were done in STATA (version 12; Stata Corp).

Avidity of RTS,S-Specific Antibodies
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Results

All children received all three doses of RTS,S/AS01E between March and August

2007.

A total of 162 sera (50 sera obtained 1 month post dose 3, 51 sera obtained on

March 2008 (range; 4–10 months post dose 3) and 61 sera obtained 12 month

post dose 3) from 61 study participants were available for the analysis.

The geometric mean titer of anti-CS titer in a subset of children in this study 1

month after the third vaccination was 732.1 EU/mL (95% CI, 608.4 to 880.8) and

this fell to 105.3 EU/mL (95% CI, 83.8 to 132.3) and 64.7 EU/mL (95% CI, 50.4 to

83.1) at 6.5 month and 12 month post vaccination 3 respectively (F test5125

p,0.001 by ANOVA test). The dynamics of anti-CS titers in cases and controls is

shown in Fig. 1 (Panel A).

Anti-CS avidity

The arithmetic mean AI of polyclonal anti-CS antibodies at 1 month, March 2008

(,8 months) and 12 months post dose 3 was 45.2 (95% CI: 42.4 to 48.1), 45.3

(95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3), respectively (Table 1). The

AI did not differ between the three time points (F test50.12 p50.9 by ANOVA

test).

Correlations were observed between the AI at 1 month post-dose 3 and at ,8

months post-dose 3 (r50.33, p50.0111), as well as at 1 month and 12 months

post-dose 3 (r50.48, p50.0002) (Fig. 1, Panel B).

There was no correlation between the AI and anti-CS titers at all three time

points (r5–0.03; p50.859, r50.05; p50.704 and r50.16; p50.220) or between

the AI and age at vaccination (r50.003, p50.656) (Fig. 1, Panel C and Panel D

respectively).

Avidity and protection from clinical malaria

The AI in cases and controls at 1, ,8 and 12 months post dose three is shown in

Table 1. The AI at all time points was not different from those recorded in cases

and controls (F test52.69, p50.103 by ANOVA) (Table 1). In an exploratory

analysis, we showed that avidity indexes indices among controls (i.e. children

without episodes of malaria or the ‘‘protected group’’) were similar to cases (i.e.

children with malaria) (Table 1).

The unadjusted odds ratio for clinical malaria was 1.36 (95% CI: 0.89 to 2.1;

p50.165) for each 10% increase in avidity index, indicating that we had power to

exclude an OR of ,0.89. Multivariable logistic regression showed no association

between the avidity index and protection from clinical malaria (Table 2). TNF-

alpha producing CD4 T cells were independently associated with decreased risk of

malaria (OR50.63, p value50.027) while malaria exposure was associated with

increased risk for clinical malaria (OR511.24, p value50.005).

Avidity of RTS,S-Specific Antibodies
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Avidity and malaria exposure

The AI at 1 month post dose 3 was higher in children under high malaria exposure

conditions compared to those under low malaria exposure with borderline

statistical significance (48.6%, 95% CI: 45.4 to 51.8, versus 42.8%, 95% CI 38.2 to

Fig. 1. Panel A: Anti-CS titers in cases, controls and 19 protected children with low anti-CS antibodies titer and high malaria exposure index
during 15 months of follow-up. Panel B: Matrix diagram showing correlation between antibody avidity measured at three time points during the follow up.
Significant correlation observed between AI at 1 month post-dose 3 and at ,8 months post-dose 3 (r50.33, p value50.0111) and at 1 month and 12 months
post-dose 3 (r50.48, p value50.0002). Panel C: Correlation between anti-CS antibody avidity at 1 month post dose 3 and age (r50.003, p value50.656)
Panel D: Correlation between anti-CS antibody avidity and anti-CS antibody titers at 1 month post dose 3 (r5–0.03; p value50.859).

doi:10.1371/journal.pone.0115126.g001

Table 1. Avidity indices in cases, controls and a subset of 19 controls with high exposure rates and low anti-CS titers at different sampling times.

Sampling time Months
after 3rd vaccine dose

Cases Avidity
index (95% CI) Controls Avidity index (95% CI) P value*

All
High exposure
and low anti-CS titer

1 47.1
(42.8–51.4)

44.6
(38.6–50.6)

44.4
(39.4–49.4)

0.418

,8 48.4
(43.8–52.9)

42.2
(33.9–50.4)

45.2
(37.5–52.9)

0.254

12 48
(43–53)

44.7
(39.2–50.1)

46.3
(40.1–52.4)

0.423

CI: Confidence Intervals.
*p value for the comparison between cases and controls (all).

doi:10.1371/journal.pone.0115126.t001
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47.4, p50.035 by Students T test) (Fig. 2). This difference was also observed at ,8

months; 47.9% (95% CI: 42.4 to 53.5) versus 43.2% (37.6 to 48.8) p50.2167 and

at 12 months; 48.2% (95% CI: 44.3 to 52.1) versus 45.3% (95% CI: 40.6 to 49.9)

p50.3361 post dose 3 but these were not statistically significant.

