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Summary:

Individuals vary widely in drug responses, which can be dangerous and expensive due to treatment
delays and adverse effects. Growing evidence implicates the gut microbiome in this variability,
however the molecular mechanisms remain largely unknown. We measured the ability of 76
diverse human gut bacteria to metabolize 271 oral drugs and found that many of these drugs are
chemically modified by microbes. We combined high-throughput genetics with mass spectrometry
to systematically identify drug-metabolizing microbial gene products. These microbiome-encoded
enzymes can directly and significantly impact intestinal and systemic drug metabolism in mice
and can explain drug-metabolizing activities of human gut bacteria and communities based on
their genomic contents. These causal links between microbiota gene content and metabolic
activities connect interpersonal microbiome variability to interpersonal differences in drug
metabolism, which has implications for medical therapy and drug development across multiple
disease indications.

Following administration, drug molecules typically undergo chemical modification(s) and
resulting metabolites can have distinct functional and toxicological properties from their
parent drug!. Most drugs are delivered orally and can encounter commensal microbes in the
small and large intestine. These microbes collectively encode 150-fold more genes than the
human genome, encompassing a rich enzyme repository with drug-metabolizing potential.
Indeed, anecdotal examples of interactions between the gut microbiome and drugs or drug
metabolites have been reported, with intestinal and systemic pharmacological effects. Such
compound modifications by gut microbes can lead either to their activation (e.g.,
sulfasalazine?), inactivation (e.g., digoxin3), or toxification (e.g., sorivudine/brivudine® and
irinotecan®). For a few drugs, microbial biotransformation has been assigned to specific
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bacterial strains and gene products3°7. However, these examples are the exception, as the
field has little systematic understanding of the scope, specificity, or microbial/chemical
determinants of microbiome-drug interactions®.

We set out to systematically assay microbe-drug interactions by measuring the ability of
representative human gut bacteria to metabolize structurally diverse drugs and by identifying
drug-metabolizing microbial gene products. We establish that these drug-metabolizing
microbial proteins can contribute to in vivo drug metabolism of gnotobiotic mice, and
provide evidence that (metagenomic) sequence data can explain the capacity of isolated gut
bacteria and complete communities to convert specific drugs. This could provide a means to
mechanistically connect microbiome information to interpersonal variation in drug
metabolism and toxicity.

Identification of drug-metabolizing bacteria from the human gut

microbiome

We first assessed the capacity of 76 bacterial species/strains, that represent the major phyla
of the human gut microbiome, to chemically modify medical drugs in vitro (Fig. 1a,
Supplementary Table 1). We employed a previously established combinatorial pooling
strategy? to assign 271 drugs across 21 pools, so that each drug is represented in
quadruplicate but shares a pool with any other drug at most twice (Extended Data Fig. 1a).
The 271 drugs were selected to span chemical drug space, resulting in a selection of diverse
clinical indications (excluding antibiotics), physicochemical properties, and predicted
intestinal concentrations (Fig. 1b, Extended Data Fig. 1b-d, Supplementary Table 2). We
incubated each gut species/strain with each drug pool and three vehicle controls under
anaerobic conditions and measured drug concentrations before and after a 12-hour
incubation by liquid chromatography-coupled mass spectrometry (LC-MS). The analyzed
3840 samples comprise a total of 20,596 bacteria-drug interactions, measured in
quadruplicate.

We discovered that the levels of two thirds (176) of the assayed drugs are significantly
reduced (>20%, FDR-corrected p-value (pFDR) < 0.05) by at least one bacterial strain and
that each strain metabolizes 11-95 different drugs (Extended Data Fig. 1e-g, Supplementary
Table 3). Drug levels were largely unchanged in no-bacteria controls buffered to pH 4-7,
controlling for acidification of the culture media. By contrast, levels of positive control
drugs expected to be metabolized by gut bacterial®, such as sulfasalazine, lovastatin,
omeprazole, and risperidone, were significantly decreased over time (>20%, pFDR < 0.05;
Extended Data Fig. 2a). Clustering the bacterial isolates according to their drug-
metabolizing activities recapitulates their phylogenetic relationships to the strain level and
reveals phylum-specific metabolic activities (Fig. 1c, Extended Data Fig. 3a). Clustering the
drugs based on this data groups compounds that share structural features, revealed by
functional group and maximum common substructures analysis (Fig. 1d-e, Extended Data
Fig. 3b, Supplementary Table 4). This suggests possible chemical targets for metabolic
modifications by bacteria. For example, drugs specifically metabolized by bacteroidetes
(Fig. 1c, cluster I) contain ester or amide groups that could be hydrolyzed, whereas
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compounds metabolized by most bacteria except proteobacteria (Fig. 1c, cluster Il), all
contain a nitro or azo-group, prone to reduction in anaerobic metabolism. Indeed, functional
group analysis suggests that certain chemical substructures, such as lactones, nitro, azo, and
urea groups predispose compounds for microbial metabolism (Extended Data Fig. 2b).
Interestingly, chemical groups previously reported to be targeted by microbial metabolism?0
(e.g., esters, amides) are also found among drugs that are not metabolized by any of the
tested bacteria, suggesting additional structural specificity to microbial drug metabolism.

Identification of bacteria-produced drug metabolites

To identify products of bacterial drug metabolism and gain insights into the chemistry of
observed biotransformations, we conducted untargeted metabolomics analysis of all
samples. For each bacterial isolate, we identified compounds that solely occur in the
presence of a specific drug (e.g., Fig. 2a). This resulted in 6531 different drug-compound
pairs for all 20,596 tested bacteria-drug interactions (log2 fc > 1, pFDR < 107%) (grey bars,
Fig 2b). To eliminate measurement artifacts, we applied data filtering based on
chromatographic retention, mass defects of drugs and their putative metabolites, and ion
fragmentation. In addition, we only included compounds which significantly accumulated
(log2 fc = 1, pFDR < 0.05) while their associated parent drug decreased upon bacterial
incubation. This analysis correctly identifies reported microbe-derived drug metabolites®
(e.g., metabolites of sulfasalazine, paliperidone, and pantoprazole, Supplementary Table 5).
We found 868 candidate drug metabolites that are specific to the presence of a given drug;
these represent direct products of bacterial drug modifications or bacterial responses that are
unique to a specific drug (blue bars, Fig 2b, Supplementary Tables 5-6).

To gain insights into the chemistry of microbial drug metabolism, we calculated the mass
difference between each drug-specific metabolite identified and its associated drug. The
resulting differences were not randomly distributed: discrete mass differences appeared
multiple times, suggesting conserved metabolic transformations of different drugs (Fig. 2c).
The measurements’ high mass accuracy, together with drug structures, suggest chemical
modifications that result in both decreased and increased masses: the negative mass
differences —2.016, —15.995, and —42.011 suggest oxidation (-H>), reduction (-O), and
deacetylation (-C,H,0), respectively, whereas the positive mass differences +2.016,
+15.995, +18.010, +42.011, and +56.026 suggest hydrogenation (+H>), oxidation (+0),
hydroxylation (+H,0), acetylation (+C,H»0), and propionylation (+C3H40), respectively
(Fig. 2c, Supplementary Tables 5-6). To systematically identify structural targets of
microbial metabolism, we performed functional group analysis on sets of drugs sharing a
specific mass difference with respect to their metabolite (Fig. 2d, Supplementary Table 4).
As expected, all drugs that undergo either deacetylation or hydrogenation contain an acetyl
ester or an alkene group (Extended Data Fig. 4a). Intriguingly, most drugs predicted to be
acylated contain an aliphatic amine or hydroxyl, suggesting N- and O-acylation (further
characterized below).

To assess whether drug metabolism of axenic bacterial cultures can translate to animal
models and to complete human gut microbial communities, we focused on dexamethasone, a
corticosteroid uniquely metabolized by Clostridium scindens (ATCC 35704) in our screen.

Nature. Author manuscript; available in PMC 2019 December 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zimmermann et al.

