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Abstract

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray
studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of
astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each
grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to
development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31,
CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10
genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the
support vector machine analysis. Markov genes interact with NFkb, ERK, MAPK, VEGF, growth hormone and collagen to
produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10
genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10
Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The
glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint
interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%,
respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears
that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are
needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.
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Introduction

Astrocytomas are neoplasms of the brain that originate in a type

of glial cell called an astrocyte. They are the most common glioma

and their most aggressive form, glioblastoma multiforme, has a

median survival of less than one year. While recent studies have

characterized much of their basic biology, the major mechanisms

behind the development of these tumors still remain unknown.

Importantly, while some glioblastomas are thought to evolve from

lower grade astrocytomas (secondary glioblastomas), most are

thought to arise de novo (primary glioblastomas). There is a lack of

clear understanding of the underlying molecular mechanisms of

pathophysiology that drive the development of astrocytomas and

this has hindered the progress of therapeutic development against

it. Identifying molecular genetic differences between the typically

benign lower grade astrocytomas (Grade I–II) malignant higher

grade astrocytomas (Grade III–IV) could be an important step in

better characterization of these highly malignant tumors. In

addition, determination of the main pathways and genes involved

in their development could provide for better therapies in the

future.

Recent advances in high-throughput microarrays have pro-

duced a wealth of information concerning glioma biology. In

particular, microarrays have been used to obtain differences in

gene expression between normal non-tumor tissue and glioma

tissue. Due to the relative rarity of gliomas, microarray data for

these tumors is often the product of small studies, and thus pooling

this data becomes desirable. Additionally, analysis of microarray

data has been an evolving field as techniques such as cluster

analysis, networking analysis and principal components analysis

have been used in order to tease biologically relevant information

from the large amount of data produced from microarrays. We

chose to combine these analytic approaches through first

combining available microarray data on gliomas using a meta-

analysis approach, and then conducting Bayesian analysis on

results of this meta-analysis. Our goal in this approach was to

identify key genes and/or pathways that are critical in the

development of astrocytic tumors. Through meta-analysis of 12

sub-studies which compared normal tissue to astrocytomas, we

were able to identify a list of 554 genes which were differentially

expressed in the majority of these studies. Many of the genes have

in fact been implicated in development of astrocytoma, including
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EGFR, HIF-1a, c-Myc, WNT5A, and IDH3A. We then

performed reverse engineering of our gene list using Bayesian

network analysis. Four networks of genes were produced, one for

each grade of Astrocytoma (Grade I–IV). Our results revealed the

involvement of 8–18 key genes in the development and

progression of astrocytoma depending on the grade of tumor.

Alterations in the expression of eight to ten key genes may be

required for the development of astrocytomas.

Methods

Several steps were involved in our analysis, including: 1)

identification of a significant set of over- and under-expressed

genes through meta-analysis of several astrocytoma microarray

studies; 2) enrichment analysis of the set of significant genes; 3)

network analysis of the set of significant genes; and 4) investigation

and validation of the network analysis. A more detailed description

of these steps follows.

Meta-analysis of Over- and Under-Expressed Genes In
Astrocytoma Microarray Studies

Oncomine (Compendia Bioscience, Ann Arbor, MI), a web-

based cancer microarray database, was used to perform meta-

analysis of cancer vs. normal studies in Astrocytoma [1]. The goal

of this analysis was to identify a set of significantly over-and under-

expressed genes in Astrocytoma for further investigation. An

Oncomine query for ‘Differential Analysis - Cancer vs. Normal

Analysis’ and ‘Cancer Type - Brain and CNS Cancer’ was

performed to identify studies that compared Astrocytoma to

normal tissue. Pilocytic Astrocytoma (WHO Grade I), Diffuse

Astrocytoma (WHO Grade II), Anaplastic Astrocytoma (WHO

Grade III), and Primary and Secondary Glioblastoma Multiforme

(WHO Grade IV) ‘sub-studies’ were chosen. Only studies

analyzing microarray mRNA expression were used for the

analysis. For purposes of this paper, ‘sub-studies’ are defined as

studies on brain tumor sub-types within a larger overall study on

brain tumors. Studies from our query that compared Astrocytic

tumors to normal tissue were then selected for the meta-analysis.

Oncomine ranks genes within each individual study based on a

gene’s p-value compared to all other genes within the study. In

meta-analysis, two heat-maps are returned: one for top over-

expressed genes and one for top under-expressed genes. Genes in

these heat-maps are ordered based on their median rank across the

selected individual analyses. For our study, the top 600 signifi-

cantly under-expressed and the top 600 significantly over-

expressed genes from meta-analysis were narrowed to our

‘significant gene list’ by discarding all genes from these 1200

over- and under-expressed genes that were identified in 6 or less of

the sub-studies. Thus, a gene was included in our final list of

significant genes if it was identified as over- or under-expressed in

at least 7 of the 10 sub-studies. This final set of genes was then

subjected to enrichment and pathway analysis with several

different tools.

Gene Set Enrichment Analysis
FuncAssociate (Roth Laboratory, Harvard) and Ingenuity

Pathway Analysis (IPA) (Redwood City, California) were used to

identify pathways and other systems biology characteristics of our

top set of genes. FuncAssociate is a web-based tool which performs

a Fisher’s Exact Test to determine a list of Gene Ontology (GO)

attributes that are over- (or under-) represented among a set of

genes entered by the user [2]. GO Terms, curated by the Gene

Ontology Consortium, identify significant cellular components

(e.g. rough endoplasmic reticulum, ribosome), biological processes

(e.g. signal transduction, pyrimidine metabolic process), and

molecular functions (e.g. catalytic activity, binding, adenylate

cyclase activity) of a set of genes [3]. Our significant gene list from

Oncomine was entered into FuncAssociate for analysis. Settings

were species: Homo sapiens; namespace: HGNC_Symbol; mode:

ordered; simulations: 1000; over/under: both; and p-value cutoff:

0.05. The HGNC Symbol namespace setting resulted in our

choosing the entire known human genome as our universe of

comparison genes for the enrichment analyses.

IPA was also used to analyze our Oncomine gene list. This web-

based program uses a manually curated database of findings from

the scientific literature, along with data obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG), to analyze

connections between genes, proteins, and other molecules. It also

uses its own terminology for functional classifications of these

molecules that is similar but not exact to the terminology used by

GO. Enrichment analysis was performed using IPA’s ‘‘Core

Analysis’’ function. Whereas GO Terms do not relate significant

pathways of a set of genes, IPA Core Analysis does have this ability

and therefore was used both to identify significant biological

processes/molecular functions and to identify any pathways that

were more commonly activated or inactivated in our set of genes.

Significance of the identified processes and pathways is given by

the right-tailed Fisher exact test p-value, meaning only overrep-

Table 1. List of Oncomine studies in meta-analysis of Astrocytoma vs. Normal Studies.

Oncomine Study ID, Publication Journal, Date Study Astrocytoma Type* n (tumor/normal)

Bredel Brain 2, Cancer Res, 2005 [16] Glioblastoma 27/4

Gutmann Brain, Cancer Res, 2002 [17] Pilocytic Astrocytoma 8/3

Lee Brain, Cancer Cell, 2006 [18] Glioblastoma 22/3

Liang Brain, Proc Natl Acad Sci USA, 2005 [19] Glioblastoma 30/3

Rickman Brain, Cancer Res, 2001 [20] Astrocytoma 45/6

Shai Brain, Oncogene, 2003 [21] Astrocytoma 5/7

Shai Brain, Oncogene, 2003 [21] Glioblastoma 27/7

Sun Brain, Cancer Cell, 2006 [22] Anaplastic Astrocytoma 19/23

Sun Brain, Cancer Cell, 2006 [22] Diffuse Astrocytoma 7/23

Sun Brain, Cancer Cell, 2006 [22] Glioblastoma 81/23

*All studies are Astrocytoma tissue type vs. normal tissue.
doi:10.1371/journal.pone.0064140.t001

Genes Critical to the Development of Glioblastoma
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Figure 1. Top Canonical Pathways for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for significance
(p-value = 0.05). Ratio is the number of molecules in the input list vs. the total number of molecules in the function.
doi:10.1371/journal.pone.0064140.g001

Figure 2. Top Biological Functions for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for significance
(p-value = 0.05).
doi:10.1371/journal.pone.0064140.g002
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resented attributes are returned by IPA. The IPA default reference

set of molecules, which includes all functionally-characterized

molecules in IPA, was used as the universe of comparison genes.

