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Abstract

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray
studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of
astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each
grade of astrocytoma (Grade I-1V), and ‘key genes’ within each grade were identified. Genes found to be most influential to
development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31,
CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10
genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the
support vector machine analysis. Markov genes interact with NFkp, ERK, MAPK, VEGF, growth hormone and collagen to
produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10
genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10
Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The
glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint
interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%,
respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears
that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are
needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.
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Introduction Recent advances in high-throughput microarrays have pro-

) . ) duced a wealth of information concerning glioma biology. In
Astrocytomas are neoplasms of the brain that originate in a type

of glial cell called an astrocyte. They are the most common glioma
and their most aggressive form, glioblastoma multiforme, has a
median survival of less than one year. While recent studies have
characterized much of their basic biology, the major mechanisms

particular, microarrays have been used to obtain differences in
gene expression between normal non-tumor tissue and glioma
tissue. Due to the relative rarity of gliomas, microarray data for
these tumors is often the product of small studies, and thus pooling
this data becomes desirable. Additionally, analysis of microarray

behind the development of these tumors still remain unknown. data has been an evolving field as techniques such as cluster

Importantly, while some glioblastomas are thought to evolve from analysis, networking analysis and principal components analysis
lower grade astrocytomas (secondary glioblastomas), most are
thought to arise de novo (primary glioblastomas). There is a lack of
clear understanding of the underlying molecular mechanisms of
pathophysiology that drive the development of astrocytomas and

this has hindered the progress of therapeutic development against

have been used in order to tease biologically relevant information
from the large amount of data produced from microarrays. We
chose to combine these analytic approaches through first
combining available microarray data on gliomas using a meta-
analysis approach, and then conducting Bayesian analysis on
results of this meta-analysis. Our goal in this approach was to
identify key genes and/or pathways that are critical in the

it. Identifying molecular genetic differences between the typically
benign lower grade astrocytomas (Grade I-II) malignant higher
grade astrocytomas (Grade III-IV) could be an important step in
better characterization of these highly malignant tumors. In
addition, determination of the main pathways and genes involved
in their development could provide for better therapies in the
future.

development of astrocytic tumors. Through meta-analysis of 12
sub-studies which compared normal tissue to astrocytomas, we
were able to identify a list of 554 genes which were differentially
expressed in the majority of these studies. Many of the genes have
in fact been implicated in development of astrocytoma, including
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EGFR, HIF-la, c-Myc, WNT5A, and IDH3A. We then
performed reverse engineering of our gene list using Bayesian
network analysis. Four networks of genes were produced, one for
each grade of Astrocytoma (Grade I-1V). Our results revealed the
involvement of 8-18 key genes in the development and
progression of astrocytoma depending on the grade of tumor.
Alterations in the expression of eight to ten key genes may be
required for the development of astrocytomas.

Methods

Several steps were involved in our analysis, including: 1)
identification of a significant set of over- and under-expressed
genes through meta-analysis of several astrocytoma microarray
studies; 2) enrichment analysis of the set of significant genes; 3)
network analysis of the set of significant genes; and 4) investigation
and validation of the network analysis. A more detailed description
of these steps follows.

Meta-analysis of Over- and Under-Expressed Genes In
Astrocytoma Microarray Studies

Oncomine (Compendia Bioscience, Ann Arbor, MI), a web-
based cancer microarray database, was used to perform meta-
analysis of cancer vs. normal studies in Astrocytoma [1]. The goal
of this analysis was to identify a set of significantly over-and under-
expressed genes in Astrocytoma for further investigation. An
Oncomine query for ‘Differential Analysis - Cancer vs. Normal
Analysis’ and ‘Cancer Type - Brain and CNS Cancer’ was
performed to identify studies that compared Astrocytoma to
normal tissue. Pilocytic Astrocytoma (WHO Grade I), Diffuse
Astrocytoma (WHO Grade II), Anaplastic Astrocytoma (WHO
Grade III), and Primary and Secondary Glioblastoma Multiforme
(WHO Grade IV) ‘sub-studies’ were chosen. Only studies
analyzing microarray mRINA expression were used for the
analysis. For purposes of this paper, ‘sub-studies’ are defined as
studies on brain tumor sub-types within a larger overall study on
brain tumors. Studies from our query that compared Astrocytic
tumors to normal tissue were then selected for the meta-analysis.
Oncomine ranks genes within each individual study based on a
gene’s p-value compared to all other genes within the study. In
meta-analysis, two heat-maps are returned: one for top over-
expressed genes and one for top under-expressed genes. Genes in
these heat-maps are ordered based on their median rank across the
selected individual analyses. For our study, the top 600 signifi-
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cantly under-expressed and the top 600 significantly over-
expressed genes from meta-analysis were narrowed to our
‘significant gene list” by discarding all genes from these 1200
over- and under-expressed genes that were identified in 6 or less of
the sub-studies. Thus, a gene was included in our final list of
significant genes if it was identified as over- or under-expressed in
at least 7 of the 10 sub-studies. This final set of genes was then
subjected to enrichment and pathway analysis with several
different tools.

Gene Set Enrichment Analysis

FuncAssociate (Roth Laboratory, Harvard) and Ingenuity
Pathway Analysis (IPA) (Redwood City, California) were used to
identify pathways and other systems biology characteristics of our
top set of genes. FuncAssociate is a web-based tool which performs
a Fisher’s Exact Test to determine a list of Gene Ontology (GO)
attributes that are over- (or under-) represented among a set of
genes entered by the user [2]. GO Terms, curated by the Gene
Ontology Consortium, identify significant cellular components
(e.g. rough endoplasmic reticulum, ribosome), biological processes
(e.g. signal transduction, pyrimidine metabolic process), and
molecular functions (e.g. catalytic activity, binding, adenylate
cyclase activity) of a set of genes [3]. Our significant gene list from
Oncomine was entered into FuncAssociate for analysis. Settings
were species: Homo sapiens; namespace: HGNC_Symbol; mode:
ordered; simulations: 1000; over/under: both; and p-value cutoft:
0.05. The HGNC Symbol namespace setting resulted in our
choosing the entire known human genome as our universe of
comparison genes for the enrichment analyses.

IPA was also used to analyze our Oncomine gene list. This web-
based program uses a manually curated database of findings from
the scientific literature, along with data obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG), to analyze
connections between genes, proteins, and other molecules. It also
uses its own terminology for functional classifications of these
molecules that is similar but not exact to the terminology used by
GO. Enrichment analysis was performed using IPA’s “Core
Analysis” function. Whereas GO Terms do not relate significant
pathways of a set of genes, IPA Core Analysis does have this ability
and therefore was used both to identify significant biological
processes/molecular functions and to identify any pathways that
were more commonly activated or inactivated in our set of genes.
Significance of the identified processes and pathways is given by
the right-tailed Fisher exact test p-value, meaning only overrep-

Table 1. List of Oncomine studies in meta-analysis of Astrocytoma vs. Normal Studies.

