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Abstract: Neurodevelopmental disorders are a challenge in medical genetics due to genetic
heterogeneity and complex genotype-phenotype correlations. For this reason, the resolution of
single cases not belonging to well-defined syndromes often requires an integrated approach of
multiple whole-genome technologies. Such an approach has also unexpectedly revealed a complex
molecular basis in an increasing number of patients, for whom the original suspect of a pleiotropic
syndrome has been resolved as the summation effect of multiple genes. We describe a 10-year-old
boy, the third son of first-cousin parents, with global developmental delay, facial dysmorphism,
and bilateral deafness. SNP-array analysis revealed regions of homozygosity (ROHs) in multiple
chromosome regions. Whole-exome sequencing prioritized on gene-mapping into the ROHs showed
homozygosity for the likely pathogenic c.1097_1098delAG p. (Arg366Thrfs*2) frameshift substitution
in LARP7 and the likely pathogenic c.5743C>T p.(Arg1915*) nonsense variant in OTOG. Recessive
variants in LARP7 cause Alazami syndrome, while variants in OTOG cause an extremely rare autosomal
recessive form of neurosensorial deafness. Previously unreported features were acrocyanosis and
palmoplantar hyperhidrosis. This case highlights the utility of encouraging technological updates in
medical genetics laboratories involved in the study of neurodevelopmental disorders and integrating
laboratory outputs with the competencies of next-generation clinicians.

Keywords: Alazami syndrome; compound phenotype; OTOG; regions of homozygosity; whole-exome
sequencing

1. Introduction

Neurodevelopmental disorders (NDDs) are the most frequent cause of disability in children
and, currently, the main reason for referral in clinical genetic services. Nevertheless, they remain
a major challenge due to high genetic-heterogeneity and weak genotype-phenotype correlations in
most cases. The introduction of next-generation technologies has been demonstrated as effective in
reducing the costs of the diagnostic trajectory of intellectual disability and in clinical decision-making
for focal epilepsy [1,2]. In addition, whole-exome sequencing (WES)-based diagnostics is predicted
to increase the number of individuals in whom the suspected pleiotropic syndrome is resolved as
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compound phenotypes, due to the simultaneous involvement of two or more disease-genes with
separated biological functions (i.e., compound phenotypes). In this context, consanguinity facilitates
the concurrence of multiple autosomal recessive disorders in the same individual [3].

Alazami syndrome (MIM 615071) is an ultra-rare autosomal recessive syndromal form of NDD,
described for the first time in 2012 in an inbred Saudi Arabian family with a novel form of primordial
dwarfism, due to a homozygous variant in LARP7 (OMIM 612026) gene [4]. Twenty-four patients have
been reported to date [5], often presenting subtle but recurrent facial features, such as deep-set eyes,
broad nose, wide mouth and teeth anomalies in addition to short stature, intellectual disabilities/global
developmental delay and poor speech. LARP7 encodes for the La-related protein 7, which acts as a
chaperone of the noncoding RNA 7SK [4]. Alazami syndrome is usually caused by frameshift variants
in LARP7 [5]. Neurosensorial deafness is not a feature of Alazami syndrome.

OTOG gene (OMIM 604487) encodes for the Otogelin protein, a noncollagenous component of the
acellular structures that cover the sensory epithelia of the inner ear [6]. Recessive variants in OTOG are
a very rare cause of hereditary hearing loss, known as DFNB18B (MIM 614945) [7]. To date, only four
causative variants in OTOG have been found in seven patients with DFNB18B: two nonsense, one
frameshift, and one missense variant [8].

Here, we report a 10 year-old boy, born to consanguineous parents, with global developmental
delay, absent speech, facial dysmorphisms, and bilateral congenital hearing loss. Multiple regions of
homozygosity (ROH) identified by SNP-array-supported whole-exome sequencing analysis, allowing
us to identify two homozygous deleterious variants in LARP7 and OTOG. This study reinforces the
utility of combining high-resolution SNP-array technologies with WES in resolving highly complex
phenotypes, especially in the presence of parental consanguinity.