Several groups of processes are identified, including: biological

functions (‘Bio Functions’), toxicological functions (‘Tox Func-

tions’), and established pathways (‘Canonical Pathways’). The

number of molecules from a set of data found to be in a pathway,

divided by the total number of molecules in the identified

canonical pathway is given.

Reverse Engineering Bayesian Network Analysis of
Differentially Expressed Genes in Astroctytic Tumors

Bayesian networks have been widely used and accepted in

modeling molecular networks from microarray data [4,5]. These

networks are probabilistic graphical models that produce directed

acyclic graphs (DAG) that represent a set of random variables

and their conditional dependencies. Nodes of the DAG represent

genes or other variables such as disease and are assumed to be

conditionally independent of each other. The structures pro-

duced by Bayesian network analysis naturally represent causal

hypotheses.

We used the software application Banjo (Duke University, NC)

for probabilistic structure learning of static Bayesian networks

from our steady state expression data from Oncomine [6]. Banjo

performs structure inference using a local search strategy termed

Bayesian Dirichlet equivalence (BDe) scoring metric for discrete

variables. This strategy makes incremental changes in the structure

aimed at improving the score of the structure. A score for the ‘best

network’, influence scores for the edges of the best network, and a

dot graphical layout file are returned as results of the search. The

dot file is a DAG indicating regulation among genes and their

possible influence on disease outcome.

The goal of this Bayesian analysis was to identify what may be

the most critical genes for development of astrocytoma from our

significant set of meta-analysis genes. This was accomplished by

identifying a Markov blanket of each network output chosen as the

‘best network’ for each grade of astrocytoma. In a Bayesian

network, the Markov blanket of any node A is its set of neighboring

nodes composed of a nodes parents, children, and the parents of its

children. This defined set of neighboring nodes shields node A

from the rest of the network, and thus the Markov blanket of node

A is the only knowledge needed to predict the behavior of node A.

Though its sensitivity is low, Banjo has been shown to have a

very high positive predictive value for 100 plus case sets (regardless

of the number of genes) composed of the type of ‘global’, steady-

state gene data we analyzed [7]. For an overview of Bayesian

network probability structures the reader is referred to Charniak

1991 [8]. Several other papers provide more detailed information

on their construction and examples of their use with molecular

modeling [5,9–12].

To perform the analysis on our data, expression values for our

significant set of genes were downloaded from Oncomine and

loaded into Microsoft Excel. The top 100 over-expressed genes

and top 100 under-expressed genes were then considered for

analysis in Banjo. In order to increase our sample size, missing

cases imputation was performed on cases with missing expression

data for a particular gene using average of all expression values

across the gene as the imputation. Cases without Grade

identification and/or identified as non-tissue cases (i.e. cell lines)

were excluded from the analysis. Studies from our meta-analysis

with missing data for a large amount of genes were also excluded.

The expression data for the remaining genes was then separated

by Grade, discretized per study (due to Oncomine normalizing

expression values per study), and combined for analysis in Banjo.

Discretization of the data into three tiers of expression (under-,

median-, and over-expressed) was performed using the program-

ming software tool Perl. Assuming normally distributed data, the

three tiers were selected based on a one standard deviation

Figure 3. Top Toxicological Functions for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for
significance (p-value = 0.05). Ratio is the number of molecules in the input list vs. the total number of molecules in the function.
doi:10.1371/journal.pone.0064140.g003
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confidence interval (i.e. ,68% of the values will have ‘median-

expression’, with ,16% of the values under-expressed and ,16%

of the values over-expressed). Discretized files were then run in

Banjo for four separate analyses: 1) Normal Tissue vs. Grade I

Pilocytic Astrocytoma cases, 2) Normal Tissue vs. Grade II Diffuse

Astrocytoma cases, 3) Normal Tissue vs. Grade III Anaplastic

Astrocytoma, and 4) Normal Tissue vs. Grade IV Glioblastoma

Multiforme cases. Analyses was performed on the four Grades

three separate times (three hours in length for each network

search), with the ‘best network’ from these three runs being chosen

as our ‘final best network’ for each Grade. Best network score

significance was calculated using a log calculation of all three

network scores, with a percent of the total score returned for each

network.

Predictive Analysis to Identify Key Markov Causal Genes
of Each Grade of Astrocytoma

To assess the ability of Markov genes to distinguish between

normal and tumor samples in our analysis, Genie, a software tool

for analyzing Bayesian networks developed by the University of

Pittsburgh [13], was used to predict the probability of developing

Astrocytoma given certain expression states for its gene network.

This predicts key Markov causal genes involved in the develop-

ment of astrocytomas. In Bayesian network analysis this is done by

learning the parameters of a given DAG structure. To accomplish

this task, the discretized results files for each Grade of astrocytoma

were loaded into the Genie software. Additionally, the Banjo

network structure results were recreated in Genie. Genie’s ‘learn

parameters’ function was then used to predict probabilities of

outcomes for certain network structures. Given our small sample

sizes, we did not allow a probability of 0 to be assigned to any

result, choosing instead to use 0.01 for any probability calculated

as 0. This allowed us to perform parameter assessment under the

assumption that a low probability case may still have a very small

chance of occurring in our data. Once our network parameters

were established in Genie, we analyzed the probability of

developing each grade of astrocytoma given differentially

expressed states of the Markov Blanket genes of each grade using

Bayes’ rule.

Probability of Life Time Risk of Developing Astrocytoma
Stage 4 - Glioblastoma from Joint Effects of Interactions
between Markov Blanket Genes

To examine joint effects of interaction between Markov Blanket

genes on the lifetime risk of developing Glioblastoma, we have

used by Bayes’ theorem:

P(DDG1,G2,:::,Gn)~
P(G1,G2,:::,GnDD)P(D)

P(G1,G2,:::,Gn)

where G1, G2,…, Gn are expression level of selected Markov

Blanket genes from the Bayesian network with the highest BDe

score and D represent whether a subject have Glioblastoma or not.

We used the 2005–2007 Surveillance, Epidemiology and End

Results (SEER) calculated lifetime probability of diagnosis of

cancer of the brain and other nervous system of 0.61% in normal

population, i.e., P(D) = 0.0061 [14].

Validation of Markov Key Causal Genes Predicted to be
Involved in the Development of Astrocytoma by
Statistical Methods

Several statistical methods were used to validate both the

prediction capabilities and to assess the ability of our Markov

genes to distinguish between normal and astrocytic tumor samples

in our analysis. We performed prediction analysis by receiver

operating characteristic (ROC) curve representing the Bayesian

network discretized results; and validated our finding using linear

regression, logistic regression, cross validation and support vector

machine (SVM) analysis to assess the predictability of both the

discretized and raw expression values of our Markov genes.

Hierarchical Clustering was also performed on each set of Markov

genes in order to further explore how these genes separated our set

of non-tumor and tumor patients. These analyses were performed

using both IBM SPSS Statistics 19.0 and Multi-Experiment

Viewer (MeV) version 4.7.1.

Literature Based Validation of Key Predicted Markov
Causal Genes Involved in the Development of
Glioblastoma Using Models Generated by Empirical Data

Several methods were used to investigate and validate both the

prediction capabilities and the biological plausibility of our

Markov network genes. They included literature and biological

database searches, and curated gene and pathway analysis. The

literature and database search of our Markov genes gathered

information on gene cellular localization and function, and

published research supporting the genes involvement in tumor

formation by searching biological databases such The Human

Gene Compendium’s Gene Cards (www.genecards.org), PubMed

(www.pubmed.com), the Information Hyperlinked over Proteins

(iHOP) Database (www.ihop-net.org), and the Glioblastoma

Multiforme Database (GBMBase) (www.gbmbase.org).