Oncomine Study ID, Publication Journal, Date

Study Astrocytoma Type* n (tumor/normal)

Bredel Brain 2, Cancer Res, 2005 [16]
Gutmann Brain, Cancer Res, 2002 [17]

Lee Brain, Cancer Cell, 2006 [18]

Liang Brain, Proc Nat/ Acad Sci USA, 2005 [19]
Rickman Brain, Cancer Res, 2001 [20]

Shai Brain, Oncogene, 2003 [21]

Shai Brain, Oncogene, 2003 [21]

Sun Brain, Cancer Cell, 2006 [22]

Sun Brain, Cancer Cell, 2006 [22]

Sun Brain, Cancer Cell, 2006 [22]

Glioblastoma 27/4
Pilocytic Astrocytoma 8/3
Glioblastoma 22/3
Glioblastoma 30/3
Astrocytoma 45/6
Astrocytoma 5/7
Glioblastoma 27/7
Anaplastic Astrocytoma 19/23
Diffuse Astrocytoma 7/23
Glioblastoma 81/23

*All studies are Astrocytoma tissue type vs. normal tissue.
doi:10.1371/journal.pone.0064140.t001
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Figure 1. Top Canonical Pathways for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for significance
(p-value =0.05). Ratio is the number of molecules in the input list vs. the total number of molecules in the function.
doi:10.1371/journal.pone.0064140.g001
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Figure 2. Top Biological Functions for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for significance
(p-value =0.05).
doi:10.1371/journal.pone.0064140.9002
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Figure 3. Top Toxicological Functions for Astrocytoma differentially expressed genes. The threshold line denotes the cutoff for
significance (p-value =0.05). Ratio is the number of molecules in the input list vs. the total number of molecules in the function.

doi:10.1371/journal.pone.0064140.g003

resented attributes are returned by IPA. The IPA default reference
set of molecules, which includes all functionally-characterized
molecules in IPA, was used as the universe of comparison genes.
Several groups of processes are identified, including: biological
functions (‘Bio Functions’), toxicological functions (“Tox Func-
tions’), and established pathways (‘Canonical Pathways’). The
number of molecules from a set of data found to be in a pathway,
divided by the total number of molecules in the identified
canonical pathway is given.

Reverse Engineering Bayesian Network Analysis of
Differentially Expressed Genes in Astroctytic Tumors

Bayesian networks have been widely used and accepted in
modeling molecular networks from microarray data [4,5]. These
networks are probabilistic graphical models that produce directed
acyclic graphs (DAG) that represent a set of random variables
and their conditional dependencies. Nodes of the DAG represent
genes or other variables such as disease and are assumed to be
conditionally independent of each other. The structures pro-
duced by Bayesian network analysis naturally represent causal
hypotheses.

We used the software application Banjo (Duke University, NC)
for probabilistic structure learning of static Bayesian networks
from our steady state expression data from Oncomine [6]. Banjo
performs structure inference using a local search strategy termed
Bayesian Dirichlet equivalence (BDe) scoring metric for discrete
variables. This strategy makes incremental changes in the structure
aimed at improving the score of the structure. A score for the ‘best
network’, influence scores for the edges of the best network, and a
dot graphical layout file are returned as results of the search. The
dot file is a DAG indicating regulation among genes and their
possible influence on disease outcome.

The goal of this Bayesian analysis was to identify what may be
the most critical genes for development of astrocytoma from our
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significant set of meta-analysis genes. This was accomplished by
identifying a Markov blanket of each network output chosen as the
‘best network’ for each grade of astrocytoma. In a Bayesian
network, the Markov blanket of any node 4 is its set of neighboring
nodes composed of a nodes parents, children, and the parents of its
children. This defined set of neighboring nodes shields node A
from the rest of the network, and thus the Markov blanket of node
A 1s the only knowledge needed to predict the behavior of node 4.

Though its sensitivity is low, Banjo has been shown to have a
very high positive predictive value for 100 plus case sets (regardless
of the number of genes) composed of the type of ‘global’, steady-
state gene data we analyzed [7]. For an overview of Bayesian
network probability structures the reader is referred to Charniak
1991 [8]. Several other papers provide more detailed information
on their construction and examples of their use with molecular
modeling [5,9-12].

To perform the analysis on our data, expression values for our
significant set of genes were downloaded from Oncomine and
loaded into Microsoft Excel. The top 100 over-expressed genes
and top 100 under-expressed genes were then considered for
analysis in Banjo. In order to increase our sample size, missing
cases imputation was performed on cases with missing expression
data for a particular gene using average of all expression values
across the gene as the imputation. Cases without Grade
identification and/or identified as non-tissue cases (i.e. cell lines)
were excluded from the analysis. Studies from our meta-analysis
with missing data for a large amount of genes were also excluded.
The expression data for the remaining genes was then separated
by Grade, discretized per study (due to Oncomine normalizing
expression values per study), and combined for analysis in Banjo.
Discretization of the data into three tiers of expression (under-,
median-, and over-expressed) was performed using the program-
ming software tool Perl. Assuming normally distributed data, the
three tiers were selected based on a one standard deviation
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Figure 4. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in pilocytic
astrocytic tumors. We used a program called Bayesian Network Inference with Java Objects (Banjo) to analyze the modified genes in pilocytic
tumors. We ran our data through Banjo a total of 3 different machines. Each machine ran Banjo for three hours. The ‘best network’, with the highest
BDE score that predicted the genes involved in stage 1 of astrocytoma (pilocytic tumor) is shown.

doi:10.1371/journal.pone.0064140.g004

confidence interval (i.e. ~68% of the values will have ‘median-
expression’, with ~16% of the values under-expressed and ~16%
of the values over-expressed). Discretized files were then run in
Banjo for four separate analyses: 1) Normal Tissue vs. Grade I
Pilocytic Astrocytoma cases, 2) Normal Tissue vs. Grade II Diffuse
Astrocytoma cases, 3) Normal Tissue vs. Grade III Anaplastic
Astrocytoma, and 4) Normal Tissue vs. Grade IV Glioblastoma
Multiforme cases. Analyses was performed on the four Grades
three separate times (three hours in length for each network
search), with the ‘best network’ from these three runs being chosen
as our ‘final best network’ for each Grade. Best network score
significance was calculated using a log calculation of all three
network scores, with a percent of the total score returned for each
network.

Predictive Analysis to Identify Key Markov Causal Genes

of Each Grade of Astrocytoma

To assess the ability of Markov genes to distinguish between
normal and tumor samples in our analysis, Genie, a software tool
for analyzing Bayesian networks developed by the University of
Pittsburgh [13], was used to predict the probability of developing
Astrocytoma given certain expression states for its gene network.
This predicts key Markov causal genes involved in the develop-
ment of astrocytomas. In Bayesian network analysis this is done by
learning the parameters of a given DAG structure. To accomplish
this task, the discretized results files for each Grade of astrocytoma
were loaded into the Genie software. Additionally, the Banjo
network structure results were recreated in Genie. Genie’s ‘learn
parameters’ function was then used to predict probabilities of
outcomes for certain network structures. Given our small sample
sizes, we did not allow a probability of 0 to be assigned to any
result, choosing instead to use 0.01 for any probability calculated
as 0. This allowed us to perform parameter assessment under the
assumption that a low probability case may still have a very small
chance of occurring in our data. Once our network parameters
were established in Genie, we analyzed the probability of
developing each grade of astrocytoma given differentially
expressed states of the Markov Blanket genes of each grade using
Bayes’ rule.

Probability of Life Time Risk of Developing Astrocytoma
Stage 4 - Glioblastoma from Joint Effects of Interactions
between Markov Blanket Genes

To examine joint effects of interaction between Markov Blanket
genes on the lifetime risk of developing Glioblastoma, we have
used by Bayes’ theorem:

P(G1,Ga,...,Gu| D)P(D)

P(D|G15G2>"'aGﬂ): P(G1 G2 G )

where Gy, Go,..., G, are expression level of selected Markov
Blanket genes from the Bayesian network with the highest BDe
score and D represent whether a subject have Glioblastoma or not.
We used the 20052007 Surveillance, Epidemiology and End
Results (SEER) calculated lifetime probability of diagnosis of
cancer of the brain and other nervous system of 0.61% in normal
population, i.e., P(D)=0.0061 [14].

PLOS ONE | www.plosone.org

Validation of Markov Key Causal Genes Predicted to be
Involved in the Development of Astrocytoma by
Statistical Methods

Several statistical methods were used to validate both the
prediction capabilities and to assess the ability of our Markov
genes to distinguish between normal and astrocytic tumor samples
in our analysis. We performed prediction analysis by receiver
operating characteristic (ROC) curve representing the Bayesian
network discretized results; and validated our finding using linear
regression, logistic regression, cross validation and support vector
machine (SVM) analysis to assess the predictability of both the
discretized and raw expression values of our Markov genes.
Hierarchical Clustering was also performed on each set of Markov
genes in order to further explore how these genes separated our set
of non-tumor and tumor patients. These analyses were performed
using both IBM SPSS Statistics 19.0 and Multi-Experiment
Viewer (MeV) version 4.7.1.