2. Materials and Methods

2.1. Genomic DNA Extraction and Quantification

This family provided signed informed consent to molecular testing and to the full content of this
publication. This study was conducted in accordance with the 1984 Declaration of Helsinki and its
subsequent revisions. Molecular testing carried out in this report is based on the routine clinical care
of our institution. Peripheral blood samples were taken from both the patient and his parents, and
genomic DNA was isolated by using Bio Robot EZ1 (Quiagen, Solna, Sweden). The quality of DNA
was tested on 1% electrophorese agarose gel, and the concentration was quantified by Nanodrop 2000
C spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. SNP Array Analysis

SNP array analysis of the proband and his parents was carried out with the CytoScan HD
Array (Thermo Fisher Scientific) as previously described [9]. Data analysis was performed using
Chromosome Analysis Suite Software version 4.0 (Thermo Fisher Scientific) following a standardized
pipeline. Briefly: (i) the raw data file (.CEL) was normalized using the default options; (ii) an
unpaired analysis was performed using 270 HapMap samples as a baseline in order to obtain copy
numbers value and regions of homozygosity (ROHs) from .CEL files. The amplified and/or deleted
regions were detected using a standard Hidden Markov Model (HMM) method. Size threshold for
analysis was kept as 5 Kb for copy number variations (CNVs), and 1 Mb for ROHs. In order to
identify clinical or functionally relevant genomic variants, we compared all chromosomal alterations
identified to those collected in our internal database of ~4,000 patients studied by SNP Arrays since
2010 and public databases, including the Database of Genomic Variants (DGV; available online at:
http://projects.tcag.ca/variation/), DECIPHER (available online at: https://decipher.sanger.ac.uk/) and
ClinVar (available online at: https://www.ncbi.nlm.nih.gov/clinvar/). Base pair positions, information
about genomic regions and genes affected by CNVs and/or ROHs, and known associated diseases will
be derived from the University of California Santa Cruz (UCSC) Genome Browser (available online at:

http://projects.tcag.ca/variation/
https://decipher.sanger.ac.uk/
https://www.ncbi.nlm.nih.gov/clinvar/
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http://genome.ucsc.edu/cgi-bin/hgGateway), build GRCh37 (hg19). The clinical significance of each
rearrangement detected was assessed following the American College of Medical Genetics (ACMG)
guidelines [10].

2.3. Whole-Exome Sequencing

Proband DNA was analyzed by WES by using SureSelect Human Clinical Research Exome
V6 (Agilent Technologies, Santa Clara, CA, USA) following manufacturer instructions. This is a
combined shearing-free transposase-based library prep and target-enrichment solution, which enables
comprehensive coverage of the entire exome. This system enables a specific mapping of reads to
target deep coverage of protein-coding regions from RefSeq, GENCODE, CCDS, and UCSC Known
Genes, with excellent overall exonic coverage and increased coverage of HGMD, OMIM, ClinVar,
and ACMG targets. Sequencing was performed on a NextSeq 500 System (Illumina, San Diego, CA,
USA) by using the High Output flow cells (300 cycles), with a minimum expected coverage depth
of 70x. All variants obtained from WES were called by means of the HaplotypeCaller tool of GATK
ver. 3.58 [11] and were annotated based on frequency, impact on the encoded protein, conservation,
and expression using distinct tools, as appropriate (ANNOVAR, dbSNP, 1000 Genomes, EVS, ExAC,
ESP, KAVIAR, and ClinVar) [12–16], and retrieving pre-computed pathogenicity predictions with
dbNSFP v 3.0 (PolyPhen-2, SIFT, MutationAssessor, FATHMM, LRT and CADD) [17] and evolutionary
conservation measures.

Next, variants prioritization was performed starting from homozygous variants, involving the
genes located in the ROHs identified. Firstly, variants described as benign and likely benign were
excluded. Then, remaining variants were classified based on their clinical relevance as pathogenic, likely
pathogenic, or variant of uncertain significance according to following criteria: (i) nonsense/frameshift
variant in genes previously described as disease-causing by haploinsufficiency or loss-of-function;
(ii) missense variant located in a critical or functional domain; (iii) variant affecting canonical splicing
sites (i.e., ±1 or ±2 positions); (iv) variant absent in allele frequency population databases; (v) variant
reported in allele frequency population databases, but with a minor allele frequency (MAF) significantly
lower than expected for the disease (<0.002 for autosomal recessive disease and <0.00001 for autosomal
dominant disease); (vi) variant predicted and/or annotated as pathogenic/deleterious in ClinVar and/or
LOVD; (vii) variants in GJB2 gene setting up as cut off a MAF <= 0.1 and variants for other genes
associated with recessive hearing impairment and reported in Hereditary Hearing Loss Database
(https://hereditaryhearingloss.org/) setting up as cut off a MAF <= 0.5.

The resulting putative pathogenic variants were confirmed by Sanger sequencing in both the
proband and the parents’ DNA. PCR products were sequenced by using BigDye Terminator v1.1
Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and ABI Prism 3100 Genetic Analyzer
(Thermo Fisher Scientific). The clinical significance of the identified putative variants was interpreted
according to the American College of Medical Genetics and Genomics (ACMG) [18]. Variant analysis
was carried out considering the ethnicity of the patient.