In order to investigate existing literature and ontology based

connections between our Markov gene lists we used programs in

both IPA and PathJam [15]. The goal of these analyses was to

investigate a) the quality of our network analysis findings in Banjo

and Genie, and b) the biological relationships of our Markov genes

from these analyses. The initial investigation was done using the

Path Explorer feature of IPA. Path Explorer uses curated literature

and experimental evidence of biochemical interactions to produce

networks of existing connections between a set of user imputed

genes. This function was used to search for any existing

connections among the Grade IV Astrocytoma Markov Key

Causal Genes.

IPA’s Core Analysis was then performed on these same Grade

IV Astrocytoma Markov Genes in order to produce connections

for a set of genes independent of their established pathways. This

analysis generated gene networks by including genes in pathways

of the inputted gene list. Networks are ordered in importance by

an IPA-defined significance score. Settings for this analysis were

Direct and Indirect Relationships, All Data Sources, All Species,

and All Tissues & Cell Lines. The Human Genome U133 Plus 2.0

Array (19,079 genes) was selected as our reference universe of

genes as it contained the largest gene set from our meta-analysis

and was used in 2 of the 5 meta-analysis studies used for our Banjo

analysis. The top identified network from the Core Analysis was

Figure 4. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in pilocytic
astrocytic tumors. We used a program called Bayesian Network Inference with Java Objects (Banjo) to analyze the modified genes in pilocytic
tumors. We ran our data through Banjo a total of 3 different machines. Each machine ran Banjo for three hours. The ‘best network’, with the highest
BDE score that predicted the genes involved in stage 1 of astrocytoma (pilocytic tumor) is shown.
doi:10.1371/journal.pone.0064140.g004
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compared to our Banjo/Genie generated results. Complementary

to this Core Analysis’s production of top biological and disease

related functions was our investigation of our Markov genes using

PathJam [15]. This public server-based tool allows for interpre-

tation of gene lists by integrating pathway-related annotations

from several public sources including Reactome, KEGG, NCBI

Pathway Interaction Database, and Biocarta. Using this tool we

were able to produce interactive graphs linking all four Astrocy-

toma Markov gene lists with pathway annotations, allowing for

graphical pathway investigation into our gene lists.

Results

Meta-analysis of Differentially Expressed Genes in
Astrocytic Tumors

A total of 12 studies (with 27 sub-studies) conducting cancer vs.

normal analysis on ‘Brain and CNS Cancer’ were identified in

Oncomine. Non-astrocytic tumor studies and studies analyzing

DNA (i.e. acCGH arrays) were then discarded, leaving seven

studies (10 sub-studies) on astrocytoma for the meta-analysis.

These 10 sub-studies are listed in Table 1.

The top 600 significantly over-expressed and top 600 signifi-

cantly under-expressed genes were identified from a total of 10

‘sub-studies’. The narrowing of the initial list of 1200 genes

produced a total of 646 genes for further analysis (372 significantly

over-expressed genes and 274 significantly under-expressed genes).

A list of these genes can be found in Table S1 and Table S2 (See

File S1). It should be noted that Primary and Secondary

Glioblastomas were separated within only one of the nine studies

identified as Astrocytoma in Oncomine (Bredel: 27 Primary vs. 2

Secondary Glioblastomas). Therefore, separation of these subtypes

of Glioblastomas was not considered in our study.

Gene Set Enrichment Analysis of Differentially Expressed
Genes in Astrocytic Tumors

In order to identify significant biological processes, molecular

functions, and pathways of the final set of 646 genes, we conducted

enrichment analysis on this set of genes. As described in the

methods, two separate programs were used for this analysis:

FuncAssociate and IPA.

FuncAssociate Results
FuncAssociate identified 60 GO Terms as being over-represented

and 1 GO Term as being under-represented among our set of 314

over-expressed genes (see Table S1 and Table S2 in File S1). Several

significant processes were related to nervous system processes (axon

part, postsynaptic density, synapse part, synaptic transmission,

neuron projection), developmental processes (cell part morphogen-

esis, cellular component morphogenesis, regulation of anatomical

structure morphogenesis, anatomical structure morphogenesis,

regulation of developmental process, anatomical structure develop-

ment, development process), and several cellular processes associ-

ated with cancer (cell adhesion, biological adhesion, regulation of

cell proliferation, regulation of apoptosis) (see Table S3 in File S1).

Several genes involved in developmental processes have been linked

to brain tumor development. A total of 147 genes out of 646

differentially expressed genes in astrocytic tumors were categorized

in the GO developmental process terms listed above. Several of

these genes, including MYC, EGFR, HIF1A, HGF, APOE,

TIMP3, and WNT5A have been identified as being important to

development of astrocytoma.

Ingenuity Pathway Analysis Results
IPA produced similar and contrasting results to the above

analysis using FuncAssociate. Top Canonical Pathways identified

Figure 5. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in diffuse
astrocytic tumors. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting
the genes involved in stage 2 of astrocytoma (diffuse tumor) is shown.
doi:10.1371/journal.pone.0064140.g005

Figure 6. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in anaplastic
astrocytic tumors. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting
the genes involved in stage 3 of astrocytoma (anaplastic tumor) is shown.
doi:10.1371/journal.pone.0064140.g006
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for the over-expressed gene list include: ‘Synaptic Long Term

Potentiation’ (p-value: 6.25E-07; Ratio of molecules in pathway

from user list/total molecules in pathway: 16/113), ‘IL-8

Signaling’ (p-value: 7.41E-07; Ratio: 20/186), ‘G Beta Gamma

Signaling’ (p-value: 9.48E-07; Ratio: 15/119), ‘CXCR4 Signaling’

(p-value: 1.1E-06; Ratio: 19/167), and ‘Cholecystokinin/Gastrin-

mediated Signaling’ (p-value: 1.39E-06; Ratio: 15/104) (Figure 1).

Several pathways known to be important to glioma development

were also at the top of the significant canonical pathways list,

including ‘WNT/beta-Catenin Signaling’ (CD44, CDH2, DVL3,

LRP1, MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3,

WNT5A) and ‘mTOR Signaling’ (EIF3B, EIF3E, EIF3F, EIF4A1,

HIF1A, PRKD1, RHOC, RND2, RND3). Confirming our gene

list as involved with brain tumor development, ‘Glioma Invasive-

ness Signaling’ (CD44, F2R, ITGAV, MMP9, RHOC, RND2,

RND3, TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signal-

ing’ (CDK6, CDKN1A, EGFR, ITPR2, MYC, RHOC, RND2,

RND3, TCF3, WNT5A) were returned as significant pathways as

well.

IPA Core Analysis also returns what are termed ‘Top Bio

Functions’, grouped into three categories: Diseases and Disorders,

Molecular and Cellular Functions, and Physiological System

Development and Function. Significant functions are returned

with their associated p-value and # of input molecules in the

function. The top 5 Disease and Disorders for our list of 554

astrocytoma differentially expressed genes were: ‘Neurological

Disease’ (p-value: 1.17E-25–4.98E-04; 270 molecules from our

list), ‘Cancer’ (3.83E-24–5.61E-04; 240 molecules), ‘Skeletal and

Muscular Disorders’ (2.32E-19–4.42E-04; 206 molecules), ‘Genet-

ic Disorder’ (3.04E-17–5.27E-04; 354 molecules), and ‘Inflamma-

Figure 7. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in
glioblastoma. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting the
genes involved in stage 4 of astrocytoma (glioblastoma) is shown.
doi:10.1371/journal.pone.0064140.g007

Figure 8. Markov blanket genes for Bayesian network of Pilocytic Astrocytoma. Green shade genes are overexpressed genes and blue
shade genes are under expressed genes from the Oncomine meta-analysis.
doi:10.1371/journal.pone.0064140.g008
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tory Disease’ (2.20E-16–4.92E-04; 195 molecules) (Figure 2). As

shown in the Figure 2, the top 5 Molecular and Cellular Functions

were ‘Cell Death’ (1.36E-21–5.81E-04; 205 molecules), ‘Cellular

Growth and Proliferation’ (1.23E-14–4.48E-04; 203 molecules),

‘Cell Morphology’ (2.51E-14–4.82E-04; 99 molecules), ‘Cellular

Movement’ (1.08E-11–4.58E-04; 116 molecules), and ‘Cell Cycle’

(5.83E-11–5.61E-04; 91 molecules).