Literature Based Validation of Key Predicted Markov
Causal Genes Involved in the Development of

Glioblastoma Using Models Generated by Empirical Data
Several methods were used to investigate and validate both the
prediction capabilities and the biological plausibility of our
Markov network genes. They included literature and biological
database searches, and curated gene and pathway analysis. The
literature and database search of our Markov genes gathered
information on gene cellular localization and function, and
published research supporting the genes involvement in tumor
formation by searching biological databases such The Human
Gene Compendium’s Gene Cards (www.genecards.org), PubMed
(www.pubmed.com), the Information Hyperlinked over Proteins
(HOP) Database (www.ithop-net.org), and the Glioblastoma
Multiforme Database (GBMBase) (www.gbmbase.org).

In order to investigate existing literature and ontology based
connections between our Markov gene lists we used programs in
both IPA and PathJam [15]. The goal of these analyses was to
investigate a) the quality of our network analysis findings in Banjo
and Genie, and b) the biological relationships of our Markov genes
from these analyses. The initial investigation was done using the
Path Explorer feature of IPA. Path Explorer uses curated literature
and experimental evidence of biochemical interactions to produce
networks of existing connections between a set of user imputed
genes. This function was used to search for any existing
connections among the Grade IV Astrocytoma Markov Key
Causal Genes.

IPA’s Core Analysis was then performed on these same Grade
IV Astrocytoma Markov Genes in order to produce connections
for a set of genes independent of their established pathways. This
analysis generated gene networks by including genes in pathways
of the inputted gene list. Networks are ordered in importance by
an IPA-defined significance score. Settings for this analysis were
Direct and Indirect Relationships, All Data Sources, All Species,
and All Tissues & Cell Lines. The Human Genome U133 Plus 2.0
Array (19,079 genes) was selected as our reference universe of
genes as it contained the largest gene set from our meta-analysis
and was used in 2 of the 5 meta-analysis studies used for our Banjo
analysis. The top identified network from the Core Analysis was
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Figure 5. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in diffuse
astrocytic tumors. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting

the genes involved in stage 2 of astrocytoma (diffuse tumor) is shown.

doi:10.1371/journal.pone.0064140.g005

compared to our Banjo/Genie generated results. Complementary
to this Core Analysis’s production of top biological and disease
related functions was our investigation of our Markov genes using
PathJam [15]. This public server-based tool allows for interpre-
tation of gene lists by integrating pathway-related annotations
from several public sources including Reactome, KEGG, NCBI
Pathway Interaction Database, and Biocarta. Using this tool we
were able to produce interactive graphs linking all four Astrocy-
toma Markov gene lists with pathway annotations, allowing for
graphical pathway investigation into our gene lists.

Results

Meta-analysis of Differentially Expressed Genes in
Astrocytic Tumors

A total of 12 studies (with 27 sub-studies) conducting cancer vs.
normal analysis on ‘Brain and CNS Cancer’ were identified in
Oncomine. Non-astrocytic tumor studies and studies analyzing
DNA (i.e. acCGH arrays) were then discarded, leaving seven
studies (10 sub-studies) on astrocytoma for the meta-analysis.
These 10 sub-studies are listed in Table 1.

The top 600 significantly over-expressed and top 600 signifi-
cantly under-expressed genes were identified from a total of 10
‘sub-studies’. The narrowing of the initial list of 1200 genes
produced a total of 646 genes for further analysis (372 significantly
over-expressed genes and 274 significantly under-expressed genes).
A list of these genes can be found in Table S1 and Table S2 (See
File S1). It should be noted that Primary and Secondary
Glioblastomas were separated within only one of the nine studies
identified as Astrocytoma in Oncomine (Bredel: 27 Primary vs. 2
Secondary Glioblastomas). Therefore, separation of these subtypes
of Glioblastomas was not considered in our study.

Gene Set Enrichment Analysis of Differentially Expressed

Genes in Astrocytic Tumors

In order to identify significant biological processes, molecular
functions, and pathways of the final set of 646 genes, we conducted
enrichment analysis on this set of genes. As described in the
methods, two separate programs were used for this analysis:
FuncAssociate and IPA.

FuncAssociate Results

FuncAssociate identified 60 GO Terms as being over-represented
and 1 GO Term as being under-represented among our set of 314
over-expressed genes (see Table S1 and Table S2 in File S1). Several
significant processes were related to nervous system processes (axon
part, postsynaptic density, synapse part, synaptic transmission,
neuron projection), developmental processes (cell part morphogen-
esis, cellular component morphogenesis, regulation of anatomical
structure morphogenesis, anatomical structure morphogenesis,
regulation of developmental process, anatomical structure develop-
ment, development process), and several cellular processes associ-
ated with cancer (cell adhesion, biological adhesion, regulation of
cell proliferation, regulation of apoptosis) (see Table S3 in File S1).
Several genes involved in developmental processes have been linked
to brain tumor development. A total of 147 genes out of 646
differentially expressed genes in astrocytic tumors were categorized
in the GO developmental process terms listed above. Several of
these genes, including MYC, EGFR, HIFIA, HGF, APOE,
TIMP3, and WNT3A have been identified as being important to
development of astrocytoma.

Ingenuity Pathway Analysis Results
IPA produced similar and contrasting results to the above
analysis using FuncAssociate. Top Canonical Pathways identified

@ @M EE @O OERERD O OO O OO O N R A EE @
e @

Figure 6. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in anaplastic
astrocytic tumors. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting

the genes involved in stage 3 of astrocytoma (anaplastic tumor) is shown.

doi:10.1371/journal.pone.0064140.g006
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Figure 7. Bayesian networks with probabilistic structure learning from changes in the expression of modified genes in
glioblastoma. The ‘best network’, with the highest BDE score using a Bayesian Network Inference with Java Objects (Banjo) program predicting the

genes involved in stage 4 of astrocytoma (glioblastoma) is shown.
doi:10.1371/journal.pone.0064140.g007

for the over-expressed gene list include: ‘Synaptic Long Term
Potentiation’ (p-value: 6.25E-07; Ratio of molecules in pathway
from user list/total molecules in pathway: 16/113), ‘IL-8
Signaling’ (p-value: 7.41E-07; Ratio: 20/186), ‘G Beta Gamma
Signaling’ (p-value: 9.48E-07; Ratio: 15/119), ‘CXCR4 Signaling’
(p-value: 1.1E-06; Ratio: 19/167), and ‘Cholecystokinin/Gastrin-
mediated Signaling’ (p-value: 1.39E-06; Ratio: 15/104) (Figure 1).
Several pathways known to be important to glioma development
were also at the top of the significant canonical pathways list,
including “WNT/beta-Catenin Signaling’ (CD44, CDH2, DVLS3,
LRPI, MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3,
WNT5A) and ‘mTOR Signaling’ (EIF3B, EIF3E, EIF3F, EIF4Al,
HIFIA, PRKDI, RHOC, RND2, RND3). Confirming our gene
list as involved with brain tumor development, ‘Glioma Invasive-

ness Signaling’ (CD44, F2R, ITGAV, MMP9, RHOC, RND2,

RND3, TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signal-
ing’ (CDK6, CDKNIA, EGFR, ITPR2, MYC, RHOC, RND2,
RND3, TCF3, WNT5A) were returned as significant pathways as
well.

IPA Core Analysis also returns what are termed “Top Bio
Functions’, grouped into three categories: Diseases and Disorders,
Molecular and Cellular Functions, and Physiological System
Development and Function. Significant functions are returned
with their associated p-value and # of input molecules in the
function. The top 5 Disease and Disorders for our list of 554
astrocytoma differentially expressed genes were: ‘Neurological
Disease’ (p-value: 1.17E-25-4.98E-04; 270 molecules from our
list), ‘Cancer’ (3.83E-24-5.61E-04; 240 molecules), ‘Skeletal and
Muscular Disorders’ (2.32E-19-4.42E-04; 206 molecules), ‘Genet-
ic Disorder’ (3.04E-17-5.27E-04; 354 molecules), and ‘Inflamma-

Figure 8. Markov blanket genes for Bayesian network of Pilocytic Astrocytoma. Green shade genes are overexpressed genes and blue

shade genes are under expressed genes from the Oncomine meta-analysis.

doi:10.1371/journal.pone.0064140.g008
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Table 2. Sample statistics and significance of search score results of Bayesian network analysis.