Page 4

This desmolytic (side-chain cleaving) activity produces the androgen-form of the drug
(Extended Data Fig. 4b-c)1112, We administered an oral dose of dexamethasone or vehicle
to either germfree (GF) or C. scindens mono-colonized gnotobiotic (GN & 56/19ens) mice and
quantified dexamethasone and its androgen metabolite in different body compartments (7 h
after administration, corresponding to two serum drug half-lives, Extended Data Fig. 5a,
Supplementary Table 7). Dexamethasone was detected in the cecum of mice from both
groups, with a significant reduction in GN:5¢/3ens and the androgen metabolite
accumulated to greater levels in cecum and serum of GN &:5¢/19€ns mice compared to the GF
controls. This demonstrated that the drug reaches the lower intestine, which carries high
bacterial density (1.24+0.3*10°9 CFUs per gram luminal contents; n=4), and that
dexamethasone is metabolized in vivo by an intestinal microbe, which affects serum
metabolite levels (Extended Data Fig. 5b, Supplementary Table 8). This likely extends to
other corticosteroids, as we also found prednisone, prednisolone, cortisone and cortisol to be
desmolytically metabolized by C. scindens (ATCC 35704) (Extended Data Fig. 5c). Notably,
anaerobic incubation of dexamethasone with fecal cultures from 28 healthy human donors
illustrates significant interpersonal variation in drug metabolizing activity, but this capacity
neither correlates with bacterial culture density nor with the abundance of C. scindensin a
community (Extended Data Fig. 5d-f, Supplementary Table 9). This is consistent with
previous reports that C. scindens metabolizes endogenous steroid hormones in a strain-
specific manner3 and suggests that other bacterial taxa may also metabolize
dexamethasone. Together, these results (and those of others3) emphasize that species identity
is often insufficient to explain bacterial drug metabolism, and that identification of gene
markers directly associated with enzymatic drug conversion may instead be necessary.

Identification of drug-metabolizing gene products

Many of the drug modifications found in the initial screen were generic, such as hydrolyses
and reductions, making it challenging to predict responsible gene products from genomic
sequences alone. Therefore, we developed a gain-of-function approach to identify DNA
fragments from any source species that confer drug metabolic capacity to a heterologous
host. To establish this protocol, we selected Bacteroides thetaiotaomicron, which
metabolized 46 different drugs including diltiazem, as an exemplary source species
(Extended Data Fig. 6a). First, we isolated and sheared B. thetaiotaomicron gDNA to 2-8 kb
fragments, cloned them into an £. coli expression vector, and arrayed 51,000 transformed £.
coli clones in 384-well format. Sequencing 160 randomly selected clones revealed a mean
insert length of 3.1 kb suggesting a homogenous ~25-fold genome coverage for the entire
library (Fig. 3a). Second, we assembled 133 pools of 384 clones, incubated them with a
mixture of the drugs metabolized by B. thetaiotaomicron, and measured drug and drug
metabolite levels over time to identify active library plates that included clones that gained
specific drug-metabolizing capacities (e.g., Extended Data Fig. 6b). Third, we pooled rows
and columns of active library plates and repeated the drug metabolism assay to identify the
plate position (bacterial clone) that gained drug metabolizing function (e.g., Extended Data
Fig. 6¢). Fourth, we sequenced the gDNA inserts carried by these active clones (e.g., Fig
3b). To validate the identified genes (e.g., bt4096 for diltiazem metabolism), we i) repeated
drug-metabolizing assays with expression constructs carrying PCR-amplified gene

Nature. Author manuscript; available in PMC 2019 December 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zimmermann et al.

Page 5

sequences (Extended Data Fig. 6d-e), ii) demonstrated that the purified enzyme catalyzes the
drug transformation (Fig. 3c), and iii) established that in-frame deletion of 6t4096in B.
thetaiotaomicron leads to loss of diltiazem-metabolizing activity in vitro, which is restored
by gene complementation in a heterologous genomic location (Fig. 3d).

Diltiazem is an oral calcium channel blocker used in the treatment of hypertension,
arrhythmia, and angina pectoris. The drug is metabolized in vivo to multiple metabolites that
maintain variable inhibition of calcium channels and are targets of distinct hepatic
cytochromes, which gives rise to numerous potential drug-drug interactions41°, Therefore,
we assessed the impact of bacterial activity on intestinal and systemic levels of diltiazem and
its metabolites. We colonized germfree mice with either B. thetaiotaomicron wildtype or the
bt4096 deletion strain, orally administered diltiazem, and quantified the kinetics of the drug
and 9 drug metabolites in 9 body compartments (Extended Data Fig. 6f and 7). Intestinal
drug and metabolite levels demonstrate that deacetylation of both diltiazem and diltiazem
metabolites in the gut is 6t4096-dependent (Fig. 3e, Extended Data Fig. 6g and 8a,
Supplementary Tables 10-11). Bacterial contribution to diltiazem metabolism is further
accentuated when repeated oral doses (simulating typical treatment schemes) are
administered; this also demonstrates the contribution of a single gut bacterial gene to
systemic drug metabolism (Fig. 3f, Extended Data Fig. 8b, Supplementary Tables 10-11).

Using this gain-of-function approach, we identified 16 additional B. thetaiotaomicron gene
products that (together with BT4096) metabolize 18 different drugs to 41 distinct
metabolites; each validated by targeted cloning and expression in £E. coli (Supplementary
Tables 12-13). The resulting network of bacterial gene products, metabolized drugs, and
produced drug metabolites reveals the specificity and cross-activity of these enzymes (Fig.
4a). For example, BT0569 shows promiscuous hydrolase activity towards many structurally
diverse drugs; BT2068 targets two and BT2367 only one of the 18 drugs metabolized by the
gain-of-function library. Although the gain-of-function approach can identify redundant
enzymes, none were found in the B. thetaiotaomicron genome for BT2068- or BT2367-
activities (Extended Data Fig. 9a-b). Indeed, in-frame gene deletion and complementation
studies in B. thetaiotaomicron confirm that 62068 and bt2367 expression is required and
rate-limiting to metabolize norethindrone acetate and pericyazine, respectively (Fig. 4b-c).
Wildtype and 6£2068-complemented strains accumulate a norethindrone acetate metabolite
that is 2.016 Da heavier than the parent drug, suggesting its reduction. BT2068 also
metabolizes the structurally related compounds levonorgestrel and progesterone (Extended
Data Fig. 9c-d). Bt2367encodes a putative acyltransferase; notably, B. thetaiotaomicron
converts pericyazine to metabolites with masses consistent with acetyl- and
propionylpericyazine (Fig. 4c). Incubation of purified BT2367 with pericyazine and
structurally related substrates together with reaction product LC-MS/MS analysis
demonstrates that this enzyme uses acetyl-CoA and propionyl-CoA as cofactors to O-acylate
pericyazine (Extended Data Fig. 9e-g). Together, the developed approach systematically
identifies microbiome-encoded drug-metabolizing gene products resulting in gene-drug-
metabolite networks that provide mechanistic insights into microbiome (drug) metabolism.
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Microbial gene products explain human gut bacteria and community drug
metabolism

To further expand our understanding of microbiome drug metabolism, we used the gain-of-
function approach to identify 13 drug-metabolizing gene products from Bacteroides dorei
and Collinsella aerofaciens that collectively metabolize 16 drugs (Fig. 5a, Extended Data
Fig. 10a-b, Supplementary Table 13). We next assessed whether the genomic presence of
homologs of these identified drug-metabolizing gene products can explain drug metabolism
activities across the 76 bacterial strains (Fig. 1c). For example, homologs of the diltiazem-
metabolizing enzyme BT4096 indicate diltiazem-metabolizing activity of these gut bacteria
(Fig. 5b, Supplementary Table 14). To systematically investigate whether the identified drug-
metabolizing gene products explain drug metabolism activities of the tested species, we
performed gene set enrichment analysis for the identified gene products among bacterial
strains metabolizing specific drugs®. Indeed, many of the identified drug-metabolizing gene
products show significant enrichment and hence likely contribute to the observed microbial
drug metabolism (Fig. 5¢, Supplementary Table 15). For example, the set of bacterial strains
metabolizing norethindrone acetate is significantly enriched for a homolog to BD03091 and
BT2068 (pFDR < 10~7), which are also homologous to one another (Fig. 5d, Extended Data
Fig. 10c-d, Supplementary Tables 14-15). In fact, all strains carrying a BD03091/BT2068
homolog also metabolize norethindrone acetate, whereas only three of the norethindrone
acetate-metabolizing strains do not encode such an enzyme homolog. We repeated the
enrichment analysis using combinations of identified (including non-homologous) enzymes
that metabolize the same drug. The combination of enzyme sequences originating from
different bacterial species targeting the same drug(s) further increases enrichment
significance and the ability to explain microbial drug metabolism from genomes (Fig. 5c,
Extended Data Fig. 10d-e, Supplementary Table 15). For example, we identified tinidazole-
metabolizing gene products from three different bacterial species (Fig. 4a, Extended Data
Fig. 10b), none of which individually is significantly enriched among tinidazole-
metabolizing bacteria; however, their combination significantly (pFDR = 0.0045) explains
tinidazole metabolism across species (Fig. 5¢, e, Extended Data Fig. 10c-d).