2.4. Variant Designation

Nucleotide variants nomenclature follows the format indicated in the Human Genome Variation
Society (HGVS, http://www.hgvs.org) recommendations and reported in the Leiden Open Variation
Databases (LOVD) (https://databases.lovd.nl/shared/individuals/00276129).

3. Results

3.1. Clinical Description

The patient is a 10 year-old male, son of first cousins, unaffected parents of Caucasian origin
(Southern Italy). His family history was unremarkable. The patient was born at term (39 weeks) with a
low birth weight (2330 g). His birth length, head circumference, and Apgar score were unavailable.

http://genome.ucsc.edu/cgi-bin/hgGateway
https://hereditaryhearingloss.org/
http://www.hgvs.org
https://databases.lovd.nl/shared/individuals/00276129
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The neonatal period ran physiologically well, except for patent foramen ovale, but the following early
psychomotor development was delayed. The patent foramen ovale resolved spontaneously in the
following months. The patient held his head at 7 months, sat alone at about 18 months, and walked at
24 months. He never attained fully autonomous walking, language skills, or sphincter control. Due to
the severe speech impairment, the patient underwent multiple audiological exams which diagnosed a
profound bilateral neurosensorial deafness. Although the patient received auditory prosthesis, their
language skills did not improve. At 1 year, a brain MRI scan was performed and did not reveal
abnormalities except for a mild myelination delay. At examination, his height was 98 cm (<3rd centile),
weight 19.8 kg (<3rd centile) and his head circumference was 49.5 cm (<3rd centile). His facial features
included sparse eyebrows, prominent supraorbital ridges, short nose, high palate, and full lips. His
language was absent. His gait was unstable with a broad base and mild spasticity of the lower limbs.
The patient also displayed acrocyanosis and marked palmoplantar hyperhidrosis. The parents said
that these two features were present since his infancy.

3.2. Molecular Findings

We did not identify any clinically significant CNV in the patient, while multiple regions of ROH
were detected on chromosomes 2, 3, 4, 7, 8, 11, 16 and 18, respectively. The regions of homozygosity
identified in the patient are depicted in Figure 1 and listed in Table 1.
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Figure 1. Karyoview of the patient. Regions of homozygosity (ROHs) identified in the proband genome
are indicated by purple bars.

This finding was made in accordance with parental consanguinity and offered us the opportunity
to prioritize variant filtering from the WES data for homozygosity in disease-gene-mapping within
these regions. Accordingly, WES allowed us to detect two previously unpublished, homozygous
variants: a frameshift variant c.1097_1098del, p.(Arg366Thrfs*2) in LARP7 (NM_015454.2) mapping
in the ROH region on chromosome 4, and a nonsense variant c.5743C>T, p.(Arg1915*) in OTOG
(NM_001277269.1) mapping to the ROH region on chromosome 11. No further clinically relevant
variant was identified at the homozygous state in the other ROH regions. Variants mapped outside
these regions were prioritized according to the criteria listed in the Methods sections. No variant was
identified as reaching the likely pathogenic or pathogenic rank according to the American College of
Medical Genetics and Genomics and compatible with the observed phenotype.
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Table 1. List of regions of homozygosity (ROHs) identified in the proband genome according to the
International System for Human Cytogenetic Nomenclature (ISCN 2016). Size and number of genes
included in each ROH are indicated. All genomic coordinates were based on the GRCh37/hg19 build of
the Human Genome.

Regions of Homozigosity (ISCN 2016) Size (Mb) Number of Genes

arr[GRCh37] 2p25.2p25.1(5573938_10537316)x2 hmz 4.9 40

arr[GRCh37] 2p21p11.2(47453937_89129064)x2 hmz 41.6 317

arr[GRCh37] 2q11.1q22.1(95341387_137166151)x2 hmz 41.8 340

arr[GRCh37] 3p13p11.1(71199337_90485635)x2 hmz 19.2 49

arr[GRCh37] 3q11.1q13.33(93536053_120421935)x2 hmz 26.8 173

arr[GRCh37] 4p15.2p11(21674784_49089181)x2 hmz 27.4 117

arr[GRCh37] 4q11q31.1(52686799_141024195)x2 hmz 88.3 468

arr[GRCh37] 7p14.2p12.2(36814859_50418506)x2 hmz 13.6 98

arr[GRCh37] 7p12.1p11.1(51736013_58019983)x2 hmz 6.2 38

arr[GRCh37] 7q11.21q11.22(62461703_68908285)x2 hmz 6.4 50

arr[GRCh37] 8p23.3p23.1(168483_7011075)x2 hmz 6.8 46

arr[GRCh37] 11p15.5p13(1751363_33420180)x2 hmz 31.6 367

arr[GRCh37] 16p13.3p13.2(6643315_8047081)x2 hmz 1.4 1

arr[GRCh37] 18q12.2q21.1(34083335_43959703)x2 hmz 9.8 33

Mb, Megabases.