Genes Analyzed for

Studies in Analysis Normal Tumor Network Bayesian Analysis Network Score Significance*
Search 1 Search 2 Search 3
Normal vs. Grade 1 Bredel, Gutmann, 13 30 122 1.37% 98.16% 0.46%
Rickman
Normal vs. Grade Il Rickman, Shai, Sun 36 14 131 9.11% 6.62% 84.62%
Normal vs. Grade Ill  Bredel, Shai, Sun 34 23 176 1.98% 0.04% 99.95%
Normal vs. Grade IV Bredel, Shai, Sun 34 137 176 0.00% 0.00% 99.99%

doi:10.1371/journal.pone.0064140.t002

tory Disease’ (2.20E-16-4.92E-04; 195 molecules) (Figure 2). As
shown in the Figure 2, the top 5 Molecular and Cellular Functions
were ‘Cell Death’ (1.36E-21-5.81E-04; 205 molecules), ‘Cellular
Growth and Proliferation’ (1.23E-14-4.48E-04; 203 molecules),
‘Cell Morphology’ (2.51E-14-4.82E-04; 99 molecules), ‘Cellular
Movement’ (1.08E-11-4.58E-04; 116 molecules), and ‘Cell Cycle’
(5.83E-11-5.61E-04; 91 molecules).

The top 5 Physiological System Development and Functions
were ‘Tissue Development’ (1.65E-09-5.79E-04; 105 molecules),
‘Skeletal and Muscular System Development and Function’
(1.67E-09-2.96E-04; 54 molecules), “Tissue Morphology’ (7.04E-
08-1.35E-04; 78 molecules), ‘Nervous System Development and
Function’ (1.48E-07E —3.65E-04; 96 molecules), and ‘Behavior’
(1.67E-07-3.09E-04; 47 molecules). Figure 1 shows these top Bio
Functions in order of significance. When interpreting these results,
it is important to keep in mind that the p-values refer to the High
Level Functions rather than to individual Lower-Level Functions,
and therefore, if a High Level Function contains two or more
specific Lower-Level Functions, a range of significances 1is
displayed.

Core Analysis also produces Top Toxicity Profiles. The Top 5
profiles for our 554 differentially expressed genes were ‘Hepatic
Fibrosis’ (p-value: 3.59E-06; Ratio of molecules: 13/85), ‘Hepatic
Cholestasis’ (p-value: 4.77E-03; Ratio: 11/135), ‘G1/S Transition
of the Cell Cycle’ (p-value: 5.02E-03; Ratio: 6/49), ‘Oxidative
Stress’ (p-value: 1.05E-02; Ratio: 6/57), and ‘VDR/RXR
Activation’ (p-value: 1.28E-02; Ratio: 7/77) (Figure 3).

Reverse Engineering Bayesian Network Analysis of
Differentially Expressed Genes in Astrocytic Tumors

Four separate analyses were run in Banjo in order to search for
genes critical for Grade I, II, III and IV Astrocytoma develop-
ment. As discussed in the methods, studies and/or genes with
missing expression data were excluded from the network analysis.
Studies removed for both analyses were Bredel 2005, Liang 2005,
and Rickman 2001. Additionally, Gutmann 2002 was removed
from the Grade IV analyses as it did not contain Grade IV tumors.
Genes were removed from our top 200 genes list (100 over- and
100 under-expressed genes) for each analyses based on availability
per Grade. A total of 77 genes were removed for Grade 1, 68 for
Grade 2, and 23 each for Grades 3 and 4.

We used Banjo for probabilistic structure learning of static
Bayesian networks from our steady state expression data from
these modified genes in each grade. Banjo was allowed to perform
the structure inference analysis for 3 independent structure
searches and each search was run for 3 hours for each grade.
These three independent Banjo structure produced a network with
BDe score (see a representative Figures 4-8 and Table 2). Please

PLOS ONE | www.plosone.org
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*Significance score for each network equals percent of total score for all three networks combined.

see Table 2 for sample size, sample statistics and significance of
search score results of Bayesian network analysis. BDe score
helped us to identify the ‘best network’, that predicted the genes
involved in each stage of astrocytoma and the network with the
highest BDE score was selected for further Markov Blanket
analysis. Most of the modified genes were in the network, except
CD44, CALCRL, EGFR, TPM3, and MAGII in pilocytic
(Figure 4); MAGI1, MBP, and EFNA) in diffuse (Figure 5);
DYNLT1, TIMP4, IGFBP2, SATI1, MAPRE2, SH3GLS3,
PTGER3, STAU2, PTAFR, CNNM2, DUSP7, GRIN2C,
TPM3, PICK1, TSPAN5, MAPT, MAGII, BTRC, DYNCIII,
RYBP, LDB3, CACNAIA, MPP2, PPP2R2B, CDKN2D,
EFR3B, SNRPN, EFNA5, IQSEC1, ULK2, and ATP8AI in
anaplastic (Figure 6); and PLEKHB2, OPAl, MAPRE2,
PTGER3, STAU2, PTAFR, CNNM2, DUSP7, GRIN2C,
TPM3, TSPANS, MAGIL, RASGRF1, BTRC, ZBTB7A, RYBP,
LDB3, CACNAIA, RAPIGDSI, MBP, SNRPN, SERINCS,
EFNAS, IQSEC1, ULK2, and ATP8AI in glioblastoma tumors

(Figure 7).

Identification of Key Genes Involved in Each Stage of
Astrocytoma by Markov Blanket Genes

We used the Bayesian network genes of each stage of
astrocytoma to further identify the most critical genes involved
in the development of astrocytoma. This was accomplished by
identifying a set of Markov Blanket genes from each gene network.
This allowed us to define a set of neighboring genes that are
sufficient to predict the probability of developing astrocytoma
(Figures 8-11) and is summarized in Table 3. DAG structures for
Markov genes of each grade of Astrocytoma are shown in
Figures 8-11. Grade I Pilocytic Astrocytoma’s Markov blanket
genes were: IGFB5, TIMP4, SSR2, LPL, DUSP7, GABRADS,
SH3GL3, C1S, WNTI10B, SRPX, ANK3, HLAA, EIF4Al,
PTGERS3, and CCND2 (Figure 8). Grade II Diffuse Astrocytoma’s
Markov blanket genes were: FN1, MARCKS, PRDX4, NONO,
SPARC, WNT5A, CD44, EIF4Al1, CD99, CALCRL, EMPI,
VCAN, CDHI1, VAMPI1, RAB3B, DUSP7, PPP2R2B, and
SERINC3 (Figure 9). Grade III Anaplastic Astrocytoma’s Markov
blanket genes were: LPL, MARCKS, SERBP1, DPYSLS3,
SNRPE, EIF4Al, ANXAI, MCM3, BTN3A3, MTHFD2,
DAB2, RCAN2, RUSC2, TPPP, MAST3, and CNTN2
(Figure 10). Grade IV Glioblastoma Multiforme’s Markov blanket
genes were: COL4Al, EGFR, BTF3, MPP2, RAB31, CDK4,
CD99, ANXA2, TOP2A, and SERBP1 (Figure 11).

In addition to Markov Blanket genes, Genie also predicted
genes that are closed associated with Markov Blanket genes. For
Pilocytic, P4HB, PTAFR,RASGRF1, SPARC,HLAF, PROSI,
DCTNI1, TGFBI1, ZFP36L2, CDKN2D, VCAN, BCL2L2, SOX4,
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Table 3. Comparison of Markov Blanket genes across Grades
| to IV Astrocytoma.