The top 5 Physiological System Development and Functions

were ‘Tissue Development’ (1.65E-09–5.79E-04; 105 molecules),

‘Skeletal and Muscular System Development and Function’

(1.67E-09–2.96E-04; 54 molecules), ‘Tissue Morphology’ (7.04E-

08–1.35E-04; 78 molecules), ‘Nervous System Development and

Function’ (1.48E-07E –3.65E-04; 96 molecules), and ‘Behavior’

(1.67E-07–3.09E-04; 47 molecules). Figure 1 shows these top Bio

Functions in order of significance. When interpreting these results,

it is important to keep in mind that the p-values refer to the High

Level Functions rather than to individual Lower-Level Functions,

and therefore, if a High Level Function contains two or more

specific Lower-Level Functions, a range of significances is

displayed.

Core Analysis also produces Top Toxicity Profiles. The Top 5

profiles for our 554 differentially expressed genes were ‘Hepatic

Fibrosis’ (p-value: 3.59E-06; Ratio of molecules: 13/85), ‘Hepatic

Cholestasis’ (p-value: 4.77E-03; Ratio: 11/135), ‘G1/S Transition

of the Cell Cycle’ (p-value: 5.02E-03; Ratio: 6/49), ‘Oxidative

Stress’ (p-value: 1.05E-02; Ratio: 6/57), and ‘VDR/RXR

Activation’ (p-value: 1.28E-02; Ratio: 7/77) (Figure 3).

Reverse Engineering Bayesian Network Analysis of
Differentially Expressed Genes in Astrocytic Tumors

Four separate analyses were run in Banjo in order to search for

genes critical for Grade I, II, III and IV Astrocytoma develop-

ment. As discussed in the methods, studies and/or genes with

missing expression data were excluded from the network analysis.

Studies removed for both analyses were Bredel 2005, Liang 2005,

and Rickman 2001. Additionally, Gutmann 2002 was removed

from the Grade IV analyses as it did not contain Grade IV tumors.

Genes were removed from our top 200 genes list (100 over- and

100 under-expressed genes) for each analyses based on availability

per Grade. A total of 77 genes were removed for Grade 1, 68 for

Grade 2, and 23 each for Grades 3 and 4.

We used Banjo for probabilistic structure learning of static

Bayesian networks from our steady state expression data from

these modified genes in each grade. Banjo was allowed to perform

the structure inference analysis for 3 independent structure

searches and each search was run for 3 hours for each grade.

These three independent Banjo structure produced a network with

BDe score (see a representative Figures 4–8 and Table 2). Please

see Table 2 for sample size, sample statistics and significance of

search score results of Bayesian network analysis. BDe score

helped us to identify the ‘best network’, that predicted the genes

involved in each stage of astrocytoma and the network with the

highest BDE score was selected for further Markov Blanket

analysis. Most of the modified genes were in the network, except

CD44, CALCRL, EGFR, TPM3, and MAGI1 in pilocytic

(Figure 4); MAGI1, MBP, and EFNA5 in diffuse (Figure 5);

DYNLT1, TIMP4, IGFBP2, SAT1, MAPRE2, SH3GL3,

PTGER3, STAU2, PTAFR, CNNM2, DUSP7, GRIN2C,

TPM3, PICK1, TSPAN5, MAPT, MAGI1, BTRC, DYNC1I1,

RYBP, LDB3, CACNA1A, MPP2, PPP2R2B, CDKN2D,

EFR3B, SNRPN, EFNA5, IQSEC1, ULK2, and ATP8A1 in

anaplastic (Figure 6); and PLEKHB2, OPA1, MAPRE2,

PTGER3, STAU2, PTAFR, CNNM2, DUSP7, GRIN2C,

TPM3, TSPAN5, MAGI1, RASGRF1, BTRC, ZBTB7A, RYBP,

LDB3, CACNA1A, RAP1GDS1, MBP, SNRPN, SERINC3,

EFNA5, IQSEC1, ULK2, and ATP8A1 in glioblastoma tumors

(Figure 7).

Identification of Key Genes Involved in Each Stage of
Astrocytoma by Markov Blanket Genes

We used the Bayesian network genes of each stage of

astrocytoma to further identify the most critical genes involved

in the development of astrocytoma. This was accomplished by

identifying a set of Markov Blanket genes from each gene network.

This allowed us to define a set of neighboring genes that are

sufficient to predict the probability of developing astrocytoma

(Figures 8–11) and is summarized in Table 3. DAG structures for

Markov genes of each grade of Astrocytoma are shown in

Figures 8–11. Grade I Pilocytic Astrocytoma’s Markov blanket

genes were: IGFB5, TIMP4, SSR2, LPL, DUSP7, GABRA5,

SH3GL3, C1S, WNT10B, SRPX, ANK3, HLAA, EIF4A1,

PTGER3, and CCND2 (Figure 8). Grade II Diffuse Astrocytoma’s

Markov blanket genes were: FN1, MARCKS, PRDX4, NONO,

SPARC, WNT5A, CD44, EIF4A1, CD99, CALCRL, EMP1,

VCAN, CDH11, VAMP1, RAB3B, DUSP7, PPP2R2B, and

SERINC3 (Figure 9). Grade III Anaplastic Astrocytoma’s Markov

blanket genes were: LPL, MARCKS, SERBP1, DPYSL3,

SNRPE, EIF4A1, ANXA1, MCM3, BTN3A3, MTHFD2,

DAB2, RCAN2, RUSC2, TPPP, MAST3, and CNTN2

(Figure 10). Grade IV Glioblastoma Multiforme’s Markov blanket

genes were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4,

CD99, ANXA2, TOP2A, and SERBP1 (Figure 11).

In addition to Markov Blanket genes, Genie also predicted

genes that are closed associated with Markov Blanket genes. For

Pilocytic, P4HB, PTAFR,RASGRF1, SPARC,HLAF, PROS1,

DCTN1,TGFB1, ZFP36L2, CDKN2D, VCAN, BCL2L2, SOX4,

Table 2. Sample statistics and significance of search score results of Bayesian network analysis.

Studies in Analysis Normal Tumor
Genes Analyzed for
Network Bayesian Analysis Network Score Significance*

Search 1 Search 2 Search 3

Normal vs. Grade 1 Bredel, Gutmann,
Rickman

13 30 122 1.37% 98.16% 0.46%

Normal vs. Grade II Rickman, Shai, Sun 36 14 131 9.11% 6.62% 84.62%

Normal vs. Grade III Bredel, Shai, Sun 34 23 176 1.98% 0.04% 99.95%

Normal vs. Grade IV Bredel, Shai, Sun 34 137 176 0.00% 0.00% 99.99%

*Significance score for each network equals percent of total score for all three networks combined.
doi:10.1371/journal.pone.0064140.t002
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ODC1, CCND2; for Diffuse, IFI16, DPYSL3,

PRKCG,HSD17B10, CD44, PLOD2, APBB1,TAGLN2,

IDH3A, SSR2, HLAA, NONO; for Anaplastic, IGFBP5,

SOD2, DCTN1, ANK3, SERINC3, WDR7, HLAE,SNRPE,

NAMPT, CCND2, RPS19, CACNB1, DYNLT1; for Glioblasto-

ma, PCNA, TPPP, CDH11, IGFBP2, FN1, KIF5C, LY-

PLA1,S100A10, PALLD genes were identified (see Figures 4–7).