To test whether the abundance of encoded drug metabolizing gene products can also explain
drug metabolism of a complex microbial gut community, we used the diltiazem-
metabolizing enzyme BT4096 as an example. We measured ex vivo diltiazem deacetylation
kinetics of fecal samples collected from 28 unrelated human donors. These gut communities
exhibited significant differences in their diltiazem-metabolizing capacity, which correlates
with bt4096 homolog abundance (measured by gPCR), but not bacterial density or B.
thetaiotaomicron abundance (Fig. 5f, Extended Data Fig. 11a-b, Supplementary Table 16).
Although diltiazem deacetylation is a chemically simple reaction, it requires a specific
enzyme that is heterogeneously represented across strains and communities. As a result,
gene abundance can partially explain the drug metabolizing capacity of individual gut
isolates and of human gut microbial communities. To generalize this approach, we
performed metagenomic sequencing of the 28 bacterial communities (Extended Data Fig.
11c, Supplementary Tables 17-18). Consistent with the gPCR analysis, the abundance of
BT4096 sequence homologs in this metagenomic data highly correlated with the
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communities’ diltiazem deacetylation activity (Extended Data Fig. 11d, Supplementary
Table 19). Unlike gPCR, metagenomic analysis does not rely on specific primers, which
allowed us to examine whether less conserved drug-metabolizing genes also correlate with
the drug metabolizing capacity of an individual’s microbiome. To this aim, we measured the
ex Vvivo activity of the 28 communities to metabolize two additional drugs, norethindrone
acetate and famciclovir, and quantified the metagenomic abundance of bacterial phyla,
genera, species and gene products that we identified in the strain- and enzyme-targeted
screens to metabolize these two drugs. We found that the gene abundance of identified drug-
metabolizing proteins significantly (p-value < 0.05) correlated with the communities’
capacity to metabolize the respective drug (Fig. 5g-h, Extended Data Fig. 11e-f,
Supplementary Table 19). In the case of famciclovir, we also found significant correlations
between drug-metabolizing microbiota activity and the abundance of certain bacterial
species and broader phylogenetic groups, which is consistent with the results of the initial
screen shown in Fig. 1c. These results provide a prospective approach to better understand
and potentially predict microbiome drug metabolism, in cases when a drug-modifying
reaction is catalyzed by a single gene product and also in cases mediated through the
metabolic activity of defined members of a microbial community.

Discussion:

Methods:

Chemicals

We provide an outline of the drug-metabolic activity of human gut bacteria and found that
about two thirds of the 271 assayed drugs are metabolized by at least one strain in our
survey. Notably, food and endogenous compounds likely serve as physiological substrates
for many of these chemical transformations, as illustrated for cortisol and progesterone
metabolism. We further developed an approach for microbiome-wide identification of
(drug)-metabolic gene products and we validated 30 microbiome-encoded enzymes that
collectively convert 20 drugs to 59 candidate metabolites. Depending on the drug and its
formulation, we anticipate that such microbiome drug metabolism could play a role in
determining intestinal and systemic drug and drug metabolite exposure. Together, these
results complement previous studies that highlight the impact of drugs on bacterial fitness
and microbiome compositionl”18, and others that identify microbiome-induced changes in
hepatic drug metabolism19.20. Further, this study provides a mechanistic understanding of
microbiome (drug) metabolism that may enable rational strategies to manipulate individuals’
microbiota to beneficially alter metabolic microbiome-host interactions.

Screened drugs were picked from the Pharmakon1600 library (MicroSource Discovery
Systems) and pooling was performed by the Yale Center for Molecular Discovery.
Compounds for follow-up studies were purchased individually (see Supplementary Table 20
for details). LC-MS grade solvents were from Fisher Scientific and other chemicals were
from Sigma Aldrich, if not otherwise indicated.

Nature. Author manuscript; available in PMC 2019 December 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zimmermann et al. Page 8

Bacterial Culture Conditions

Bacterial strains used in this study are listed in Supplementary Table 1.

Anaerobic culture conditions —A flexible anaerobic chamber (Coy Laboratory
Products) containing 20% CO,, 10% H», and 70% N, was used for all anaerobic
microbiology steps. All anaerobic culturing was performed on brain-heart-infusion (BHI;
Becton Dickinson) agar supplemented with 10% horse blood (Quad Five Co.). Liquid
cultures of bacterial gut isolates and whole communities for drug degradation assays were
grown in Gut Microbiota Medium (GMM)?2L, To make unmarked deletion and
complementation strains, B. thetaiotaomicron \VP1-5482 (ATCC 29148) derived strains were
grown anaerobically at 37°C in liquid TYG medium and on TYG agar supplemented with
hemin and vitamin K22, For selection, gentamicin 200 pug/mL, erythromycin 25 pg/mL,
and/or 5-fluoro-2-deoxy-uridine (FUdR) 200 pug/mL were added as indicated. CFU (colony
forming unit) counting to determine mouse gut colonization levels and in vitro culture
densities was performed anaerobically on BHI blood agar.

Aerobic culture conditions —Escherichia coli strains for molecular cloning were
grown aerobically at 37°C in LB medium (200 rpm shaking) and on LB agar supplemented
with carbenicillin (100 ug/mL) or kanamycin (50 pg/mL).

Preparing Gain-of-Function Libraries, Strain Pooling, and Hit Validation

Bacterial strains, plasmids, and primers are listed in Supplementary Tables 1 and 12.

Preparing gain-of-function libraries —Heterologous expression libraries were
prepared as previously described?3. In brief, genomic DNA was extracted from overnight
cultures of the source bacterial strain?4. DNA was sheared to 2-8 kb by focused
ultrasonication (Covaris E220 with miniTUBE red) and fragments were cloned into PCR-
linearized expression vector pZE21 (primer #1-2) by blunt-ended ligation (Epicentre
FastLinkTM kit). Before transformation, the ligation products were separated on a 0.5%
agarose gel, the region between 5 and 10 kb was excised and DNA was extracted using a gel
extraction kit (Qiagen). Ligation products were transformed into E. cloni®10G Elite
competent cells (Lucigen) by electroporation. Overnight grown colonies were picked and
arrayed in 384-well format into liquid LB medium supplemented with kanamycin using a
colony picking robot (Molecular Devices QPix 420). After incubation overnight at 37°C,
plates were replicated in duplicate onto LB agar plates supplemented with kanamycin. The
first plate served for the initial drug assay described below to identify plates that contain
drug-metabolizing gain-of-function hits. The second plate was stored at 4°C for use in the
secondary assay to localize drug metabolizing clones within active plates as described
below. Primer #3-4 were used for Sanger sequencing of representative library clones and
identified drug-metabolizing clones.

Hit validation by targeted gene expression in E. coli —To validate identified drug-
metabolizing gene products from gain-of-function screen, gene sequences were PCR-
amplified (primer #5-54, #95-150), cloned into the pZE21 expression plasmid by either
blunt-end ligation (T4 polynucleotide kinase and ligase, NEB) or Gibson cloning
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(NEBuilder HiFi DNA Assembly Kit, NEB), and electro-transformed E. cloni®10G Elite
cells. Resulting strains were tested for specific drug-metabolizing activities.