PILOCYTIC DIFFUSE ANAPLASTIC  GLIOBLASTOMA
ANK3 ANK3 ANK3 ANK3
ANXA1 ANXA1 ANXA1 ANXA1
ANXA2 ANXA2 ANXA2 ANXA2
BTF3 BTF3 BTF3 BTF3
BTN3A3 BTN3A3 BTN3A3 BTN3A3
cis ci1s c1s c1s
CALCRL CALCRL CALCRL CALCRL
CCND2 CCND2 CCND2 CCND2
CcD44 CcDa4 CD44 CD44
CcD99 cD99 CD99 cD99
CDH11 CDH11 CDH11 CDH11
CDK4 CDK4 CDK4 CDK4
CNTN2 CNTN2 CNTN2 CNTN2
COL4A1 COL4A1 COL4A1 COL4A1
DAB2 DAB2 DAB2 DAB2
DPYSL3 DPYSL3 DPYSL3 DPYSL3
DUSP7 DUSP7 DUSP7 DUSP7
EGFR EGFR EGFR EGFR
EIFaA1 EIFaA1 EIFaA1 EIF4A1
EMP1 EMP1 EMP1 EMP1
FN1 FN1 FN1 FN1
GABRAS GABRAS5 GABRAS5 GABRAS5
HLAA HLAA HLAA HLAA
IGFBP5 IGFBP5 IGFBP5 IGFBP5
LPL LPL LPL LPL
MARCKS MARCKS MARCKS MARCKS
MAST3 MAST3 MAST3 MAST3
MCM3 MCM3 MCM3 MCM3
MPP2 MPP2 MPP2 MPP2
MTHFD2 MTHFD2 MTHFD2 MTHFD2
NONO NONO NONO NONO
PPP2R28 PPP2R2B PPP2R28B PPP2R2B
PRDX4 PRDX4 PRDX4 PRDX4
PTGER3 PTGER3 PTGER3 PTGER3
RAB31 RAB31 RAB31 RAB31
RAB3B RAB3B RAB3B RAB3B
RCAN2 RCAN2 RCAN2 RCAN2
RUSC2 RUSC2 RUSC2 RUSC2
SERBP1 SERBP1 SERBP1 SERBP1
SERINC3 SERINC3 SERINC3 SERINC3
SH3GL3 SH3GL3 SH3GL3 SH3GL3
SNRPE SNRPE SNRPE SNRPE
SPARC SPARC SPARC SPARC
SRPX SRPX SRPX SRPX
SSR2 SSR2 SSR2 SSR2
TIMP4 TIMP4 TIMP4 TIMP4
TOP2A TOP2A TOP2A TOP2A
TPPP TPPP TPPP TPPP

1

Genes Critical to the Development of Glioblastoma

Table 3. Cont.

PILOCYTIC DIFFUSE ANAPLASTIC GLIOBLASTOMA
VAMP1 VAMP1 VAMP1 VAMP1

VCAN VCAN VCAN VCAN

WNT5A WNT5A WNT5A WNT5A

WNTI10B WNT108B WNT10B WNT10B

Over-expressed genes are bold; Under expressed genes are italic. Genes
highlighted in grey with underline are Markov blanket genes for the
corresponding tumor grade.

doi:10.1371/journal.pone.0064140.t003

OoDCl1, CCND2; for  Diffuse, IFT16, DPYSL3,
PRKCG,HSD17B10, CD44, PLOD2, APBBI,TAGLN2,
IDH3A, SSR2, HLAA, NONO; for Anaplastic, IGFBP5,
SOD2, DCTNI, ANK3, SERINC3, WDR7, HLAE,SNRPE,
NAMPT, CCND2, RPS19, CACNB1, DYNLT; for Glioblasto-
ma, PCNA, TPPP, CDHI1, IGFBP2, FNI, KIF5C, LY-
PLA1,S100A10, PALLD genes were identified (see Figures 4-7).

A comparison of these Markov genes across each grade of
Astrocytoma can be found in Table 3. None of the Markov
blanket genes were common in all 4 stages of Astrocytomas. As
Markov blanket genes, DUSP1 was common in Pilocytic and
Diffuse tumors; EIF4A1l was common in Pilocytic, Diffuse and
Anaplastic tumors; MARCKSs was common in Diffuse and
Anaplastic tumors and SERBP common in Anaplastic and
Glioblastoma tumors.

Predictive Analysis of Grade | Pilocytic Astrocytoma
Markov Blanket Genes

Genie’s ‘learn parameters’ function was used to predict
probabilities of Pilocytic tumor using DAG Bayesian network
structure of 15 Markov blanket genes. Prediction analysis of the
Grade I Markov genes by Genie showed that these 15 genes were
was able to predict Pilocytic Astrocytoma tumor status consistent-
ly. The predictive ability of each individual gene is shown in the
Figure 8. All 15 total Markov genes were used in the analysis,
except in linear stepwise regression, which used only 10 significant
predictor genes in the analysis. The prediction accuracy to
distinguish normal or tumor was calculated using Bayesian
Network Results using ROC Curve, Linear Regression (linR),
Logistic Regression (logR), Cross Validation (CV) and Support
Vector Machine (SVM). The accuracy of the predicting Pilocytic
Tumor was very high, and varied between 79-88% (CV), 87-88
(linR), 100% (LogR), or 100% (SVM) (Table 4).

Results of hierarchical clustering using expression data from our
Markov genes are shown in Figure 12. Hierarchical clustering
(Pearson distance, average linkage) of the 15-gene signature
expression pattern shown green as normal control and red as
Pilocytic tumor cases revealed that 100% of samples were
distinguished as Pilocytic tumors.

Predictive Analysis of Grade Il Diffuse Astrocytoma
Markov Blanket Genes

Prediction analysis of the 18 Grade II Markov genes showed
that our set of 18 genes was able to predict tumor status
consistently when using logistic regression, cross validation and
SVM analysis. Linear regression seemed to predict that a signature
of 10 genes would predict tumor status just as well as our 18 total
genes, though each gene set only predicted approximately 21% of
the tumor status’s variability in either case (Table 5). Results of
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Figure 9. Markov blanket genes for Bayesian network of Diffuse Astrocytoma. Green shade genes are overexpressed genes and blue shade

genes are under expressed genes from the Oncomine meta-analysis.
doi:10.1371/journal.pone.0064140.g009

hierarchical clustering using expression data from our Markov
genes can be found in Figure 13 and all 5 tumors were
distinguished from normal control cases. We did not conduct
further analysis of these same Markov genes for risk analysis of
developing diffuse tumor because of a limited sample size.

Predictive Analysis of Grade lll Anaplastic Astrocytoma
Markov Blanket Genes

Prediction analysis of the 18 Grade III Markov genes showed
that our set of 18 genes was able to predict tumor status, especially
when using logistic regression, raw expression in cross validation,
and the SVM analysis. Linear regression seemed to again predict
that a signature of much less than the total genes (10 of 18) would
predict tumor status (Table 6). Results of hierarchical clustering

Figure 10. Markov blanket genes for Bayesian network of Anaplastic Astrocytoma. Green shade genes are overexpressed genes and blue

shade genes are under expressed genes from the Oncomine meta-analysis.

doi:10.1371/journal.pone.0064140.g010
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Figure 11. Markov blanket genes for Bayesian network of Glioblastoma Multiforme. Green shade genes are overexpressed genes and
blue shade genes are under expressed genes from the Oncomine meta-analysis.

doi:10.1371/journal.pone.0064140.g011

using expression data showed Markov genes significantly distin-
guished tumors from normal samples and is shown in Figure 14.
We did not conduct further analysis of these same Markov genes
for risk analysis of developing anaplastic tumor because of a
limited sample size.