A comparison of these Markov genes across each grade of

Astrocytoma can be found in Table 3. None of the Markov

blanket genes were common in all 4 stages of Astrocytomas. As

Markov blanket genes, DUSP1 was common in Pilocytic and

Diffuse tumors; EIF4A1 was common in Pilocytic, Diffuse and

Anaplastic tumors; MARCKs was common in Diffuse and

Anaplastic tumors and SERBP common in Anaplastic and

Glioblastoma tumors.

Predictive Analysis of Grade I Pilocytic Astrocytoma
Markov Blanket Genes

Genie’s ‘learn parameters’ function was used to predict

probabilities of Pilocytic tumor using DAG Bayesian network

structure of 15 Markov blanket genes. Prediction analysis of the

Grade I Markov genes by Genie showed that these 15 genes were

was able to predict Pilocytic Astrocytoma tumor status consistent-

ly. The predictive ability of each individual gene is shown in the

Figure 8. All 15 total Markov genes were used in the analysis,

except in linear stepwise regression, which used only 10 significant

predictor genes in the analysis. The prediction accuracy to

distinguish normal or tumor was calculated using Bayesian

Network Results using ROC Curve, Linear Regression (linR),

Logistic Regression (logR), Cross Validation (CV) and Support

Vector Machine (SVM). The accuracy of the predicting Pilocytic

Tumor was very high, and varied between 79–88% (CV), 87–88

(linR), 100% (LogR), or 100% (SVM) (Table 4).

Results of hierarchical clustering using expression data from our

Markov genes are shown in Figure 12. Hierarchical clustering

(Pearson distance, average linkage) of the 15-gene signature

expression pattern shown green as normal control and red as

Pilocytic tumor cases revealed that 100% of samples were

distinguished as Pilocytic tumors.

Predictive Analysis of Grade II Diffuse Astrocytoma
Markov Blanket Genes

Prediction analysis of the 18 Grade II Markov genes showed

that our set of 18 genes was able to predict tumor status

consistently when using logistic regression, cross validation and

SVM analysis. Linear regression seemed to predict that a signature

of 10 genes would predict tumor status just as well as our 18 total

genes, though each gene set only predicted approximately 21% of

the tumor status’s variability in either case (Table 5). Results of

Table 3. Comparison of Markov Blanket genes across Grades
I to IV Astrocytoma.

PILOCYTIC DIFFUSE ANAPLASTIC GLIOBLASTOMA

ANK3 ANK3 ANK3 ANK3

ANXA1 ANXA1 ANXA1 ANXA1

ANXA2 ANXA2 ANXA2 ANXA2

BTF3 BTF3 BTF3 BTF3

BTN3A3 BTN3A3 BTN3A3 BTN3A3

C1S C1S C1S C1S

CALCRL CALCRL CALCRL CALCRL

CCND2 CCND2 CCND2 CCND2

CD44 CD44 CD44 CD44

CD99 CD99 CD99 CD99

CDH11 CDH11 CDH11 CDH11

CDK4 CDK4 CDK4 CDK4

CNTN2 CNTN2 CNTN2 CNTN2

COL4A1 COL4A1 COL4A1 COL4A1

DAB2 DAB2 DAB2 DAB2

DPYSL3 DPYSL3 DPYSL3 DPYSL3

DUSP7 DUSP7 DUSP7 DUSP7

EGFR EGFR EGFR EGFR

EIF4A1 EIF4A1 EIF4A1 EIF4A1

EMP1 EMP1 EMP1 EMP1

FN1 FN1 FN1 FN1

GABRA5 GABRA5 GABRA5 GABRA5

HLAA HLAA HLAA HLAA

IGFBP5 IGFBP5 IGFBP5 IGFBP5

LPL LPL LPL LPL

MARCKS MARCKS MARCKS MARCKS

MAST3 MAST3 MAST3 MAST3

MCM3 MCM3 MCM3 MCM3

MPP2 MPP2 MPP2 MPP2

MTHFD2 MTHFD2 MTHFD2 MTHFD2

NONO NONO NONO NONO

PPP2R2B PPP2R2B PPP2R2B PPP2R2B

PRDX4 PRDX4 PRDX4 PRDX4

PTGER3 PTGER3 PTGER3 PTGER3

RAB31 RAB31 RAB31 RAB31

RAB3B RAB3B RAB3B RAB3B

RCAN2 RCAN2 RCAN2 RCAN2

RUSC2 RUSC2 RUSC2 RUSC2

SERBP1 SERBP1 SERBP1 SERBP1

SERINC3 SERINC3 SERINC3 SERINC3

SH3GL3 SH3GL3 SH3GL3 SH3GL3

SNRPE SNRPE SNRPE SNRPE

SPARC SPARC SPARC SPARC

SRPX SRPX SRPX SRPX

SSR2 SSR2 SSR2 SSR2

TIMP4 TIMP4 TIMP4 TIMP4

TOP2A TOP2A TOP2A TOP2A

TPPP TPPP TPPP TPPP

Table 3. Cont.

PILOCYTIC DIFFUSE ANAPLASTIC GLIOBLASTOMA

VAMP1 VAMP1 VAMP1 VAMP1

VCAN VCAN VCAN VCAN

WNT5A WNT5A WNT5A WNT5A

WNT10B WNT10B WNT10B WNT10B

Over-expressed genes are bold; Under expressed genes are italic. Genes
highlighted in grey with underline are Markov blanket genes for the
corresponding tumor grade.
doi:10.1371/journal.pone.0064140.t003
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hierarchical clustering using expression data from our Markov

genes can be found in Figure 13 and all 5 tumors were

distinguished from normal control cases. We did not conduct

further analysis of these same Markov genes for risk analysis of

developing diffuse tumor because of a limited sample size.

Predictive Analysis of Grade III Anaplastic Astrocytoma
Markov Blanket Genes

Prediction analysis of the 18 Grade III Markov genes showed

that our set of 18 genes was able to predict tumor status, especially

when using logistic regression, raw expression in cross validation,

and the SVM analysis. Linear regression seemed to again predict

that a signature of much less than the total genes (10 of 18) would

predict tumor status (Table 6). Results of hierarchical clustering

Figure 9. Markov blanket genes for Bayesian network of Diffuse Astrocytoma. Green shade genes are overexpressed genes and blue shade
genes are under expressed genes from the Oncomine meta-analysis.
doi:10.1371/journal.pone.0064140.g009

Figure 10. Markov blanket genes for Bayesian network of Anaplastic Astrocytoma. Green shade genes are overexpressed genes and blue
shade genes are under expressed genes from the Oncomine meta-analysis.
doi:10.1371/journal.pone.0064140.g010
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using expression data showed Markov genes significantly distin-

guished tumors from normal samples and is shown in Figure 14.

We did not conduct further analysis of these same Markov genes

for risk analysis of developing anaplastic tumor because of a

limited sample size.

Predictive Analysis of Glioblastoma Markov BLANKET
CAUSAL GENES

In order to validate the key Markov blanket genes as causal/

signature genes for possible Glioblastoma targets or biomarkers, it

is necessary to analyze its predictive capability to distinguish

between normal brain and tumor samples. Genie’s ‘learn

parameters’ function analysis of the 10 Grade IV Markov genes

showed that the set of 10 genes was able to consistently predict

between non-tumor and tumor cases (Figure 11). Assessment of

increased lifetime risk of development of glioblastoma due to

deregulation of our Markov genes showed that differential

expression of all 10 of our genes at once increased your lifetime

risk of brain tumor development to 85.90%. In contrast,

differential expression of two separate sets of 10 genes found

outside the Markov blanket in our Bayesian network increased

lifetime risk of brain tumor development to 2.61% and 0.98%

respectively (Table 7).

Interactions between Markov Blanket Genes and their
Impact on the Risk of Developing Glioblastoma

We examined individual Markov blanket gene effect as well as

joint effects of interaction between Markov Blanket genes on the

lifetime risk of developing glioblastoma. Table 8 shows the

estimated lifetime risk of developing glioblastoma from changes in

the expression of the single Markov Blanket gene, a pair of Markov

Blanket gene or multiple Markov Blanket genes. The estimated

lifetime risk of developing breast cancer from altered expression of

a single gene such as, COL4A1, CD99, ANXA2, MPP2, EGFR,

CDK4, BTF3, RAB31, TOP2A or SERBP1 was 0.76, 1.18, 1.57,

1.62, 1.62, 1.85, 1.91, 0.73, 1.96 or 0.63%, respectively compared

to 0.61% risk of developing glioblastoma in normal population.