The identified variants in LARP7 and OTOG were confirmed by Sanger sequencing (Figure 2)
using specific primers (LARP7, exon 8, Forward Primer: GAATCCCTAGCTCCCCGATC; LARP7,
exon 8, Reverse Primer: GTGCAGTTCTTGGCTACAGG. OTOG, exon 35, Forward Primer:
CACTTAGCCCAGTACTGCCT; OTOG, exon 35, Reverse Primer: CTCAGGGCATAGGATGTGGG).

The LARP7 variant c.1097_1098del, p.(Arg366Thrfs*2) had an MAF of 0.00002 and 0.00003 in
gnomAD and ExAC, respectively. The OTOG variant c.5743C>T, p.(Arg1915*) had an MAF of 0.00003
and 0.0001 in gnomAD and ExAC, respectively. The LARP7 variant is predicted to cause a frameshift
leading to the deletion of the last 217 amino acids of the protein. The OTOG variant is predicted to
truncate the protein and to cause loss of the last 1011 amino acids. Both variants were classified as
likely pathogenic according to ACMG guidelines [18]. Complete bioinformatic details of these variants
are reported in Table 2. No further variant classified as pathogenic or likely pathogenic, according
to ACMG guidelines in other genes and previously associated with phenotypes compatible with the
clinical features reported by the patients, were identified by the bioinformatics analysis. In particular,
we did not find any additional deleterious variants in other genes responsible for hereditary hearing
loss and annotated in the Hereditary Hearing Loss Database (https://hereditaryhearingloss.org/), or the
other satellite symptoms, including palmoplantar hyperhidrosis and acrocyanosis.

https://hereditaryhearingloss.org/
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Table 2. Characteristics of the variants identified in the LARP7 and OTOG genes.

Chromosome Start End Reference
Allele

Alternative
Allele Genotype Gene Nucleotide

Change
Amino Acid

Change
Gene

Impact dbSNP ID gnomAD_exome
Allele Count

TOPMED
Allele
Count

ExAC_ALL
Allele
Count

4 113568939 113568941 AAG A homo_alt LARP7
NM_015454.2 c.1097_1098del p.(Arg366Thrfs*2) frameshift

substitution rs566464249 4/237240
MAF 0.00002

6/125568
MAF

0.00005

3/113350
0.00003

11 17632554 17632554 C T homo_alt OTOG
NM_001277269.1 c.5743C>T p.(Arg1915*) stopgain rs761287044 5/146398

MAF 0.00003

2/125568
MAF

0.00002

1/15676
0.0001
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of individual II.1 and his unaffected parents. (c) Sanger sequence of a PCR product amplified with 

Figure 2. Family tree and molecular findings in the family. (a) Double lines in pedigree indicate
consanguinity. Filled and unfilled circles/squares represent affected and unaffected individuals
respectively. (b) Sanger sequence of a PCR product amplified with primers targeting exon 8 of LARP7
of individual II.1 and his unaffected parents. (c) Sanger sequence of a PCR product amplified with
primers targeting exon 35 of OTOG of individual II.1 and his unaffected parents. Vertical red arrows
indicate variant position.

4. Discussion

Here, we report a boy with severe NDD, absent speech with profound neurosensorial deafness,
growth restriction, and facial dysmorphisms, resulting from double homozygosity in LARP7, causing
Alazami syndrome and OTOG, associated with a very rare form of autosomal recessive neurosensorial
deafness. Although the parental consanguinity predicted multiple ROHs at the SNP array analysis,
it did not predict that there were multiple genes involved in the disease. Given our experience, we
suggest, in cases like the one we describe, that the possibility of multiple genes involved in the etiology
of the phenotype should be taken into account.