Predictive Analysis of Glioblastoma Markov BLANKET
CAUSAL GENES

In order to validate the key Markov blanket genes as causal/
signature genes for possible Glioblastoma targets or biomarkers, it
is necessary to analyze its predictive capability to distinguish
between normal brain and tumor samples. Genie’s ‘learn
parameters’ function analysis of the 10 Grade IV Markov genes
showed that the set of 10 genes was able to consistently predict
between non-tumor and tumor cases (Figure 11). Assessment of
increased lifetime risk of development of glioblastoma due to
deregulation of our Markov genes showed that differential
expression of all 10 of our genes at once increased your lifetime
risk of brain tumor development to 85.90%. In contrast,
differential expression of two separate sets of 10 genes found
outside the Markov blanket in our Bayesian network increased
lifetime risk of brain tumor development to 2.61% and 0.98%
respectively (Table 7).

Table 4. Pilocytic Astrocytoma prediction analysis summary.

Interactions between Markov Blanket Genes and their

Impact on the Risk of Developing Glioblastoma

We examined individual Markov blanket gene effect as well as
joint effects of interaction between Markov Blanket genes on the
lifetime risk of developing glioblastoma. Table 8 shows the
estimated lifetime risk of developing glioblastoma from changes in
the expression of the single Markov Blanket gene, a pair of Markov
Blanket gene or multiple Markov Blanket genes. The estimated
lifetime risk of developing breast cancer from altered expression of
a single gene such as, COL4A1, CD99, ANXA2, MPP2, EGFR,
CDK4, BTF3, RAB31, TOP2A or SERBP1 was 0.76, 1.18, 1.57,
1.62, 1.62, 1.85, 1.91, 0.73, 1.96 or 0.63%, respectively compared
to 0.61% risk of developing glioblastoma in normal population.
Joint effects of a pair, three or several Markov Blanket genes on
the probability of increasing risk of developing Glioblastoma
ranged from less than additive to greater than multiplicative. For
example, joint effects of changes in the expression of different
combination of a pair of Markov blanket genes or three Markov
blanket genes increased risk for developing glioblastoma ranging
from 0.73 to 5.84% and 1.46 to 4.47, respectively. The
glioblastoma risk estimates were dramatically increased with joint
effects of 4 or more than 4 Markov Blanket genes. Joint
interactions between 4, 5, 6, 7, 8, 9 or 10 Markov blanket genes
produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9% increase,
respectively, in lifetime risk of developing glioblastoma compared
to normal population (0.61%). Whereas modified expression of

Type of Prediction Analysis Case Counts (No Tumor/Tumor) Predictability

Bayesian Network Results using ROC Curve 13/30 1.000 AUC (.000 sig.)
Linear Regression (15 genes together) 13/30 .873 (aR square) (.000 sig.)
Linear Regression (stepwise) (10 gene model) 13/30 .880 (aR square) (.000 sig.)
Logistic Regression (discretized expression) 13/30 Perfect fit detected
Logistic Regression (raw expression) 6/19 Perfect fit detected
Cross Validation (discretized expression) 13/30 79.1%

Cross Validation (raw expression) 6/19 88%

Support Vector Machine (SVM) 6/19 100%

doi:10.1371/journal.pone.0064140.t004

PLOS ONE | www.plosone.org 13

May 2013 | Volume 8 | Issue 5 | 64140



Genes Critical to the Development of Glioblastoma

0.0 1.78701

-0.26725292
0.36637354

T

3.€5475
o - R e R R o e B e e e e e K R R R R R

!llll m i

Y IGFBP5S

0.47263497

0.7363175

1.0
DUSP7
ANK3
SH3GL3
WNT10B
GABRAS
PTGER3
CCND2
SSR2
LPL
TIMP4
EIF4Al
SRPX
HLAA
C1s

Figure 12. Hierarchical clustering of Pilocytic Astrocytoma Markov genes using raw expression values of Rickman study only. No
Tumor/Tumor Bar: Red bar areas represent samples without tumors and green bar areas represent tumor cases. Expression: Blue squares represent

underexpression; yellow squares represent overexpression.
doi:10.1371/journal.pone.0064140.g012

two separate sets of 10 genes found outside the Markov Blanket in
our Bayesian network only increased lifetime risk of brain tumor
development to 2.61% and 0.98%, respectively compared to
0.61% in normal population.

Validation of the 10 Key Markov Blanket Causal/signature
Glioblastoma Genes

All 10 total Markov genes were used in the analysis, except in
linear stepwise regression, which used only 6 significant predictor

Table 5. Diffuse Astrocytoma prediction analysis summary.

genes in the analysis. Prediction analysis of the Grade I Markov
genes showed that these 10 genes were was able to predict Pilocytic
Astrocytoma tumor status consistently in all analyses (Table 9).
The accuracy of the predicting Glioblastoma Tumor compared to
the normal samples was very high, and varied between 63-64
(linR), 84-100% (CV), 96-100% (LogR), or 100% (SVM)
(Table 9). In summary, this result demonstrates that the 10 gene
signature is a good predictor of Glioblastoma vs. normal brain.

Type of Prediction Analysis

Case Counts
(No Tumor/Tumor)

Predictability

Bayesian Network Results using ROC Curve 36/14
Linear Regression (18 genes together) 36/14
Linear Regression (stepwise) (10 gene model) 36/14
Logistic Regression (discretized expression) 36/14
Logistic Regression (raw expression) 23/8
Cross Validation (discretized expression) 36/14
Cross Validation (raw expression) 23/7
Support Vector Machine (SVM) 23/7

1.000 AUC (.000 sig.)

.207 (aR square) (.092 sig.)
.880 (aR square) (.028 sig.)
88% (1.000 sig.)

Perfect fit detected

70%

80%

100%

doi:10.1371/journal.pone.0064140.t005
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All 18 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 10 significant predictor genes in the analysis.
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Figure 13. Hierarchical clustering of Diffuse Astrocytoma Markov genes using raw expression values of Sun Study Only. No Tumor/
Tumor Bar: Green bar areas represent samples without tumors and red bar areas represent tumor cases. Expression: Blue squares represent

underexpression; yellow squares represent overexpression.
doi:10.1371/journal.pone.0064140.9g013

Results of hierarchical clustering using expression data from our
Markov genes are shown in Figure 15. Hierarchical clustering
(Pearson distance, average linkage) of the 15-gene signature
expression pattern shown green as normal control and red as,
Pilocytic tumor cases distinguished most of the Glioblastoma
tumors and normal cases.

Table 6. Anaplastic Astrocytoma prediction analysis summary.

Literature Based Validation of 10 Key Markov Blanket
Causal/signature Glioblastoma Genes Using Empirical

Pathways Finders

Research supporting the potential involvement and importance
of all 10 genes in development of glioblastoma was found in the
literature. For a full list of the biological pathways and gene

Type of Prediction Analysis

Case Counts (No Tumor/Tumor)

Predictability

Bayesian Network Results using ROC Curve 34/23
Linear Regression (18 genes together) 34/23
Linear Regression (stepwise) (11 gene model) 34/23
Logistic Regression (discretized expression) 34/23
Logistic Regression (raw expression) 23/19
Cross Validation (discretized expression) 34/23
Cross Validation (raw expression) 23/19
Support Vector Machine (SVM) 23/19

1.000 AUC (.000 sig.)

631 (aR square) (.000 sig.)
.645 (aR square) (.000 sig.)
96.5% (1.000 sig.)

Perfect fit detected

84.2%

100%

100%

doi:10.1371/journal.pone.0064140.t006
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All 18 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 11 significant predictor genes in the analysis.
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ontology terms associated with each gene please see Table 10. The
investigation using IPA’s Path Explorer produced a network of
genes showing empirical evidence of interaction among our 10
Glioblastoma Markov blanket genes. IPA Core Analysis of these
same Markov genes added genes and molecules such as NFk,
ERK, MAPK, VEGF, growth hormone and collagen to produce a
network whose top biological functions are cancer, neurological
disease, and cellular movement (Figure 16). IPA connections of
Grade IV Glioblastoma Markov genes reveled direct interactions
between CD99 and ANXA2, and EGFR and RAB31 genes
(Figure 17). Our analysis of these same Markov genes using
PathJam found that three of the 10 genes in particular seemed to
be potential ‘hubs of activity’ and had functions that they shared

(Figure 18). These genes, EGFR, COL4A1l, and CDK4 all shared
the ‘pathways to cancer’ annotation; and EGFR and COL4Al
were shown to be involved specific cancers such as glioma,
melanoma, lung cancer, bladder cancer, and pancreatic cancer.
Additionally, COL4Al and EGFR shared involvement in axon
guidance and focal adhesion.

