
Mapping human microbiome drug metabolism by gut bacteria 
and their genes

Michael Zimmermann*, Maria Zimmermann-Kogadeeva*, Rebekka Wegmann1, and Andrew 
L. Goodman
Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of 
Medicine, New Haven, CT 06536, USA

Summary:

Individuals vary widely in drug responses, which can be dangerous and expensive due to treatment 

delays and adverse effects. Growing evidence implicates the gut microbiome in this variability, 

however the molecular mechanisms remain largely unknown. We measured the ability of 76 

diverse human gut bacteria to metabolize 271 oral drugs and found that many of these drugs are 

chemically modified by microbes. We combined high-throughput genetics with mass spectrometry 

to systematically identify drug-metabolizing microbial gene products. These microbiome-encoded 

enzymes can directly and significantly impact intestinal and systemic drug metabolism in mice 

and can explain drug-metabolizing activities of human gut bacteria and communities based on 

their genomic contents. These causal links between microbiota gene content and metabolic 

activities connect interpersonal microbiome variability to interpersonal differences in drug 

metabolism, which has implications for medical therapy and drug development across multiple 

disease indications.

Following administration, drug molecules typically undergo chemical modification(s) and 

resulting metabolites can have distinct functional and toxicological properties from their 

parent drug1. Most drugs are delivered orally and can encounter commensal microbes in the 

small and large intestine. These microbes collectively encode 150-fold more genes than the 

human genome, encompassing a rich enzyme repository with drug-metabolizing potential. 

Indeed, anecdotal examples of interactions between the gut microbiome and drugs or drug 

metabolites have been reported, with intestinal and systemic pharmacological effects. Such 

compound modifications by gut microbes can lead either to their activation (e.g., 
sulfasalazine2), inactivation (e.g., digoxin3), or toxification (e.g., sorivudine/brivudine4,5 and 

irinotecan6). For a few drugs, microbial biotransformation has been assigned to specific 
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bacterial strains and gene products3,5,7. However, these examples are the exception, as the 

field has little systematic understanding of the scope, specificity, or microbial/chemical 

determinants of microbiome-drug interactions8.

We set out to systematically assay microbe-drug interactions by measuring the ability of 

representative human gut bacteria to metabolize structurally diverse drugs and by identifying 

drug-metabolizing microbial gene products. We establish that these drug-metabolizing 

microbial proteins can contribute to in vivo drug metabolism of gnotobiotic mice, and 

provide evidence that (metagenomic) sequence data can explain the capacity of isolated gut 

bacteria and complete communities to convert specific drugs. This could provide a means to 

mechanistically connect microbiome information to interpersonal variation in drug 

metabolism and toxicity.

Identification of drug-metabolizing bacteria from the human gut 

microbiome

We first assessed the capacity of 76 bacterial species/strains, that represent the major phyla 

of the human gut microbiome, to chemically modify medical drugs in vitro (Fig. 1a, 

Supplementary Table 1). We employed a previously established combinatorial pooling 

strategy9 to assign 271 drugs across 21 pools, so that each drug is represented in 

quadruplicate but shares a pool with any other drug at most twice (Extended Data Fig. 1a). 

The 271 drugs were selected to span chemical drug space, resulting in a selection of diverse 

clinical indications (excluding antibiotics), physicochemical properties, and predicted 

intestinal concentrations (Fig. 1b, Extended Data Fig. 1b-d, Supplementary Table 2). We 

incubated each gut species/strain with each drug pool and three vehicle controls under 

anaerobic conditions and measured drug concentrations before and after a 12-hour 

incubation by liquid chromatography-coupled mass spectrometry (LC-MS). The analyzed 

3840 samples comprise a total of 20,596 bacteria-drug interactions, measured in 

quadruplicate.

We discovered that the levels of two thirds (176) of the assayed drugs are significantly 

reduced (>20%, FDR-corrected p-value (pFDR) ≤ 0.05) by at least one bacterial strain and 

that each strain metabolizes 11–95 different drugs (Extended Data Fig. 1e-g, Supplementary 

Table 3). Drug levels were largely unchanged in no-bacteria controls buffered to pH 4–7, 

controlling for acidification of the culture media. By contrast, levels of positive control 

drugs expected to be metabolized by gut bacteria10, such as sulfasalazine, lovastatin, 

omeprazole, and risperidone, were significantly decreased over time (>20%, pFDR ≤ 0.05; 

Extended Data Fig. 2a). Clustering the bacterial isolates according to their drug-

metabolizing activities recapitulates their phylogenetic relationships to the strain level and 

reveals phylum-specific metabolic activities (Fig. 1c, Extended Data Fig. 3a). Clustering the 

drugs based on this data groups compounds that share structural features, revealed by 

functional group and maximum common substructures analysis (Fig. 1d-e, Extended Data 

Fig. 3b, Supplementary Table 4). This suggests possible chemical targets for metabolic 

modifications by bacteria. For example, drugs specifically metabolized by bacteroidetes 

(Fig. 1c, cluster I) contain ester or amide groups that could be hydrolyzed, whereas 
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compounds metabolized by most bacteria except proteobacteria (Fig. 1c, cluster II), all 

contain a nitro or azo-group, prone to reduction in anaerobic metabolism. Indeed, functional 

group analysis suggests that certain chemical substructures, such as lactones, nitro, azo, and 

urea groups predispose compounds for microbial metabolism (Extended Data Fig. 2b). 