LARP7 gene encodes a chaperone protein required for both stability and function of the RNA. In
particular, it forms a complex with the nuclear 7SK RNA to regulate RNA polymerase II transcription.
To date, the clinical effect of deleterious variants in LARP7 is restricted to Alazami syndrome. Currently,
24 patients from 12 families are described as having Alazami syndrome and recessive variants in
LARP7 [5]. Of the 14 identified variants, 12 were frameshift, one was nonsense, and one was predicted to
cause abnormal splicing. Therefore, all deleterious variants causing Alazami syndrome are presumably
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null alleles [5]. Our findings are in line with the current literature, as the variant detected in our
patient is a frameshift predicted to cause the deletion of the last 217 amino acids and, therefore, the
loss of the RNA recognition motif 2 (RRM2). At a functional level, this event would likely lead to
the formation of a truncated protein [p.(Arg366Thrfs*2)] or nonsense-mediated mRNA decay. This
previously unpublished variant is located near to the variants reported in the original report, as well
as those described by Hollink and colleagues [19]. This brings the number of identified deleterious
variants in LARP7 to 15 (Figure 3).
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Figure 3. Schematic representation of the protein domains of La-related protein 7 [20,21], encoded by
LARP7, with positions of all known deleterious variants published to date and including the present
one [4,5,19,22–26]. The variant identified here is in red. (LaM, Lupus antigen Motif; RRM1, RNA
Recognition Motif 1; RRM2, RNA Recognition Motif 2).

The La protein RNA-binding motif is critical for the physiological function of the encoded protein
as all identified deleterious variants cause the loss of this domain. On a clinical perspective, the
overall phenotype observed in this patient is fully in agreement with the Alazami syndrome clinical
spectrum, which mainly includes global developmental delay with absent speech, growth retardation
(of prenatal onset), and peculiar facial appearance. Interestingly, the described patient also presented
with bilateral profound neurosensorial deafness, acrocyanosis, and palmoplantar hyperhidrosis. While
hearing impairment may be explained by the combined recessive variants in OTOG (see below),
acrocyanosis and palmoplantar hyperhidrosis remain unexplained. The concurrence of these features
might be causal, as both are unspecific and are common in the general population. Nevertheless, at
the moment, we cannot exclude that acrocyanosis and palmoplantar hyperhidrosis might represent
unusual phenotypic manifestations of LARP7, OTOG, or a combination of both. Further patients are
needed in order to explore whether they are casually associated with Alazami syndrome or, rather,
represent its unusual manifestations.

OTOG gene encodes for the Otogelin, an N-glycosylated protein that is expressed in the acellular
membranes covering the six sensory epithelial patches of the inner ear, including the cochlea, the
tectorial membrane over the organ of Corti, the vestibule, the otoconial membranes over the utricular
and saccular maculae, and the cupulae over the cristae ampullares of the three semicircular canals.
These membranes are collectively involved in the mechanotransduction process of external auditory
stimuli. The movement of these membranes, which is induced by sound in the cochlea or acceleration
in the vestibule, results in the deflection of the stereocilia bundle at the apex of the sensory hair cells,
which in turn opens the mechanotransduction channels located at the tip of the stereocilia [6]. Several
studies aimed at evaluating the expression level of otogelin in human tissues found that this protein
is ubiquitous, but the transcript levels were the highest in the inner ear, followed by the kidney, the
lung, the spleen, the thymus, and the liver [7]. To date, deleterious variants in OTOG are selectively
associated with a rare non-syndromal form of autosomal recessive neurosensorial deafness. The



Genes 2020, 11, 379 9 of 11

present patient and previously published deleterious variants bring the number of described patients
to eight and the number of reported variants to five (Figure 4).
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Figure 4. Schematic representation of protein domains of Otogelin [27], encoded by OTOG, with
positions of all known deleterious variants published so far, and including the present one [7,8]. The
variant identified here is in red. (vWFD, von Willebrand factor type D domain; C8, cystein-rich domain;
TIL, trypsin inhibitor-like cysteine-rich domain; vWFC, von Willebrand factor type C domain; ZP, zona
pellucida domain; C-terminal cysteine knot-like domain).

The c.5743C>T variant is predicted to introduce a premature stop codon, which would, presumably,
lead to the formation of a truncated protein [p.(Arg1915*)] or nonsense-mediated mRNA decay. This
is in line with the predominance of null alleles in OTOG associated with hereditary deafness. In our
patient, the hearing phenotype is apparently severe and of congenital onset, as suggested by previous
papers speculating on the prenatal onset of the disease in OTOG-related autosomal recessive hereditary
deafness [7,8].

5. Conclusions

Our case highlights the importance of combined genomic approaches in solving complex
phenotypes and the role of parental consanguinity in prioritizing candidate gene-mapping in ROHs.
We also identified novel deleterious variants in LARP7 and OTOG, which expand their molecular
spectrum and confirm the associated phenotypes. This patient also presented acrocyanosis and
palmoplantar hyperhidrosis, which might represent unusual phenotypic manifestations of LARP7,
OTOG, or a combination of both.
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