Discussion

Our study produced several major novel findings, including
identification of a list of top over- and under-expressed genes
among 10 sub-studies on astrocytoma, identification of several key
signature genes important to the development of both low and

Table 7. Risk associated with Markov genes vs. non-Markov genes in Glioblastoma Multiforme.

Gene Set Risk
Normal Gene Set 0.61
Markov Differentially Expressed (COL4A1, CD99, ANXA2, MPP2, EGFR, CDK4, BTF3, RAB31, TOP2A, SERBP1) 85.90
D-Connected Differentially Expressed (KIF5C, PALLD, S100A10, TPPP, PCNA, FN1, IGFBP2, CDH11, LYPLA1) 261
D-Separated Differentially Expressed (PKP4, SYNCRIP, CALCRL, GABRA5, MOBP, PLOD2, WNT5A, C1S, RPS2, FCHO1) 0.98

doi:10.1371/journal.pone.0064140.t007
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Normal Gene Set Risk represents the SEER calculated 0.61% chance of a person developing a brain tumor in their lifetime.
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Table 9. Glioblastoma Multiforme prediction analysis summary.

Genes Critical to the Development of Glioblastoma

Type of Prediction Analysis

Case Counts (No Tumor/Tumor)

Predictability

Bayesian Network Results using ROC Curve 34/23
Linear Regression (18 genes together) 34/23
Linear Regression (stepwise) (11 gene model) 34/23
Logistic Regression (discretized expression) 34/23
Logistic Regression (raw expression) 23/19
Cross Validation (discretized expression) 34/23
Cross Validation (raw expression) 23/19
Support Vector Machine (SVM) 23/19

1.000 AUC (.000 sig.)

631 (aR square) (.000 sig.)
.645 (aR square) (.000 sig.)
96.5% (1.000 sig.)

Perfect fit detected

84.2%

100%

100%

doi:10.1371/journal.pone.0064140.t009

high grade astrocytomas, identification of important signaling
pathways in astrocytic stage 4 tumors, and identification of
possible mechanisms which may explain the genes and pathways
identified as important to development of glioblastoma.

Through meta-analysis of 10 sub-studies which compared
normal tissue to astrocytomas, a set of 646 genes which were
differentially expressed in the majority of these studies was
identified. Many of the genes identified through this meta-analysis
have in fact been implicated in development of astrocytoma
including EGFR  (amplification occurs in ~40% of primary
glioblastomas [23,24], HIF-la, MYC, WNT5A, and IDHS3A.
Enrichment analysis of the 646 genes using FuncAssociate
identified several processes associated with these genes, many of
which are related to nervous system, developmental, and tumor
promoting processes. Ingenuity Pathway Analysis also produced a
list of processes that are significantly associated with these genes,
including two pathways which have previously been linked to
development of astrocytomas [1. ‘WN'T/beta-Catenin Signaling’
(Genes from our set in pathway: CD44, CDH2, DVL3, LRPI,
MYC, SOX4, SOX9, SOX13, TCF3, TCF4, TLE3, WNT5A)
and 2. ‘mTOR Signaling’ (Genes: EIF3B, EIF3E, EIF3F, EIF4A1,
HIF1A, PRKDI1, RHOC, RND2, RND3)] and two pathways
associated with brain tumor development [1. ‘Glioma Invasiveness
Signaling’ (Genes: CD44, F2R, ITGAV, MMP9, RHOC, RND2,
RND3, TIMP3, TIMP4) and ‘Glioblastoma Multiforme Signal-

All 10 total Markov genes were used in the analysis, except in linear stepwise regression, which used only 6 significant predictor genes in the analysis.

ing’ (Genes: CDK6, CDKNIA, EGFR, ITPR2, MYC, RHOC,
RND2, RND3, TCF3, WNT5A)].

In order to narrow our large set of genes to a few genes which
could be most influential to development of astrocytomas, we
performed reverse engineering of our gene list using Bayesian
network analysis. Four networks of genes were produced, one for
each grade of Astrocytoma. Genes found to be most influential to
development of the highest grade of astrocytoma, Glioblastoma
multiforme (GBM) were: COL4Al, EGFR, BTF3, MPP2,
RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of
these genes were up-regulated, except MPP2 (down regulated).
Tumor status of 10 Markov blanket genes predicted by Bayesian
network analysis was validated using linear regression, logistic
regression, cross validation, hierarchal clustering and support
vector machine (SVM) analysis. These 10 genes were able to
predict tumor status with high accuracy by all methods. Analysis of
gene-gene interactions revealed that joint effects of changes in the
expression of different combination of a pair of Markov blanket
genes or three Markov blanket genes increase risk for developing
glioblastoma ranging from 0.73 to 5.84% and 1.46 to 4.47,
respectively. The glioblastoma risk estimates are dramatically
increased with joint effects of 4 or more than 4 Markov Blanket
genes. Joint interactions between 4, 5, 6, 7, 8, 9 or 10 Markov
blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or
85.9% increase, respectively, in lifetime risk of developing
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Figure 15. Hierarchical clustering of Glioblastoma Multiforme genes using raw expression values of Sun study only. No Tumor/Tumor
Bar: Green bar areas represent samples without tumors and red bar areas represent tumor cases. Expression: Darker squares represent

underexpression; Lighter squares represent overexpression.
doi:10.1371/journal.pone.0064140.9g015
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Table 10. Characteristics of Grade IV Glioblastoma Multiforme Markov blanket genes.

Gene Symbol/Name

Genomic
Location/
Cellular
Localization

Function

Cancer/Disease Link

COL4A1/Collagen,
type IV, alpha 1

13q34/extracellular
matrix

Inhibits angiogenesis
and tumor formation

Are upregulated in malignant and metastatic brain tumors [32]

Consistently linked to development of glioblastoma [25]; Has been linked to glioma tumor
invasiveness, proliferation, and angiogenesis [33,34]; Mutations have been found in EGFR
in primary glioblastomas [35] and have been linked to poor prognosis in GBM [36]. Its
signaling has been shown to cooperate with loss of tumor suppressor gene functions in
promotion of gliomagenesis

Found to be highly expressed in glioblastoma multiforme [37]; regulates tumor-associated
genes in pancreatic cancer cells [38]

Contributes to cell proliferation and resistance in cisplatin treatment in medulloblastoma
cells [39]

May have role in regulating EGFR in astrocyte development and oncogenesis [40];
associated with survival in glioblastoma [41]

Known target of glioblastoma anticancer therapy [42]; thought to be a driver mutation
gene in glioblastoma [43]

May act as an oncosuppressor in osteosarcoma; Is a useful marker for diagnosis of brain

tumor types [44]

EGFR/Epidermal 7p12/membrane Growth factor

growth factor

receptor

BTF3/Basic 5¢13.2/nucleus Transcription factor

transcription

factor 3

MPP2/Membrane 17912-q21/ Tumor suppressor;

protein, membrane Coupling of

palmitoylated 2 cytoskeleton to cell
membrane

RAB31/Member 18q11.3/ Vesicle and granule

RAS oncogene membrane targeting

family

CDK4/Cyclin- 12914/ Cell cycle regulation;

dependent cytoplasm inhibits RB protein

kinase 4 family members

CD99/CD9%9 Xp22.32/ Leukocyte migration,

molecule membrane T-cell adhesion,
protein transport,
and T-cell death

ANXA2/Annexin 15q22.2/ Regulation of cell

A2 Extracellular growth
space, extracellular
matrix, membrane
TOP2A/Topoisomerase 17q21-q22/ Resolves topological
(DNA) Il alpha 170kDa Cytosplasm, problems in genomic
nucleus, DNA resulting from
nucleoplasm replication,
transcription and repair
SERBP1/SERPINE1 1p31/Cytoplasm,

mRNA binding protein 1nucleus stability

Involved in migration of neural stem cells to glioma sites [45]; potentially involved in
glioma invasion [46]

Is target of several anticancer agents; mutations in this gene have been associated with
development of drug resistance; common significantly altered gene in cancer [47]; May be
involved in network of genes controlling cell cycle regulation in glioblastoma [48]; very

high copy number gain in glioblastoma [49]

Regulation of mRNA  Significantly overexpressed in ovarian cancer, especially in advanced disease [50]

doi:10.1371/journal.pone.0064140.t010

glioblastoma compared to normal population (0.61%). The
differential expression of two separate sets of 10 genes found
outside the Markov blanket in our Bayesian network only increase
lifetime risk of brain tumor development to 2.61% and 0.98%,
respectively compared to 0.61% in normal population. In
summary, it appears that differential expression of COL4Al,
EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A,
and SERBP1 genes may be required for the development of
glioblastoma (GBM), the most common type of malignant brain
tumor.