Construction of B. thetaiotaomicron Targeted Mutants and Complementation Strains

Bacterial strains, plasmids, and primers are listed in Supplementary Tables 1 and 12.

Gene deletions and complementations —A counter-selectable (FUdR, Sigma
Aldrich) allelic exchange procedure2® was utilized to generate in-frame, unmarked deletions
in a B. thetaiotaomicron V/P1-5482 tdk background (wild type; WT) as described °. In brief,
primer #55-60, #63-68, #7176, and #79-80 were used to generate pExchange-tdk suicide
plasmids?® for deletion of 62068, bt2367, and bt4096 by splicing by overlap extension
PCR25, cloning via restriction sites BamHI and Xbal, plasmid sequencing, and PCR-
screening of resolved clones after second DNA recombination event. Gene
complementations at various expression levels were performed as described®27 using primer
#61-62, #6970, #77-78, and #81-82 and pNBU2-derived plasmids that integrate into the
genome in single copy. Bt4096 complementation using the highest expressing promoters
was not successful, possibly due to enzyme toxicity at high expression levels.

Bacterial Drug Metabolism Assays

Drug assays with axenic cultures and fecal communities —Frozen glycerol
stocks of bacterial strains (Supplementary Table 1) were plated on BHI blood agar and
incubated at 37°C under anaerobic conditions. Single colonies were inoculated into 6 mL
pre-reduced GMM (supplemented with 1% wi/v arginine for Eggerthella lenta) and incubated
anaerobically at 37°C for 24 h (Akkermansia muciniphila for 48 h). Drug-conversion assays
were performed as described®2L, In brief, bacterial cultures were diluted into fresh, pre-
reduced GMM (1/5) containing tested drug(s) at 2 pM, incubated anaerobically until
samples were collected and samples were stored at —80°C until further processing for
analysis by LC-MS (see below).

Gain-of-function screen —All 384 colonies of a single arrayed library agar plate (see
Preparing gain of function libraries section above) were collected en masse by scraping and
resuspended in 750 pl of GMM (1/5). 225 l of the cell suspension and an 8-fold dilution
thereof were combined with 25 pl of GMM (1/5) with a drug mixture and incubated
anaerobically at 37°C. 20 uL samples were collected after 0, 1, 2, 4, 6, 8, 12 and 24 h of
incubation. Plates corresponding to pools that exhibited the capacity to metabolize one or
more of the tested drugs were replicated into a 384-well plate containing 70 pL of LB
supplemented with kanamycin and cultures were grown aerobically for 12 h at 37°C. For
groups of 2x2 active plates, pools were assembled from 20 pL of each culture corresponding
to each row (2x16 pools) and to each column (2x24 pools) and tested for drug-metabolizing
activity. Identified active gain-of-function clones were colony-purified, four independent
colonies were retested for drug-metabolizing activity, and two of the verified, clonal cultures
selected for Sanger sequencing of the plasmid inserts (primer #3-4).
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Cloning, purification and enzymatic activity testing of BT4096 and BT2367

BT4096 —Sequence analysis of 5t4096 using the SignalP 4.0 server?® suggested an N-
terminal export signal with a cleavage site between residues 20 and 21. The open reading
frame without this signal sequence was PCR-amplified (primer #85-86) and cloned into the
pASG-IBA105 (IBA GmbH) expression plasmid (N-terminal Twin-Strep-Tag® protein
fusion and anhydrotetracycline-inducible expression) following the vendor’s protocol for
StarGate® cloning. E. coli (E. cloni® 10G, Lucigen) containing a sequence-verified plasmid
(primer #87-88) was aerobically cultured (220 rpm shaking) in 1L LB medium with
carbenicillin and protein expression was induced with anhydrotetracycline (200 ng/mL)
during mid-exponential growth (OD600 = 0.4-0.6). After 3 h, bacteria were collected by
centrifugation (4000 x g) and lysed on ice by sonication (8 pulses of 15 s at 45% amplitude
in intervals of 60 s) in the presence of protease inhibitors (cOmplete™ protease inhibitor
cocktail, Sigma Aldrich). Affinity purification was performed using a gravity flow Strep-
Tactin®XT Superflow® column (IBA GmbH) following the manufacturer’s
recommendations. Protein purity was verified by SDS-PAGE and coomassie staining and
quantified by Bradford protein assay using BSA as a standard (Biorad). Enzyme assays were
performed in TrisHCI buffer (10mM, pH 7), supplemented with 2.5 mM MgSO4 and MnClI
at 37°C; reaction volumes were 150 pL with BT4096 at 5 pg/pL and varying substrate
concentrations: 250, 125, 62.5, 31.3, 15.6, 7.8, 3.9, 0 uM. 10 uL of sample were collected
and quenched in ice-cold acetonitrile (10 uL) at times 30, 60, 90, 120, 150, 180, 210, 240,
300, 360, 480, and 600 s of incubation. Samples were stored at —80°C until further
processing and analysis by LC-MS (see below).

BT2367 —The b6t2367 open reading frame was PCR-amplified (primer #83-84) and
cloned into the pASG-IBA103 (IBA GmbH) expression plasmid (C-terminal Twin-Strep-
Tag® protein fusion and anhydrotetracycline-inducible expression) following the vendor’s
protocol for StarGate® cloning. £. coli (E. cloni® 10G, Lucigen) containing a sequence-
verified plasmid (primer #87-88) was used to express and purify the enzyme as described
for BT4096 above. Enzyme assays were performed in TrisHCI buffer (10mM, pH 7),
supplemented with 2.5 mM MgSQO,4 and MnCl at 37°C; reaction volumes were 100 uL with
BT2367 at 10 pg/mL and 1 mM of cofactor (either acetyl-CoA or propionyl-CoA) and 100
UM of substrate (either pericyazine, cyamemazine or 1-(3-aminopropyl)piperidin-4-ol) were
used to test acyltransferase activity. 5 uL of sample were collected and quenched in ice-cold
acetonitrile (15 pL) at times 0, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 40, 50, and 60 min of
incubation. Samples were stored at —80°C until further processing and analysis by LC-MS
and LC-MS/MS (see below).

gPCR analysis

Fecal DNA was extracted from a biomass pellet of 500 UL community cultures (see above)
as described?429, The abundance of specific bacterial species or 64096 homologs was
assessed by qPCR (primer #89-94) as described previously®30. A CFX96 instrument
(BioRad) and SYBR FAST universal master mix (KAPA Biosystems) were used.
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Animal experiments

All experiments using mice were performed using protocols approved by the Yale University
Institutional Animal Care and Use Committee in accordance with the highest scientific,
humane, and ethical principles and in compliance with federal and state regulations,
including the Animal Welfare Act (AWA) and the Public Health Service (PHS).

Germfree (GF) 9-16 week old C57BL/6J mice were maintained in flexible plastic
gnotobiotic isolators with a 12-hour light/dark cycle and GF status monitored by PCR and
culture-based methods. Conventional C57BL/6J mice (Jackson Laboratories) were
purchased at the age of 6—7 weeks and kept in the lab for 2-3 weeks before experiments. All
mice were provided a standard, autoclaved mouse chow (5013 LabDiet, Purina) ad libitum.

Dexamethasone treatment —Serum kinetics of dexamethasone following oral
administration was determined using 20 (n = 4 per time point) conventional C57BL/6J mice
treated with 10 mg/kg of dexamethasone suspension in PBS. One blood sample was
collected from each animal into lithium heparin tubes (BD Life Sciences) by submandibular
bleeding and a second sample was collected at time of euthanization. Serum was collected
by centrifugation (2500 rcf, 4°C, 10 min) of heparinized blood and stored at —80°C until
further processing and analysis by LC-MS (see below).