Discussion

The nature of protective immune responses elicited by immunization with RTS,S

is still incompletely understood. Although RTS,S-induced humoral and cell

mediated immune responses correlate with protection against both asymptomatic

and symptomatic parasitaemia [2, 9, 23], there is substantial variation in the rate

of protection within individuals displaying similar level of immune responses.

Here, we show that antibody avidity is not associated with protection from clinical

malaria among RTS,S/AS01E vaccinees with similar levels of anti-CS antibodies

aged 5–17 months and residing in a malaria endemic country.

There was no evidence of anti-CS avidity maturation beyond one month post

dose 3. Avidity maturation follows B cells activation in a CD4 T cell dependent

manner and is the hallmark of immunologic memory [13]. However there is

substantial variability in the capacity of vaccines to evoke avidity maturation [24].

Following Hepatitis B vaccination no avidity maturation was observed beyond the

third dose although significant increase in avidity occurred between the first and

the third dose [15]. Avidity maturation persisted between the third and fourth

dose of meningococcal serogroup C (MCC) conjugated vaccine, but there was no

change in antibody avidity beyond the fourth dose [25]. In our setting, the avidity

maturation process may have been complete by 1 month post dose three. Since

avidity maturation has only been evaluated after the third dose, no information is

available of its evolution following the preceding doses. Factors such as the type of

method and chaotropic agent used, chaotropic agent concentration, chaotropic

incubation time and temperature of the reaction [26] can influence the avidity

results making comparison across the studies and methods difficult. Avidity index

of antibodies to GMZ2 (a hybrid protein consisting of the N-terminal region of

the glutamate-rich protein fused in frame to the C-terminal region of merozoite

surface protein 3) after three doses was 35% (95% CI 30% to 42%), slightly lower

than what we observed for RTS,S induced antibodies. Similarly, the avidity of

naturally acquired antibodies to AMA-1 and MSP-1 antigens in children residing

Table 2. Multivariable logistic regression analysis for the effect avidity on clinical malaria.

Variables Odds Ratio (95% CI) P value

Avidity (per 10% increase in avidity). 0.90 (0.49–1.66) 0.744

CD4+-TNF-a cells
(per 10-fold increase in frequency)

0.63 (0.41–0.95) 0.027

Bed net 1.39 (0.42–4.58) 0.588

Malaria exposure 11.24 (2.08–60.68) 0.005

doi:10.1371/journal.pone.0115126.t002
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in malaria endemic country were considerably lower (median of 13% and 15%

respectively) compared to RTS,S induced antibodies to CSP [27]. However both

studies used different chaotropic agents (diethylamine and guanidine hydro-

chloride, respectively) and incubation times (15 and 10 minutes respectively).

Potent novel adjuvant (AS01) co-administered with the vaccine and the virus-like

particle nature of the RTS,S may explain the high avidity observed in comparison

with other studies [28, 29].

We found no association between avidity and protection from clinical malaria.

Data in one animal model (P. berghei) suggests that induction of sterile immune

responses by CSP-based subunit vaccines depends on inducing antibody of the

appropriate isotype, specificity and avidity [30]. A study in another animal model

(P. yoelii) found protection against sporozoite challenge to be independent of

antibody avidity and/or isotype [31]. In contrast high affinity antibodies to

Plasmodium falciparum merozoite antigens measured by surface plasmon

resonance technology have been shown to be protective [32]. One possible

explanation for lack of correlation between avidity and protection in the present

study may be that the majority of the antibodies induced by three doses of RTS,S/

AS01E had exceeded a minimum avidity threshold required for protection and

hence we could not detect any variation in outcome. For instance, Bachmann et

al. observed lack of correlation between antibody avidity and protection against

vesicular stomatitis virus (VSV) once the antibody avidity had reached a

minimum threshold [33]. The AI was significantly higher in children with high

malaria exposure compared to those with low malaria exposure. In theory, this

Fig. 2. Box plot of anti-CS antibody avidity by level of malaria exposure (based on malaria exposure
index) at 1, ,8 and 12 months post dose 3.

doi:10.1371/journal.pone.0115126.g002
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could be due to progressive anti-CS avidity maturation as a consequence of

natural infection and boosting by repeated malaria exposure early in life (prior to

vaccination). However, there is no evidence of boosting of RTS,S-induced

immune responses by natural exposure in previous studies, and the avidity did

not increase over the duration of the study. In fact we found no evidence of

avidity maturation of anti-merozoite antibodies with increasing natural malaria

exposure in individuals residing in the study area [27]. Alternatively, prior

exposure to malaria (as measured using our exposure index) may have primed

children to respond with higher avidity antibodies on vaccination [34]. Thus,

those with higher exposure may have had higher frequencies of naturally acquired

anti-CS memory B cells with higher receptor affinities than those with low

exposure. In keeping with this suggestion is the finding that the correlation

between AI and malaria exposure was only significant at 1 month post dose 3 and

not at subsequent time points. The trial provided insecticide treated bed nets to all

study participants at the start of the trial. Although the use of the bed net declined

over time, it remained above 70% and we did not find association between bed

net use and protection from malaria.