To investigate the biological mechanisms of our set of significant
Grade IV network genes we used biological databases such as The
Human Gene Compendium’s Gene Cards, PubMed, the Infor-
mation Hyperlinked over Proteins (iHOP) Database, and the
Glioblastoma Multiforme Database (GBMBase). Major patterns in
these tumors include components of the Ras-MAPK and PI3K-
AKT-mTOR signaling pathways being affected in the plurality
(88%; 80 of 91) of malignant gliomas and disruption of the p53
and RB tumor suppressor networks also occurring in a high
proportion of glioblastomas: 87% (79 of 91) and 78% (71 of 91),
respectively [25]. Our findings revealed that most of the
glioblastoma Markov Signature genes are up-regulated in malig-

PLOS ONE | www.plosone.org
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nant and metastatic brain tumors, linked to the glioma tumor
development, invasiveness, proliferation, and angiogenesis [34—
47]. Their signaling has been shown to cooperate with tumor-
associated gene functions involved in oncogenesis. Markov
signature genes identified in this study interact with NFk,
ERK, MAPK, VEGF, growth hormone and collagen to produce
a network whose top biological functions are cancer, neurological
disease, and cellular movement. Three of the 10 Markov causal
genes - EGFR, COL4A1, and CDK4, in particular seemed to be
potential ‘hubs of activity’. These three genes share the ‘pathways
to cancer’ annotation.

There are several strengths and limitations involved with our
analyses. Several characteristics of microarray expression studies
must be considered. First, expression levels of many genes differ
among individuals and thus gene expression can be analyzed like
other quantitative phenotypes such as height and blood glucose
levels. This allowed us to separate each gene into expression
categories of over-, median, and under-expression. Expression
changes can also reflect many types of alterations significant to
tumor development, including chromosomal translocations and
epigenetic alterations. Additionally, several studies have estab-
lished causal links between differential gene expression and
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Figure 16. Top IPA Grade IV Glioblastoma Markov genes network. IPA defined the network as related to ‘cancer, neurological disease, and
cellular movement'. Shaded genes represent our Markov genes. Non-shaded molecules were added by IPA during the analyses.

doi:10.1371/journal.pone.0064140.g016

complex disease risk and thus identification of over- and under-
expressed genes in tumor tissue compared to normal tissue could
provide important clues to the development of tumors. Further-
more, it has also been shown that genes with similar expression
patterns form complexes and/or pathways that are part of
regulatory circuits that may lead to tumors and other diseases,
lending support to the validity of our pathway analyses. Our meta-
analysis, which took the top 600 over- and top 600 under-
expressed genes from a set of studies, should also have produced
the most important differentially expressed genes across all
astrocytic tumors. Analysis that shows 143 genes in GBM are
expressed on average at 10-fold higher levels than normal tissue
confirms that the most highly expressed genes in GBM were
considered in our analysis [26].

There are also several limitations of expression values. Foremost
are the discrepancies between protein and mRNA levels in studies
correlating their expression, a clear sign that interactions outside
the classical DNA to mRNA to protein pathway are taking place
inside the cell. Additionally, it has been shown that known genes
may not necessarily be differentially expressed in diseases due to
the ability of mutations in the coding regions of genes and post-
translational modifications affecting gene function without affect-
ing its expression level. However, our approach of meta-analysis
and focusing on networks of genes rather than single genes may

PLOS ONE | www.plosone.org
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lessen the effect of missing important genes (i.e. while one gene in a
pathway may not be expressed, another may). Finally, only looking
at mean expression changes of genes could lead to incorrect
conclusions about the involvement of a pathway in a disease
condition, and so as suggested by de la Fuente 2010, co-expression
of genes should also be considered [27].

Limitations of enrichment analysis in general apply [28] to our
analysis, including: a) incomplete annotation databases as a result
of only a subset of known genes being functionally annotated; b)
annotation databases may not be completely updated with all
literature results; c¢) some annotation assignments may be
erroneous, especially those which are electronically inferred; d)
singling out the most important processes for genes involved in
several biological processes is limited. This can be overcome by
looking at the gene in context of other over- and/or under-
expressed genes however; and e) annotation bias due to some
biological processes being studied in more detail than others (e.g.
proliferation).

Another limitation of our approach is that because our set of
significant genes was chosen through meta-analysis of micro-array
studies that used differing platforms and differing gene totals per
study, we were unable to input a set of genes as for our ‘total gene
universe’ in our gene enrichment analyses. This limited us to
choosing the entire genome as our universe of comparison genes
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for the enrichment analyses. However, 4 of the 9 studies contained
18,800+ genes and one other study contained 14,584 genes,
making it likely that most of our selected significant genes
represent most of the appropriate over- and/or under-expressed
genes in astrocytoma.

Reverse network engineering methods have evolved greatly over
the past decade, with recent reports lending credibility to their
ability to correctly predict biological interactions [29,30]. Howev-
er, limitations associated with their use must be considered. In
particular, static Bayesian networks cannot contain feedback loops,
due to the steady state nature of the data. Thus, a characteristic

PLOS ONE | www.plosone.org

21

common to biological systems was not considered in our network.
Also, because Bayesian networks model probabilistic dependencies
among variables and not causality, we cannot conclusively say that
the parents of a node are direct causes of its behavior [4]. A causal
link can be inferred however, if the Causal Markov Condition
holds true. Simply, this condition states that any node in a
Bayesian network is conditionally independent of its non-
descendants, given its parents; and, a node is conditionally
independent of the entire network, given its Markov blanket. A
strength of our approach is the exploration of gene networks in
tumors without a priori genetic interaction networks being
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assumed. This has been mentioned as a limitation of previous
work on gene networks in gliomas [31]. Incorporation of biological
evidence that directs our Bayesian network search could serve to
strengthen our approach in the future however.

Finally, limitations concerning the data used in our study must
be considered. For example, our inability to separate pediatric
astrocytomas from adult astrocytomas, secondary glioblastomas
from secondary glioblastomas, and male vs. female cases does limit
the extent to which we can draw conclusions from our data. The
possibility that ‘a fraction of GBMs designated as primary tumors
may follow a sequence of genetic events similar to that of
secondary lesions but not come to clinical attention until
malignant progression to a GBM has occurred’, lessens the
concern of dividing types of glioblastomas however. Additionally,
our method could be considered non-biased in this respect, as it
does not pre-condition results based on priors, thus allowing for a
search which may provide key genes across all hypothesized
glioblastoma subtypes.

In summary, the major novel findings which emerged from this
study are that modified expression of Markov Blanket COL4A1,
EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A,
and SERBP1 genes are associated with the development of
glioblastoma, a highest form of astrocytoma. Modified expression
of these 10 Markov Blanket genes increases lifetime risk of
developing glioblastoma. Analysis of gene-gene interactions
revealed that the glioblastoma risk estimates were dramatically
increased with joint effects of 4 or more than 4 genes. Joint effects
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