Joint effects of a pair, three or several Markov Blanket genes on

the probability of increasing risk of developing Glioblastoma

ranged from less than additive to greater than multiplicative. For

example, joint effects of changes in the expression of different

combination of a pair of Markov blanket genes or three Markov

blanket genes increased risk for developing glioblastoma ranging

from 0.73 to 5.84% and 1.46 to 4.47, respectively. The

glioblastoma risk estimates were dramatically increased with joint

effects of 4 or more than 4 Markov Blanket genes. Joint

interactions between 4, 5, 6, 7, 8, 9 or 10 Markov blanket genes

produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9% increase,

respectively, in lifetime risk of developing glioblastoma compared

to normal population (0.61%). Whereas modified expression of

Figure 11. Markov blanket genes for Bayesian network of Glioblastoma Multiforme. Green shade genes are overexpressed genes and
blue shade genes are under expressed genes from the Oncomine meta-analysis.
doi:10.1371/journal.pone.0064140.g011

Table 4. Pilocytic Astrocytoma prediction analysis summary.

Type of Prediction Analysis Case Counts (No Tumor/Tumor) Predictability

Bayesian Network Results using ROC Curve 13/30 1.000 AUC (.000 sig.)

Linear Regression (15 genes together) 13/30 .873 (aR square) (.000 sig.)

Linear Regression (stepwise) (10 gene model) 13/30 .880 (aR square) (.000 sig.)

Logistic Regression (discretized expression) 13/30 Perfect fit detected

Logistic Regression (raw expression) 6/19 Perfect fit detected

Cross Validation (discretized expression) 13/30 79.1%

Cross Validation (raw expression) 6/19 88%

Support Vector Machine (SVM) 6/19 100%

doi:10.1371/journal.pone.0064140.t004
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two separate sets of 10 genes found outside the Markov Blanket in

our Bayesian network only increased lifetime risk of brain tumor

development to 2.61% and 0.98%, respectively compared to

0.61% in normal population.

Validation of the 10 Key Markov Blanket Causal/signature
Glioblastoma Genes

All 10 total Markov genes were used in the analysis, except in

linear stepwise regression, which used only 6 significant predictor

genes in the analysis. Prediction analysis of the Grade I Markov

genes showed that these 10 genes were was able to predict Pilocytic

Astrocytoma tumor status consistently in all analyses (Table 9).

The accuracy of the predicting Glioblastoma Tumor compared to

the normal samples was very high, and varied between 63–64

(linR), 84–100% (CV), 96–100% (LogR), or 100% (SVM)

(Table 9). In summary, this result demonstrates that the 10 gene

signature is a good predictor of Glioblastoma vs. normal brain.

Figure 12. Hierarchical clustering of Pilocytic Astrocytoma Markov genes using raw expression values of Rickman study only. No
Tumor/Tumor Bar: Red bar areas represent samples without tumors and green bar areas represent tumor cases. Expression: Blue squares represent
underexpression; yellow squares represent overexpression.
doi:10.1371/journal.pone.0064140.g012

Table 5. Diffuse Astrocytoma prediction analysis summary.

Type of Prediction Analysis
Case Counts
(No Tumor/Tumor) Predictability

Bayesian Network Results using ROC Curve 36/14 1.000 AUC (.000 sig.)

Linear Regression (18 genes together) 36/14 .207 (aR square) (.092 sig.)

Linear Regression (stepwise) (10 gene model) 36/14 .880 (aR square) (.028 sig.)

Logistic Regression (discretized expression) 36/14 88% (1.000 sig.)

Logistic Regression (raw expression) 23/8 Perfect fit detected

Cross Validation (discretized expression) 36/14 70%

Cross Validation (raw expression) 23/7 80%

Support Vector Machine (SVM) 23/7 100%

All 18 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 10 significant predictor genes in the analysis.
doi:10.1371/journal.pone.0064140.t005
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Results of hierarchical clustering using expression data from our

Markov genes are shown in Figure 15. Hierarchical clustering

(Pearson distance, average linkage) of the 15-gene signature

expression pattern shown green as normal control and red as,

Pilocytic tumor cases distinguished most of the Glioblastoma

tumors and normal cases.

Literature Based Validation of 10 Key Markov Blanket
Causal/signature Glioblastoma Genes Using Empirical
Pathways Finders

Research supporting the potential involvement and importance

of all 10 genes in development of glioblastoma was found in the

literature. For a full list of the biological pathways and gene

Figure 13. Hierarchical clustering of Diffuse Astrocytoma Markov genes using raw expression values of Sun Study Only. No Tumor/
Tumor Bar: Green bar areas represent samples without tumors and red bar areas represent tumor cases. Expression: Blue squares represent
underexpression; yellow squares represent overexpression.
doi:10.1371/journal.pone.0064140.g013

Table 6. Anaplastic Astrocytoma prediction analysis summary.

Type of Prediction Analysis Case Counts (No Tumor/Tumor) Predictability

Bayesian Network Results using ROC Curve 34/23 1.000 AUC (.000 sig.)

Linear Regression (18 genes together) 34/23 .631 (aR square) (.000 sig.)

Linear Regression (stepwise) (11 gene model) 34/23 .645 (aR square) (.000 sig.)

Logistic Regression (discretized expression) 34/23 96.5% (1.000 sig.)

Logistic Regression (raw expression) 23/19 Perfect fit detected

Cross Validation (discretized expression) 34/23 84.2%

Cross Validation (raw expression) 23/19 100%

Support Vector Machine (SVM) 23/19 100%

All 18 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 11 significant predictor genes in the analysis.
doi:10.1371/journal.pone.0064140.t006
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ontology terms associated with each gene please see Table 10. The

investigation using IPA’s Path Explorer produced a network of

genes showing empirical evidence of interaction among our 10

Glioblastoma Markov blanket genes. IPA Core Analysis of these

same Markov genes added genes and molecules such as NFkb,

ERK, MAPK, VEGF, growth hormone and collagen to produce a

network whose top biological functions are cancer, neurological

disease, and cellular movement (Figure 16). IPA connections of

Grade IV Glioblastoma Markov genes reveled direct interactions

between CD99 and ANXA2, and EGFR and RAB31 genes

(Figure 17). Our analysis of these same Markov genes using

PathJam found that three of the 10 genes in particular seemed to

be potential ‘hubs of activity’ and had functions that they shared

(Figure 18). These genes, EGFR, COL4A1, and CDK4 all shared

the ‘pathways to cancer’ annotation; and EGFR and COL4A1

were shown to be involved specific cancers such as glioma,

melanoma, lung cancer, bladder cancer, and pancreatic cancer.

Additionally, COL4A1 and EGFR shared involvement in axon

guidance and focal adhesion.

Discussion

Our study produced several major novel findings, including

identification of a list of top over- and under-expressed genes

among 10 sub-studies on astrocytoma, identification of several key

signature genes important to the development of both low and

Figure 14. Hierarchical clustering of Anaplastic Astrocytoma Markov genes using raw expression values of Sun study only. No
Tumor/Tumor Bar: Green bar areas represent samples without tumors and red bar areas represent tumor cases. Expression: Blue squares represent
underexpression; Yellow squares represent overexpression.
doi:10.1371/journal.pone.0064140.g014

Table 7. Risk associated with Markov genes vs. non-Markov genes in Glioblastoma Multiforme.