To compare dexamethasone metabolism between germfree mice and mice mono-colonized
with C. scindens (ATCC 35704), individually caged germfree C57BL/6J mice were either
directly treated with dexamethasone (as above) or colonized with C. scindens (ATCC 35704)
by oral gavage of 200 pL of an overnight bacteria culture in GMM. After 4 days, bacterial
loads were determined by CFU plating on BHI blood agar before dexamethasone was orally
administered to the mice as described above. Mice were sacrificed 7 h after drug
administration, serum was collected as described above and tissue samples were collected
into sample tubes and snap-frozen. Fecal samples were collected before euthanization and
re-suspended in PBS (1 mL) through vigorous shaking. 20 pL were then plated on BHI
blood agar plates and incubated aerobically and anaerobically at 37°C to check animals for
contamination.

Diltiazem treatment —Germfree C57BL/6J mice were mono-colonized with B.
thetaiotaomicron wild type or bt4096 mutant strain and bacterial loads were determined by
CFU plating four days after colonization as described above. Single-dose treatment: 5 mice
per timepoint and group were treated with 50 mg/kg of diltiazem suspension in PBS with
20% glycerol or solely vehicle for non-treated controls (n = 5 per group). One early blood
sample (at 0.5, 1, 1.5, 2, and 2.5 h after drug administration) was collected from each animal
by submandibular bleeding and a second sample was collected when mice were sacrificed
(at3,5,7,9, and 12 h after drug administration). In addition to serum, the following tissues
were collected after euthanization: luminal content of duodenum (SI), jejunum (SI1), ileum
(SII), cecum, and colon, and feces, liver and bile. Samples were collected and stored as
described above. Multiple-dose treatment: 6 and 5 mice mono-colonized with B.
thetaiotaomicron wild type or bt4096 mutant strain, respectively were treated five times with
50 mg/kg of diltiazem suspension in PBS with 20% glycerol in intervals of 6 h. Six h after
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the last treatment, a blood sample was collected from each animal by submandibular
bleeding and animals were sacrificed for sample collection as described above after an
additional 6 h.

Mass Spectrometry Analysis of Drugs and Metabolites

Extraction of solid tissues and liquid samples —Solid tissues and liquid samples
were prepared for LC-MS and LC-MS/MS analysis by organic solvent extraction
(acetonitrile:methanol, 1:1) at -20°C after the addition of internal standard mix
(sulfamethoxazole, caffeine, ipriflavone, and yohimbine each to a final concentration of 80
nM) as described®29,

LC-MS and LC-MS/MS analysis —Analyses was performed as previously
described®2°. In brief, chromatographic separation was performed by reversed-phase
chromatography (C18 Kinetex Evo column, 100 mm x 2.1 mm, 1.7 mm particle size, and
according guard columns, Phenomenex) using an Agilent 1200 Infinity UHPLC system and
mobile phase A: H,0, 0.1% formic acid and B: methanol, 0.1% formic acid and column
compartment was kept at 45°C. 5 pL of sample were injected at 100% A and 0.4 mL/min
flow followed by a linear gradient to 95% B over 5.5 min and 0.4 mL/min. To ensure
reproducible chromatographic separation (retention shifts between samples < 2% or
0.15min) columns were changed after 1000 sample injections. The gTOF (Agilent 6550)
was operated in positive scanning mode (50 — 1000 m/z) with the following source
parameters: VCap: 3500 V, nozzle voltage: 2000 V, gas temp: 225 °C; drying gas 13 L/min;
nebulizer: 20 psig; sheath gas temp 225 C; sheath gas flow 12 L/min. Online mass
calibration was performed using a second ionization source and a constant flow (5 pL/min)
of reference solution (121.0509 and 922.0098 m/z). Tandem mass spectrometry analysis
(LC-MS/MS) was performed using the chromatographic separation and source parameters
described above and the auto-MS/MS mode of the instrument with a preferred inclusion list
for parent ions with 20 ppm tolerance, Iso width set to ‘narrow width’ and collision energy
to either 15, 20 or 30 eV. The MassHunter Quantitative Analysis Software (Agilent, version
7.0) was used for peak integration based on retention time and accurate mass measurement
of chemical standards. Quantification of in vivo samples was based on dilution series of
chemical standards spanning 0.001 to 10 uM and measured amounts were normalized by
weights of extracted tissue samples. The MassHunter Qualitative Analysis Software
(Agilent, version 7.0) and Mass Profiler Professional (Agilent, version 13.0) with standard
parameters were used for untargeted feature extraction and peak alignment, respectively
allowing tolerances for mass of 0.002 amu or 20 ppm and for retention time of 0.15min or
2%. Statistical analysis and plotting were performed in Matlab 2017b (MathWorks).

Analysis of drug metabolism screen

Identification of metabolized drugs —For each bacterial strain, drug fold changes
were calculated between time points 12 h and 0 h in the 4 pools that contained a specific
drug (Supplementary Table 2), and between these drug-containing pools and the 3 non-drug
controls at time points 0 h and 12 h. Statistical significance of the drug intensity differences
was assessed with two-sided t-test (ttest2 function in MatLab), and p-values were FDR-
corrected for multiple hypotheses testing using the Benjamini-Hochberg procedure (mafdr
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function in MatLab with ‘BHFDR’ parameter). To account for fast drug metabolism (within
seconds after exposure), fold changes to control at time point 0 h were used for drug and
strain combinations for which i) log2(fold change to control at t=0h) < -5 and ii) pFDR(fold
change to control at t=0h) < 0.05 and iii) log2(fold change to control at t=0h) < log2(fold
change at t=12h to t=0h). To account for variability in drug measurements, for each drug an
adaptive fold change threshold was calculated as either (20%) or (mean+2std of the fold
changes, for which log2(fold change at t=12h to t=0h) > 0, to account for measurement
noise), whichever was greater. Hierarchical clustering was performed with clustergram
function in MatLab using Euclidean distance between the drug fold change vectors for each
bacterial strain.

Identification of candidate drug metabolites —For each drug and each bacterial
strain, intensities of all compounds detected in the drug-containing pools (n=4) versus all
other pools (n=20) were compared by calculating fold change and statistical significance
with two-sided t-test (ttest2 function in MatLab). All p-values were FDR-corrected for
multiple hypotheses testing with Benjamini-Hochberg procedure (mafdr function in MatLab
with ‘BHFDR’ parameter). The FDR-corrected p-value threshold for candidate drug
metabolites was set to 1076 based on the distribution of p-values of parent drugs in their
corresponding four pools versus all other pools (combinatorial pooling scheme shown in
Extended Data Fig. 1a, Supplemental Table 2). Briefly, histograms of the pFDR values
calculated for the candidate metabolites were compared with the histograms of the pFDR
values of the drugs detected in the corresponding drug pools (positive controls) and the
pFDR values of metabolites calculated for a random pooling scheme not included in the
experiment (negative controls). The pFDR distributions appeared to be bimodal, and
findpeaks function in MatLab2017b was used to find the pFDR threshold that corresponds to
the local minimum between the distribution peaks, thus separating high confidence pFDR
values prevalent in the positive controls. Detailed analysis scheme, distribution plots and
analysis scripts are available on GitHub (mszimmermann/drug-bacteria-gene_mapping).

Candidate metabolites were filtered according to the following exclusion criteria: i)
metabolite intensity in the drug pools at t=0 h is > 10% ion counts (corresponding to twofold
the minimal intensity for chromatographic feature extraction: 5*102 ion counts), and
log2(fold change to other pools at t=0 h) < 1; or ii) metabolite intensity in the drug pools at
t=12 h is > 10% ion counts, and log2(fold change to other pools at t=12 h) < 1; or iii) the
difference of mass defects between the drug and the metabolite is > 0.2 amu; or iv) retention
time difference between the drug and the metabolite is < 0.1 min; or v) metabolite mass is
similar to one of the metabolites filtered at step iv) (mass difference < 0.002 amu) and
retention time is similar to an unfiltered metabolite of the same drug (difference < 0.1 min).
Additionally, metabolites were filtered based on whether the parent drug was metabolized,
whether the metabolite was identified for a single drug or multiple drugs, and whether the
metabolite was increasing in at least one strain at 12 h compared to 0 h (log2(fold change) >
1 and pFDR < 0.05). Mass difference between the parent drug and candidate metabolites
were calculated for each drug-metabolite pair and smoothened with 0.002 Da window.
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Chemoinformatics

Chemical similarity analysis —Chemical similarity analysis between the 271 selected
drugs and the 2099 clinically approved drugs from DrugBank3! was performed using
Morgan chemical fingerprints calculated with AllChem.GetMorganFingerprintAsBitVect
function from the RDKit AllChem module (Open Source Chemoinformatics, http://
www.rdkit.org). Chemical fingerprints were converted into a binary matrix and subject to
principal component analysis. Chemical structure similarity for the drug clusters identified
with hierarchical clustering was performed using the maximum common substructure
function in RDKit (rdFMCS.FindMCS).