Although avidity was associated with exposure to malaria, there was no

indication that avidity might be protective in our case control analysis either with

or without adjusting for exposure (Table 2). Among the group of vaccinated

children who remained free of clinical malaria episodes despite low antibody titers

and apparent exposure to malaria as determined by the exposure index, the

avidities were no higher than the randomly selected cases and controls (Table 1).

Taken together with our case control analysis (in which we confirmed a previously

identified association between protection and cellular immunity) [12, 19], our

results suggest that avidity, as measured using an elution ELISA method, does not

play a role in determining outcome in the field. Studies where vaccinees are

exposed to controlled human malaria infection suggest that antibody levels are

more strongly associated with protection than cellular immunity [35].

We used an elution assay with single thiocyanate concentration and serially

diluted sera. The method has been extensively used to measure the avidity of

various vaccine antigens [14, 24, 36]. The method is devoid of many limitations

encountered by an elution method using multiple concentrations of thiocyanate

with single sera dilutions. Such limitations include discrepancies in OD results at

lower thiocyanate concentration and inability to take into account the effect of

serum concentration on the binding of antigen [36]. Surface Plasmon resonance

(SPR) is a new technique which has recently been used to measure the avidity of

malaria specific antibodies [32]. It measures the binding capacity of an antibody

under flow, mimicking the in vivo environment [37]. Studies have shown that the

Surface Plasmon resonance does not necessarily correlate with results from

thiocyanate avidity assays [32] and therefore further investigation using this new

technique may be justified.

We did not observe any correlation between age of the child and antibody

avidity or between antibody avidity and antibody levels. Study evaluating the

affinity of naturally acquired blood stage antigens using SPR and elution ELISA

Avidity of RTS,S-Specific Antibodies
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found positive correlation between antibody levels and its affinity for high but not

low affinity antibodies [32]. Despite declining anti-CS titers, antibody avidity was

sustained throughout the 15 months of follow-up. Although quantity of antibody

may reflect the immediate response to a vaccine, quality of antibody response may

be more important in determining the immune status months after vaccination.

However Bachmann et al noticed that low avidity antibodies required very high

concentration to achieve desired effectiveness [33], which may suggest that

increasing and maintaining high antibody titres could be an important strategy to

improve and sustain the efficacy of RTS,S.

TNF-alpha producing CD4 T cell responses were independently associated with

protection. There was no interaction between avidity and TNF-alpha producing T

cells (odd ratio for interaction term50.77, p value50.319). However CD4 T cells

are known to play an important role in antibody affinity maturation through their

interactions with cognate B-cells [38].

There are other qualitative aspects of the antibody responses that we did not

examine; such as the IgG isotypes in the children and ability of antibodies to

inhibit hepatocyte infection in functional assays. IgG3 and IgG1 are the most

effective isotypes at mediating antibody-dependent cellular mechanisms like

phagocytosis and complement fixation against blood stage malaria antigens, and

have been associated with protection from clinical malaria in the field [39, 40, 41].

On the other hand IgG2 may compete with IgG1 and IgG3 and interfere with their

activity [42]. Thus, similarly in the case of RTS,S immunization the isotype

distribution of the induced response may determine the mechanism by which

sporozoites may be taken up and destroyed by monocytes and macrophages [43].

Although the anti-CS antibody response induced by RTS,S in naı̈ve adults is

skewed towards IgG1 and IgG2 [44], the isotype distribution in children is

unknown. It is also worth noting that our analysis focused on the antibodies to the

central repeat region of the RTS,S and not antibodies to the C- terminal flanking

region. This potentially excludes some relevant antibody responses which could

explain the effectiveness of the vaccine [45]. However, antibodies to repeat CS

have been shown to neutralize the infectivity of the sporozoite both in vivo and

in vitro [46, 47, 48] and CS repeat region is regarded as the major immunodo-

minant epitope [49, 50].

Our assays measured average avidity of specific polyclonal serum antibodies

which comprise of a mixture of antibody subpopulations with different avidities.

Avidity indices can vary considerably with each sample and this can only be well

depicted by avidity distribution. We cannot comment on this possibility given

that we did not store the data in a manner to enable the performance of this

analysis.

In conclusion, antibody avidity did not predict protection in RTS,S/AS01E

vaccinees with similar levels of anti-CS titers Antibody avidity was higher in

children with high malaria exposure suggesting a possible priming effect of

natural infection on the RTS,S-induced response.
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