Gene Set Risk

Normal Gene Set 0.61

Markov Differentially Expressed (COL4A1, CD99, ANXA2, MPP2, EGFR, CDK4, BTF3, RAB31, TOP2A, SERBP1) 85.90

D-Connected Differentially Expressed (KIF5C, PALLD, S100A10, TPPP, PCNA, FN1, IGFBP2, CDH11, LYPLA1) 2.61

D-Separated Differentially Expressed (PKP4, SYNCRIP, CALCRL, GABRA5, MOBP, PLOD2, WNT5A, C1S, RPS2, FCHO1) 0.98

Normal Gene Set Risk represents the SEER calculated 0.61% chance of a person developing a brain tumor in their lifetime.
doi:10.1371/journal.pone.0064140.t007
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high grade astrocytomas, identification of important signaling

pathways in astrocytic stage 4 tumors, and identification of

possible mechanisms which may explain the genes and pathways

identified as important to development of glioblastoma.

Through meta-analysis of 10 sub-studies which compared

normal tissue to astrocytomas, a set of 646 genes which were

differentially expressed in the majority of these studies was

identified. Many of the genes identified through this meta-analysis

have in fact been implicated in development of astrocytoma

including EGFR (amplification occurs in ,40% of primary

glioblastomas [23,24], HIF-1a, MYC, WNT5A, and IDH3A.

Enrichment analysis of the 646 genes using FuncAssociate

identified several processes associated with these genes, many of

which are related to nervous system, developmental, and tumor

promoting processes. Ingenuity Pathway Analysis also produced a

list of processes that are significantly associated with these genes,

including two pathways which have previously been linked to

development of astrocytomas [1. ‘WNT/beta-Catenin Signaling’

(Genes from our set in pathway: CD44, CDH2, DVL3, LRP1,

MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3, WNT5A)

and 2. ‘mTOR Signaling’ (Genes: EIF3B, EIF3E, EIF3F, EIF4A1,

HIF1A, PRKD1, RHOC, RND2, RND3)] and two pathways

associated with brain tumor development [1. ‘Glioma Invasiveness

Signaling’ (Genes: CD44, F2R, ITGAV, MMP9, RHOC, RND2,

RND3, TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signal-

ing’ (Genes: CDK6, CDKN1A, EGFR, ITPR2, MYC, RHOC,

RND2, RND3, TCF3, WNT5A)].

In order to narrow our large set of genes to a few genes which

could be most influential to development of astrocytomas, we

performed reverse engineering of our gene list using Bayesian

network analysis. Four networks of genes were produced, one for

each grade of Astrocytoma. Genes found to be most influential to

development of the highest grade of astrocytoma, Glioblastoma

multiforme (GBM) were: COL4A1, EGFR, BTF3, MPP2,

RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of

these genes were up-regulated, except MPP2 (down regulated).

Tumor status of 10 Markov blanket genes predicted by Bayesian

network analysis was validated using linear regression, logistic

regression, cross validation, hierarchal clustering and support

vector machine (SVM) analysis. These 10 genes were able to

predict tumor status with high accuracy by all methods. Analysis of

gene-gene interactions revealed that joint effects of changes in the

expression of different combination of a pair of Markov blanket

genes or three Markov blanket genes increase risk for developing

glioblastoma ranging from 0.73 to 5.84% and 1.46 to 4.47,

respectively. The glioblastoma risk estimates are dramatically

increased with joint effects of 4 or more than 4 Markov Blanket

genes. Joint interactions between 4, 5, 6, 7, 8, 9 or 10 Markov

blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or

85.9% increase, respectively, in lifetime risk of developing

Table 9. Glioblastoma Multiforme prediction analysis summary.

Type of Prediction Analysis Case Counts (No Tumor/Tumor) Predictability

Bayesian Network Results using ROC Curve 34/23 1.000 AUC (.000 sig.)

Linear Regression (18 genes together) 34/23 .631 (aR square) (.000 sig.)

Linear Regression (stepwise) (11 gene model) 34/23 .645 (aR square) (.000 sig.)

Logistic Regression (discretized expression) 34/23 96.5% (1.000 sig.)

Logistic Regression (raw expression) 23/19 Perfect fit detected

Cross Validation (discretized expression) 34/23 84.2%

Cross Validation (raw expression) 23/19 100%

Support Vector Machine (SVM) 23/19 100%

All 10 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 6 significant predictor genes in the analysis.
doi:10.1371/journal.pone.0064140.t009

Figure 15. Hierarchical clustering of Glioblastoma Multiforme genes using raw expression values of Sun study only. No Tumor/Tumor
Bar: Green bar areas represent samples without tumors and red bar areas represent tumor cases. Expression: Darker squares represent
underexpression; Lighter squares represent overexpression.
doi:10.1371/journal.pone.0064140.g015
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glioblastoma compared to normal population (0.61%). The

differential expression of two separate sets of 10 genes found

outside the Markov blanket in our Bayesian network only increase

lifetime risk of brain tumor development to 2.61% and 0.98%,

respectively compared to 0.61% in normal population. In

summary, it appears that differential expression of COL4A1,

EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A,

and SERBP1 genes may be required for the development of

glioblastoma (GBM), the most common type of malignant brain

tumor.

To investigate the biological mechanisms of our set of significant

Grade IV network genes we used biological databases such as The

Human Gene Compendium’s Gene Cards, PubMed, the Infor-

mation Hyperlinked over Proteins (iHOP) Database, and the

Glioblastoma Multiforme Database (GBMBase). Major patterns in

these tumors include components of the Ras-MAPK and PI3K-

AKT-mTOR signaling pathways being affected in the plurality

(88%; 80 of 91) of malignant gliomas and disruption of the p53

and RB tumor suppressor networks also occurring in a high

proportion of glioblastomas: 87% (79 of 91) and 78% (71 of 91),

respectively [25]. Our findings revealed that most of the

glioblastoma Markov Signature genes are up-regulated in malig-

nant and metastatic brain tumors, linked to the glioma tumor

development, invasiveness, proliferation, and angiogenesis [34–

47]. Their signaling has been shown to cooperate with tumor-

associated gene functions involved in oncogenesis. Markov

signature genes identified in this study interact with NFkb,

ERK, MAPK, VEGF, growth hormone and collagen to produce

a network whose top biological functions are cancer, neurological

disease, and cellular movement. Three of the 10 Markov causal

genes - EGFR, COL4A1, and CDK4, in particular seemed to be

potential ‘hubs of activity’. These three genes share the ‘pathways

to cancer’ annotation.

There are several strengths and limitations involved with our

analyses. Several characteristics of microarray expression studies

must be considered. First, expression levels of many genes differ

among individuals and thus gene expression can be analyzed like

other quantitative phenotypes such as height and blood glucose

levels. This allowed us to separate each gene into expression

categories of over-, median, and under-expression. Expression

changes can also reflect many types of alterations significant to

tumor development, including chromosomal translocations and

epigenetic alterations. Additionally, several studies have estab-

lished causal links between differential gene expression and

Table 10. Characteristics of Grade IV Glioblastoma Multiforme Markov blanket genes.

Gene Symbol/Name

Genomic
Location/
Cellular
Localization Function Cancer/Disease Link

COL4A1/Collagen,
type IV, alpha 1

13q34/extracellular
matrix

Inhibits angiogenesis
and tumor formation

Are upregulated in malignant and metastatic brain tumors [32]

EGFR/Epidermal
growth factor
receptor

7p12/membrane Growth factor Consistently linked to development of glioblastoma [25]; Has been linked to glioma tumor
invasiveness, proliferation, and angiogenesis [33,34]; Mutations have been found in EGFR
in primary glioblastomas [35] and have been linked to poor prognosis in GBM [36]. Its
signaling has been shown to cooperate with loss of tumor suppressor gene functions in
promotion of gliomagenesis

BTF3/Basic
transcription
factor 3

5q13.2/nucleus Transcription factor Found to be highly expressed in glioblastoma multiforme [37]; regulates tumor-associated
genes in pancreatic cancer cells [38]

MPP2/Membrane
protein,
palmitoylated 2

17q12-q21/
membrane

Tumor suppressor;
Coupling of
cytoskeleton to cell
membrane

Contributes to cell proliferation and resistance in cisplatin treatment in medulloblastoma
cells [39]