Functional chemical group analysis —For each drug, the existence of chemical
functional groups was calculated with available functions from the rdkit.Chem.Fragments
module (Open Source Chemoinformatics, http://www.rdkit.org). Functional group
enrichment among metabolized drugs, drugs belonging to specific clusters, or drugs
undergoing specific mass difference transformation upon bacterial metabolism, was
calculated with Fisher’s exact test. All p-values were FDR-corrected for multiple hypotheses
testing using the Benjamini-Hochberg procedure (mafdr function in MatLab with ‘BHFDR’
parameter).

Analysis of drug-metabolizing capacity of bacterial strains and communities

Protein sequence alignments —Bacterial strains’ genome sequences and protein
sequences of the candidate genes were downloaded from NCBI. Sequence similarity
between the genomes and proteins of interest was assessed by searching the translated
nucleotide database using protein query (tblastn) with default parameters32. Sequence
similarity between candidate proteins was assessed with protein blast (blastp) with default
parameters32. Protein similarity networks and drug-gene-metabolite networks were
visualized in Cytoscape v3.4.033,

Gene set enrichment analysis —Enrichment of strains encoding a given protein
among strains metabolizing a given drug was assessed using the gene set enrichment
procedurel®. In brief, for each drug, the strains were sorted according to the percent of
parent drug that was metabolized, and enrichment of strains encoding y% similar sequence
to the protein of interest was calculated with Fisher’s exact test for each set of strains
metabolizing more than x% of the drug, where x ranged between 100% and 20% (with
step=20%) and y ranged between 100% and 50%. For enrichment analysis of gene
combinations, maximal sequence similarity to the corresponding genes was used. The lowest
p-value was recorded for each drug-gene pair. All p-values were FDR-corrected for multiple
hypotheses testing using the Benjamini-Hochberg procedure (mafdr function in MatLab with
‘BHFDR’ parameter).

Analysis of microbial community drug metabolism —~For the human gut
communities, drug metabolism of each community was represented with conversion slopes
of the drug and the corresponding drug metabolite. To assess the velocities of drug
consumption and drug metabolite production, concentration slope was calculated by fitting a
piecewise linear function to the corresponding concentration curves with polyfit function in
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MatLab 2017b. Correlation between drug consumption or metabolite production slopes and
specific gene abundance, bacterial 16S abundance or bacterial CFU mL~1 was calculated
with corr function in MatLab 2017b.

Metagenomic analysis

Sample preparation and sequencing —DNA from bacterial community samples was
extracted as described above for the gPCR analysis. Library preparation and sequencing was
performed at the Yale Center for Genome Analysis. The Kapa Biosystems Hyper prep kit
WGS was used for the preparation of the metagenomic sequencing libraries. 2x150bp
sequencing was performed on an Illumina Novaseq 6000 instrument with a S4 flow-cell to
target depth of ~20 Mio reads per sample. Raw sequencing data were deposited on the
publicly available ENA server (accession no. PRIEB31790).

Data preprocessing —Metagenomic sequencing data preprocessing and analysis was
performed with bioBakery tools34. Paired-end reads from each sample were filtered with
KneadData v0.6.1 to trim adaptor sequences with trimmomatic-0.38 and to exclude reads
mapping to the human genome3°. Filtered paired-end reads were merged before further
processing.

OTU construction and taxonomic assignment —OTU construction and taxonomic
assignment was performed with MetaPhlan2 v2.6.036 on the filtered and merged sequencing
data. OTU tables were subsequently merged into a summary OTU table with
merge_metaphlan_tables function (Supplementary Table 17).

Diversity analysis —Diversity analysis was performed with Qiime 1.837. OTU tables
from metagenomic analysis were converted to biom tables with biom -convert functions.
Shannon’s alpha-diversity metric was calculated with alpha_diversity.py function with -m
shannon parameter.

Quantification of protein sequence abundance —Protein sequence abundance
quantification was performed with ShortBRED v0.9.538. Target protein sequences were
downloaded from NCBI in amino acid fasta format. ShortBRED markers were created with
shortbred-identify function using Uniref90 downloaded from https://www.uniprot.org/
downloads as a reference3®. Protein sequence abundance was quantified using the created
reference markers with shortbred_quantify function using built in USEARCH
v11.0.667_i86linux32 tool4C. The resulting tables for each sample were merged into one
summary table (Supplementary Table 18).

Correlation analysis —Correlation analysis between drug or metabolite conversion
slopes was performed in MatLab2017b with corr function (resulting in Pearson’s correlation
coefficient and p-value calculated using Student’s t-distribution for statistics
t=r*sqrt((n-2)/(1-r"2) with n-2 degrees of freedom, where r is the correlation coefficient, and
n is the sample size) (Supplementary Table 19).

Metagenomics analysis workflows are available on GitHub (https://github.com/
mszimmermann/drug-bacteria-gene_mapping).
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Human fecal material

All samples were collected under Yale University Human Investigation Committee protocol
number 1106008725 at Yale University School of Medicine and stored in the Goodman
laboratory, using ID numbers which are not associated with study volunteer names or other
identifying information. Study volunteers were recruited through the campus billboard
advertisement and reviewed an information sheet describing the study prior to deciding to
participate. Eligibility criteria included age (20-60 years) and general health status
(generally healthy, no long-term chronic diseases or illnesses, no cold, no flu or apparent
bacterial or viral infection at the time of contact, not currently on antibiotics or no antibiotic
use in the past 2 months, and regular bowel movement). No information was collected from
the subjects except for their age and gender (Supplementary Table 9 and 16). Fecal samples
were then collected and stored as previously described?L.

Statistics and Reproducibility

Statistical analysis of all data was performed in MatLab R2017b. No statistical methods
were used to predetermine sample size. For mouse experiments, mice were randomized
before allocation to study groups and respective cages. All other experiments conducted for
the study were not randomized, and the investigators were not blinded to either allocation
during experiments or to outcome assessments.

All in vitro experiments were performed once with indicated replication. Mouse experiments
in Fig. 3f and Extended Data Figs. 5a, 8b were performed once, in Extended Data Fig. 5b
twice, and in Fig. 3e and Extended Data Fig. 8a three times with indicated replication
(Supplementary Tables 7-8 and 10) that resulted to comparable observations between
repeats. In Figs. 3e-f and Extended Data Figs. 5a-b and 8, horizontal lines represent mean
values of independent animals. P-values were calculated with a two-sided unpaired
Student’s t-test, and FDR-corrected for multiple hypotheses testing with Benjamini-
Hochberg procedure. The exact number of animals used per time point and calculated pFDR
values per compound and time point are indicated in Supplementary Tables 7-8 and 10-11.

In Fig. 2a, volcano plot represents mean fold changes between n=4 drug-containing pools
and n=20 non-drug-containing pools (vehicle controls), and p-values were calculated with a
two-sided unpaired Student’s t-test and FDR-corrected for multiple hypotheses testing with
Benjamini-Hochberg procedure. In Figs. 5d-e, bar plots and error bars represent mean and
STD of n=4 independent cultures. In Fig. 5f, each color represents a different human donor,
lines depict the mean of n=4 independent samples.

Data and code availability

All data generated during this study are included in this published article and its
Supplementary Tables. Data are available from FigShare: https://doi.org/10.6084/
m9.figshare.8119058. Raw sequencing data were deposited on the publicly available ENA
server (accession no. PRJEB31790). Raw metabolomics data were deposited on the public
repository MetaboL.ights (accession no. MTBLS896).
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Analysis pipeline schemes, scripts and input files for analyzing data and generating figures
are available on GitHub (https://github.com/mszimmermann/drug-bacteria-gene_mapping)
and archived at Zenodo (https://doi.org/10.5281/zenodo.2827640).

Extended Data
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Extended Data Figure 1. Setup of drug assay, characterization of tested drugs, and summary of
metabolic bacteria-drug interactions.

a, Schematic representation of combinatorial pooling scheme using 21 drug pools (A-U) and
3 non-drug controls (V-X). Each of the 271 drugs is tested in quadruplicate (present in 4
pools) and any two drugs are tested in the same pool at most twice (Supplementary Table 2).
b-c, Molecular weight (b) and LogP (c) distribution of 271 tested drugs (red) in comparison
with 2099 clinically approved drugs (DrugBank3L). d, Distribution of predicted colon drug
concentration for 58 of the 271 drugs tested (data from Maier et al.1”). The predicted median
and mean concentration in the large intestine for these compounds is 103 uM and 362 uM,
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respectively, when each drug is administered at its standard oral dose. e, Number of drugs
metabolized as a function of the selection threshold (metabolized fraction). f, Number of gut
bacteria that metabolize a given drug. g, Number of drugs metabolized by each bacterial
strain.
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Extended Data Figure 2. M etabolism of drugs previously reported to be transformed by bacteria
and functional chemical group distribution.

a, Percent of consumption between 0 h and 12 h for each drug after incubation with each gut
bacterial species/strain are shown. Bars and error bars depict the mean and STD of n=4
assay replicates. b, Distribution of functional chemical groups in drugs that are metabolized
or not metabolized across the 76 tested bacterial strains. Abundance of each chemical group
among the 271 selected drugs and 2099 clinical drugs (DrugBank31) is indicated.
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Extended Data Figure 3. Hierarchical clustering of bacterial strains/species and drugs according
to microbial drug metabolism.

a, Dendrogram of bacterial strains from Fig. 1c (X-axis). b, Dendrogram of drugs from Fig.
1c (Y-axis).
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Extended Data Figure 4. Structural drug featurestargeted for biotransformation and

microbiome metabolism of dexamethasone.

a, Examples of drugs associated with a particular mass shift between a parent drug and its
metabolite. Functional groups that are enriched in drugs undergoing a specific mass shift
(Fig. 2d) are highlighted. b, Dexamethasone metabolism by each of the 76 tested bacterial
strains. Bar plots and error bars represent mean and STD of n=4 assay replicates. c,
Validation of C. scindens (ATCC 35704) desmolase activity by mass comparison of
metabolites produced from either dexamethasone or Ds-dexamethasone and their LC-
MS/MS spectra. Shaded areas correspond to mean + standard deviation, n=6 independent

cultures. Highlighted in red are representative ion frag

ments to illustrate the loss of the

dexamethasone side chain (labeled with 2 deuterium atoms, compared to the steroid

backbone labeled with 3 deuterium atoms).
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Extended Data Figure 5. Microbial corticosteroid metabolism in vivo and in human gut
communities.

a, Dexamethasone serum profile in conventional mice following a single oral dose of
dexamethasone. Line depicts fit of first order drug elimination kinetics. n=4 mice of either
gender were used for each time point. Data are provided in Supplementary Table 7. b,
Dexamethasone and dexamethasone metabolite levels across tissues of germ-free and C.
scindens (ATCC 35704) mono-colonized mice after 7 hours of drug exposure. Horizontal
lines show mean values of n=6 animals. * p < 0.05, ** < 0.01, *** < 0.001 (unpaired two-
sided Student’s t-test). Data and p-values are provided in Supplementary Table 8. ¢, C.
scindens (ATCC 35704) desmolase activity for different corticosteroids. Shaded areas
correspond to mean + standard deviation, n=6 independent cultures. d, Bacterial density of
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human gut communities. CFU, colony forming units measured by anaerobic culturing.
Horizontal bars represent mean of n=4 independent cultures. e, Ex vivo dexamethasone
metabolism of gut communities isolated from 28 humans (each color represents a different
human donor, lines depict the mean of n=4 replicate assays). C. scindens species abundance
(quantified by species-specific gPCR) is not sufficient to explain the dexamethasone-
metabolizing activity of these human gut communities. Data are provided in Supplementary
Table 9. f, Correlation between community CFU mL™1 values and dexamethasone (left) or
androgen dexamethasone metabolite (right) consumption and production slopes after 12
hours of incubation with each of the 28 human gut communities. P-values were calculated
for the null hypothesis that there is zero correlation against the two-sided alternative that
there is non-zero correlation (also see methods).
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Extended Data Figure 6. Gain-of-function approach to identify microbial drug-metabolizing
gene products: B. thetaiotaomicron diltiazem metabolism as an example.

a, Drugs metabolized by B. thetaiotaomicron and candidate drug metabolites identified by
untargeted metabolomics. b, Identification of active 384-well library plates that include
clones with diltiazem deacetylation activity. ¢, Mapping of diltiazem-converting activity
within active plates to identify active clones. d, Four independent £. coli clones
demonstrating gain of diltiazem-metabolizing activity carry inserts that map to the same
region in the B. thetaiotaomicron genome. ¢, Validation of BT4096 activity by targeted
expression of the open reading frame in £. coli. Shaded areas depict the mean and STD of
independent cultures/assays (n=4). f, Bacterial load of gnotobiotic mice mono-colonized
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with either B. thetaiotaomicron wildtype or the bt4096 mutant strain. Horizontal bars
represent mean of n=35 independent mice per group. P-value was calculated with unpaired
two-sided Student’s t-test. g, In vitro enzyme assay with N-desmethyldiltiazem as substrate
to demonstrate that BT4096 also deacetylates N-desmethyldiltiazem, which is the major
metabolic product of murine diltiazem metabolism. Lines and shaded areas depict the mean
and STD of n=4 assay replicates, respectively.
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Extended Data Figure 7. In vivo diltiazem metabolism and tandem mass spectrometry to validate
metaboliteidentities.

a, Structures of diltiazem in vivo metabolites?!. b, Exemplary tandem-MS analysis to
validate identities of diltiazem metabolites. LC-MS/MS data for all diltiazem metabolites are
compiled in Supplementary Table 21. The experiment was performed n=3 times with
comparable results.
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Extended Data Figure 8. bt4096-depended in vivo diltiazem metabolism.
a, Diltiazem and diltiazem metabolite kinetics in different tissues following a single oral

dose of diltiazem in gnotobiotic mice mono-colonized with either B. thetaiotaomicron
wildtype or the #4096 mutant strain. b, Intestinal diltiazem and diltiazem metabolite levels
following multiple oral doses of diltiazem in mice mono-colonized with either B.
thetaiotaomicron wildtype or the b14096 mutant strain. Five oral doses were administrated to
animals in six hour intervals. Tissues were collected 12 hours after the last oral dose of
diltiazem. For all mouse experiments: Horizontal lines show the mean of n=5 animals and
times reflect hours after oral diltiazem administration. * p < 0.05, ** < 0.01, *** < 0.001
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(unpaired two-sided Student’s t-test with FDR correction for multiple hypotheses testing).
Data and p-values are provided in Supplementary Tables 10-11.
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Extended Data Figure 9. Validation of identified drug-metabolizing gene products.
a, B. thetaiotaomicron gDNA fragments identified in norethindrone acetate and pericyazine

metabolizing £. coliclones. b, All drug-metabolizing gain-of-function hits were validated by
assays with E. coli expression constructs carrying PCR-amplified gene sequences and their
combinations in case of operons (e.g., BT _2068-2066 metabolizing norethindrone). c, d,
Levonorgestrel and progesterone-metabolizing activity of BT2068 shown by E. coli
expressing bt2068 (c) and B. thetaiotaomicron wildtype, bt2068 mutant, and complemented
strains (d). Promoter strengths for gene complementation are P1E6 > P4E5 >P2E5 > P5E4
>P1E4 > P2E3. e, Exemplary LC-MS/MS validation of O-acetyl-pericyazine. The
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experiment was performed n=3 times with comparable results. f, Enzymatic validation of O-
acetyl- and O-propionyl-transferase activity using purified BT2367 and periciazine as
substrate. e, Enzymatic validation of O-acyl-transferase activity of purified BT2367 using
substrates structurally similar to pericyazine. While no acetyl-transferase activity could be
measured for cyamemazine, aminopropylpiperidinol is converted to o-acetyl-
aminopropylpiperidinol by BT2367. In (a-d) and (f-g), shaded areas depict the mean and
STD of independent cultures/assays (n=4).
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Extended Data Figure 10. I dentified drug-metabolizing gene products explain observed drug
metabolism of gut bacteria.