RAB31/Member
RAS oncogene
family

18q11.3/
membrane

Vesicle and granule
targeting

May have role in regulating EGFR in astrocyte development and oncogenesis [40];
associated with survival in glioblastoma [41]

CDK4/Cyclin-
dependent
kinase 4

12q14/
cytoplasm

Cell cycle regulation;
inhibits RB protein
family members

Known target of glioblastoma anticancer therapy [42]; thought to be a driver mutation
gene in glioblastoma [43]

CD99/CD99
molecule

Xp22.32/
membrane

Leukocyte migration,
T-cell adhesion,
protein transport,
and T-cell death

May act as an oncosuppressor in osteosarcoma; Is a useful marker for diagnosis of brain
tumor types [44]

ANXA2/Annexin
A2

15q22.2/
Extracellular
space, extracellular
matrix, membrane

Regulation of cell
growth

Involved in migration of neural stem cells to glioma sites [45]; potentially involved in
glioma invasion [46]

TOP2A/Topoisomerase
(DNA) II alpha 170kDa

17q21-q22/
Cytosplasm,
nucleus,
nucleoplasm

Resolves topological
problems in genomic
DNA resulting from
replication,
transcription and repair

Is target of several anticancer agents; mutations in this gene have been associated with
development of drug resistance; common significantly altered gene in cancer [47]; May be
involved in network of genes controlling cell cycle regulation in glioblastoma [48]; very
high copy number gain in glioblastoma [49]

SERBP1/SERPINE1
mRNA binding protein 1

1p31/Cytoplasm,
nucleus

Regulation of mRNA
stability

Significantly overexpressed in ovarian cancer, especially in advanced disease [50]

doi:10.1371/journal.pone.0064140.t010

Genes Critical to the Development of Glioblastoma

PLOS ONE | www.plosone.org 19 May 2013 | Volume 8 | Issue 5 | e64140



complex disease risk and thus identification of over- and under-

expressed genes in tumor tissue compared to normal tissue could

provide important clues to the development of tumors. Further-

more, it has also been shown that genes with similar expression

patterns form complexes and/or pathways that are part of

regulatory circuits that may lead to tumors and other diseases,

lending support to the validity of our pathway analyses. Our meta-

analysis, which took the top 600 over- and top 600 under-

expressed genes from a set of studies, should also have produced

the most important differentially expressed genes across all

astrocytic tumors. Analysis that shows 143 genes in GBM are

expressed on average at 10-fold higher levels than normal tissue

confirms that the most highly expressed genes in GBM were

considered in our analysis [26].

There are also several limitations of expression values. Foremost

are the discrepancies between protein and mRNA levels in studies

correlating their expression, a clear sign that interactions outside

the classical DNA to mRNA to protein pathway are taking place

inside the cell. Additionally, it has been shown that known genes

may not necessarily be differentially expressed in diseases due to

the ability of mutations in the coding regions of genes and post-

translational modifications affecting gene function without affect-

ing its expression level. However, our approach of meta-analysis

and focusing on networks of genes rather than single genes may

lessen the effect of missing important genes (i.e. while one gene in a

pathway may not be expressed, another may). Finally, only looking

at mean expression changes of genes could lead to incorrect

conclusions about the involvement of a pathway in a disease

condition, and so as suggested by de la Fuente 2010, co-expression

of genes should also be considered [27].

Limitations of enrichment analysis in general apply [28] to our

analysis, including: a) incomplete annotation databases as a result

of only a subset of known genes being functionally annotated; b)

annotation databases may not be completely updated with all

literature results; c) some annotation assignments may be

erroneous, especially those which are electronically inferred; d)

singling out the most important processes for genes involved in

several biological processes is limited. This can be overcome by

looking at the gene in context of other over- and/or under-

expressed genes however; and e) annotation bias due to some

biological processes being studied in more detail than others (e.g.

proliferation).

Another limitation of our approach is that because our set of

significant genes was chosen through meta-analysis of micro-array

studies that used differing platforms and differing gene totals per

study, we were unable to input a set of genes as for our ‘total gene

universe’ in our gene enrichment analyses. This limited us to

choosing the entire genome as our universe of comparison genes

Figure 16. Top IPA Grade IV Glioblastoma Markov genes network. IPA defined the network as related to ‘cancer, neurological disease, and
cellular movement’. Shaded genes represent our Markov genes. Non-shaded molecules were added by IPA during the analyses.
doi:10.1371/journal.pone.0064140.g016

Genes Critical to the Development of Glioblastoma

PLOS ONE | www.plosone.org 20 May 2013 | Volume 8 | Issue 5 | e64140



for the enrichment analyses. However, 4 of the 9 studies contained

18,800+ genes and one other study contained 14,584 genes,

making it likely that most of our selected significant genes

represent most of the appropriate over- and/or under-expressed

genes in astrocytoma.

Reverse network engineering methods have evolved greatly over

the past decade, with recent reports lending credibility to their

ability to correctly predict biological interactions [29,30]. Howev-

er, limitations associated with their use must be considered. In

particular, static Bayesian networks cannot contain feedback loops,

due to the steady state nature of the data. Thus, a characteristic

common to biological systems was not considered in our network.

Also, because Bayesian networks model probabilistic dependencies

among variables and not causality, we cannot conclusively say that

the parents of a node are direct causes of its behavior [4]. A causal

link can be inferred however, if the Causal Markov Condition

holds true. Simply, this condition states that any node in a

Bayesian network is conditionally independent of its non-

descendants, given its parents; and, a node is conditionally

independent of the entire network, given its Markov blanket. A

strength of our approach is the exploration of gene networks in

tumors without a priori genetic interaction networks being

Figure 17. IPA connections of Grade IV Glioblastoma Markov genes. Direct interactions between genes (genes/gene products make direct
physical contact with each other) are represented by solid lines. Indirect interactions (genes/gene products do not make direct physical contact with
each other but instead may influence each other through some intermediate factor) are represented as dotted lines.
doi:10.1371/journal.pone.0064140.g017
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assumed. This has been mentioned as a limitation of previous

work on gene networks in gliomas [31]. Incorporation of biological

evidence that directs our Bayesian network search could serve to

strengthen our approach in the future however.

Finally, limitations concerning the data used in our study must

be considered. For example, our inability to separate pediatric

astrocytomas from adult astrocytomas, secondary glioblastomas

from secondary glioblastomas, and male vs. female cases does limit

the extent to which we can draw conclusions from our data. The

possibility that ‘a fraction of GBMs designated as primary tumors

may follow a sequence of genetic events similar to that of

secondary lesions but not come to clinical attention until

malignant progression to a GBM has occurred’, lessens the

concern of dividing types of glioblastomas however. Additionally,

our method could be considered non-biased in this respect, as it

does not pre-condition results based on priors, thus allowing for a

search which may provide key genes across all hypothesized

glioblastoma subtypes.

In summary, the major novel findings which emerged from this

study are that modified expression of Markov Blanket COL4A1,

EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A,

and SERBP1 genes are associated with the development of

glioblastoma, a highest form of astrocytoma. Modified expression

of these 10 Markov Blanket genes increases lifetime risk of

developing glioblastoma. Analysis of gene-gene interactions

revealed that the glioblastoma risk estimates were dramatically

increased with joint effects of 4 or more than 4 genes. Joint effects

of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes on lifetime risk of

developing glioblastoma were 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or

85.9%, respectively. Findings of our study have major implications

in understanding the development of astrocytoma. Findings of this

study not only identify key important molecular determinants and

a new paradigm critical to the development of astrocytoma; it also

provides important information for the design of new gene therapy

targeted for the prevention and treatment of brain cancer. Though

these molecules could be causally linked to astrocytoma, further

detailed analysis is necessary. Experiments involving system

perturbations of these genes (e.g. gene knockout experiments)

are needed to establish directionality in our network and to

provide validity of our findings. Further studies are needed to

define the mechanism of action of these genes, and validation of

these ‘key genes’ by prospective studies could potentially lead to

useful tools for early detection and novel therapeutic options for

glioblastoma multiforme, and other astrocytomas.
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