a, Genome coverage and fragment size distribution in £. coli gain-of-function libraries
specific for B. dorei (based on 78 sequenced clones) and C. aerofaciens (based on 81
sequenced clones). Both libraries contained ~37,000 clones. b, Network of enzyme-
substrate-product drug metabolic interactions for B. dorefand C. aerofaciens. Each node
represents an enzyme (rectangles), a drug substrate (hexagons) or a metabolite product
(circles), and each edge represents a validated metabolic interaction (targeted cloning of the
gene into £. coliresults in metabolism of a given drug or production of a specific drug
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metabolite). c, Comparison between maximal BD03091 and CA01707 identity of a given
bacterial strain and its metabolism of norethindrone acetate and tinidazole, respectively. d, e,
Reciprocal BLAST analysis of identified drug-metabolizing proteins. Line-width depicts the
% of length (d) and identity (e) of mutual protein sequence alignment. e, Specific drug
metabolism rates of 67 genome sequenced gut bacteria and presence of homologs to
respective drug-metabolizing gene products. Notably, roxatidine acetate, famciclovir,
diacetamate and diltiazem (Fig. 5b) all undergo the same chemical transformation
(deacetylation), yet distinct sets of gene products explain their microbial metabolism. Bars
and error bars represent mean and STD of n=4 assay replicates. Gene locus tag
abbreviations: BD: BACDOR; CA: COLAER.
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Extended Data Figure 11. | dentified drug-metabolizing gene products explain observed drug
metabolism of bacterial gut communities.

a-b, Diltiazem conversion to desacetyldiltiazem by 28 different human gut communities
(each color represents a different human donor, lines depict the mean of n=4 assay
replicates). Microbiota diltiazem-metabolizing activity does not correlate with either total
bacterial culture densities or microbiota abundance of B. thetaiotaomicron (quantified by
species-specific 16S-RNA gPCR). P-values were calculated for the null hypothesis that there
is zero correlation against the two-sided alternative that there is non-zero correlation (also
see methods). ¢, Composition and diversity of the 28 bacterial communities based on
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metagenomic sequencing. d, Correlation analysis between microbiota diltiazem-
metabolizing activity and community CFU or metagenomic abundance of BT4096
homologs, diltiazem-metabolizing bacterial species, genera, and phyla identified in this
study. e-f, Correlation analysis identical to (d) for the metabolism of norethindrone acetate
and famciclovir by the 28 bacterial communities (each color represents a different human
donor, lines depict the mean of n=4 replicate assays). P-values were calculated for the null
hypothesis that there is zero correlation against the two-sided alternative that there is non-
zero correlation (also see methods). Data are available in Supplementary Tables 16-19.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Drug-metabolizing activities of human gut bacteria.
a, Schematic representation of the assay. b, Chemical diversity of tested compounds

compared to 2099 clinical drugs (DrugBank31). ¢, Heatmap of the 176 drugs metabolized by
at least one of the 76 human gut bacterial strains. Strains and drugs are arranged by
hierarchical clustering according to metabolic activities. d, e, Examples of drugs that cluster
together according to their metabolism. See methods and Supplementary Table 3 for
statistics and reproducibility.
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Fig. 2. Bacteria-derived drug metabolites.
a, Representative volcano plot showing compounds detected by untargeted metabolomics

associated with a specific drug metabolized by a given bacterial strain (e.g., diltiazem
metabolism by B. thetaiotaomicron). The 4 pools containing a given drug are compared to
all other pools (x-axis, fold change; y-axis, pFDR). Experimentally determined masses of
diltiazem-associated compounds are indicated. Compounds significantly associated with
diltiazem pools are shown in blue, others are in gray. b, Number of drug-specific compounds
detected before (grey) and after (blue) measurement artifact elimination. ¢, Mass shifts
detected between drugs and their specific metabolites. d, Chemical group enrichment
analysis of drugs undergoing the same mass shift upon microbial conversion. Mass
differences and chemical groups are arranged by hierarchical clustering according to the
fraction of metabolized drugs containing a specific chemical group. See methods and
Supplementary Tables 5-6 for statistics and reproducibility.
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Fig. 3. Identification and in vivo characterization of microbial drug-metabolizing gene products:

B. thetaiotaomicron diltiazem metabolism as an example.

a, Scheme for generation of an arrayed gain-of-function library, source genome coverage,
and insert size distribution of the B. thetaiotaomicron library. b, Mapping of active insert

sequences to the B. thetaiotaomicron genome. ¢, Enzymatic validation using purified

BT4096. d, Diltiazem-metabolizing activity of B. thetaiotaomicron wildtype, bt4096 mutant,
and bt4096 complemented strains at different expression levels (promoter strength: P2E5 >
P1E4 > P2E3). e, Intestinal kinetics of diltiazem and deacetylated diltiazem metabolites after
single oral diltiazem administration to mice mono-colonized with either B. thetaiotaomicron
wildtype or bt4096 mutant strains. f, Serum levels of diltiazem and deacetylated diltiazem
metabolites after serial oral diltiazem administration to mice mono-colonized with either B.
thetaiotaomicron wildtype or bt4096 mutant strains. In (c-d) shaded areas depict the mean

and STD of independent assays/cultures (n=4). For (e-f): times reflect hours after oral

diltiazem administration and horizontal lines depict the mean per timepoint. * p < 0.05, ** <
0.01, *** < 0.001 (pFDR). See methods and Supplementary Tables 10-11 for statistics and

reproducibility.
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Fig. 4. Genome-wide identification of drug-metabolizing gene productsin B. thetaiotaomicron.
a, Network of enzyme-substrate-product drug metabolic interactions for B.

thetaiotaomicron. Each node represents an enzyme (rectangles), a drug substrate (hexagons)
or a metabolite product (circles), and each edge represents a validated metabolic interaction
(targeted cloning of the gene into £. coliresults in metabolism of a given drug or production
of a specific drug metabolite). b, Norethindrone acetate-metabolizing activity of B.
thetaiotaomicron wildtype, bt2068 mutant, and complemented strains. ¢, Pericyazine-
metabolizing activity of B. thetaiotaomicron wildtype, bt2367 mutant, and complemented
strains. In (b-c), promoter strengths are P1E6 > P4E5 >P2E5 > P5E4 >P1E4 > P2E3. Shaded
areas depict the mean and STD of independent cultures (n=4). See methods for statistics and
reproducibility.
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genomic DNA. b, Diltiazem metabolism rates for the 67 bacterial strains from Figure 1 with
available genome sequences, presence of BT4096 homologs in their genomes, and
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Gene set enrichment analysis for specific drug-metabolizing gene products and their
combinations among the bacterial strains metabolizing each drug. Enrichment is shown for
single (upper panel) and combined (lower panel) drug-metabolizing gene products among
sets of bacterial strains metabolizing a given drug. d-e, Norethindrone acetate and tinidazole
metabolism of the 67 genome-sequenced gut bacteria and presence of homologs of identified
drug-metabolizing gene products. f, Diltiazem conversion to desacetyldiltiazem by 28
different human gut communities and correlation between microbiota diltiazem-
metabolizing activity and g°PCR-measured abundance of 64096 homologs. g-h, Metabolism
of norethindrone acetate and famciclovir by 28 different human gut communities. Right
panels provide correlation coefficients between community drug metabolizing activity and
the metagenomic abundance of drug metabolizing bacterial gene products, species, genera
and phyla identified in this study. For (f-h) each color represents a different human donor,
lines depict the mean of n=4). See methods and Supplementary Tables 14-16 and 18-19 for
statistics and reproducibility.
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