Interestingly, chemical groups previously reported to be targeted by microbial metabolism10 

(e.g., esters, amides) are also found among drugs that are not metabolized by any of the 

tested bacteria, suggesting additional structural specificity to microbial drug metabolism.

Identification of bacteria-produced drug metabolites

To identify products of bacterial drug metabolism and gain insights into the chemistry of 

observed biotransformations, we conducted untargeted metabolomics analysis of all 

samples. For each bacterial isolate, we identified compounds that solely occur in the 

presence of a specific drug (e.g., Fig. 2a). This resulted in 6531 different drug-compound 

pairs for all 20,596 tested bacteria-drug interactions (log2 fc ≥ 1, pFDR ≤ 10−6) (grey bars, 

Fig 2b). To eliminate measurement artifacts, we applied data filtering based on 

chromatographic retention, mass defects of drugs and their putative metabolites, and ion 

fragmentation. In addition, we only included compounds which significantly accumulated 

(log2 fc ≥ 1, pFDR ≤ 0.05) while their associated parent drug decreased upon bacterial 

incubation. This analysis correctly identifies reported microbe-derived drug metabolites10 

(e.g., metabolites of sulfasalazine, paliperidone, and pantoprazole, Supplementary Table 5). 

We found 868 candidate drug metabolites that are specific to the presence of a given drug; 

these represent direct products of bacterial drug modifications or bacterial responses that are 

unique to a specific drug (blue bars, Fig 2b, Supplementary Tables 5-6).

To gain insights into the chemistry of microbial drug metabolism, we calculated the mass 

difference between each drug-specific metabolite identified and its associated drug. The 

resulting differences were not randomly distributed: discrete mass differences appeared 

multiple times, suggesting conserved metabolic transformations of different drugs (Fig. 2c). 

The measurements’ high mass accuracy, together with drug structures, suggest chemical 

modifications that result in both decreased and increased masses: the negative mass 

differences −2.016, −15.995, and −42.011 suggest oxidation (-H2), reduction (-O), and 

deacetylation (-C2H2O), respectively, whereas the positive mass differences +2.016, 

+15.995, +18.010, +42.011, and +56.026 suggest hydrogenation (+H2), oxidation (+O), 

hydroxylation (+H2O), acetylation (+C2H2O), and propionylation (+C3H4O), respectively 

(Fig. 2c, Supplementary Tables 5-6). To systematically identify structural targets of 

microbial metabolism, we performed functional group analysis on sets of drugs sharing a 

specific mass difference with respect to their metabolite (Fig. 2d, Supplementary Table 4). 

As expected, all drugs that undergo either deacetylation or hydrogenation contain an acetyl 

ester or an alkene group (Extended Data Fig. 4a). Intriguingly, most drugs predicted to be 

acylated contain an aliphatic amine or hydroxyl, suggesting N- and O-acylation (further 

characterized below).

To assess whether drug metabolism of axenic bacterial cultures can translate to animal 

models and to complete human gut microbial communities, we focused on dexamethasone, a 

corticosteroid uniquely metabolized by Clostridium scindens (ATCC 35704) in our screen. 
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This desmolytic (side-chain cleaving) activity produces the androgen-form of the drug 

(Extended Data Fig. 4b-c)11,12. We administered an oral dose of dexamethasone or vehicle 

to either germfree (GF) or C. scindens mono-colonized gnotobiotic (GNC. scindens) mice and 

quantified dexamethasone and its androgen metabolite in different body compartments (7 h 

after administration, corresponding to two serum drug half-lives, Extended Data Fig. 5a, 

Supplementary Table 7). Dexamethasone was detected in the cecum of mice from both 

groups, with a significant reduction in GNC.scindens, and the androgen metabolite 

accumulated to greater levels in cecum and serum of GNC.scindens mice compared to the GF 

controls. This demonstrated that the drug reaches the lower intestine, which carries high 

bacterial density (1.24±0.3*109 CFUs per gram luminal contents; n=4), and that 

dexamethasone is metabolized in vivo by an intestinal microbe, which affects serum 

metabolite levels (Extended Data Fig. 5b, Supplementary Table 8). This likely extends to 

other corticosteroids, as we also found prednisone, prednisolone, cortisone and cortisol to be 

desmolytically metabolized by C. scindens (ATCC 35704) (Extended Data Fig. 5c). Notably, 

anaerobic incubation of dexamethasone with fecal cultures from 28 healthy human donors 

illustrates significant interpersonal variation in drug metabolizing activity, but this capacity 

neither correlates with bacterial culture density nor with the abundance of C. scindens in a 

community (Extended Data Fig. 5d-f, Supplementary Table 9). This is consistent with 

previous reports that C. scindens metabolizes endogenous steroid hormones in a strain-

specific manner13 and suggests that other bacterial taxa may also metabolize 

dexamethasone. Together, these results (and those of others3) emphasize that species identity 

is often insufficient to explain bacterial drug metabolism, and that identification of gene 

markers directly associated with enzymatic drug conversion may instead be necessary.

Identification of drug-metabolizing gene products

Many of the drug modifications found in the initial screen were generic, such as hydrolyses 

and reductions, making it challenging to predict responsible gene products from genomic 

sequences alone. Therefore, we developed a gain-of-function approach to identify DNA 

fragments from any source species that confer drug metabolic capacity to a heterologous 

host. To establish this protocol, we selected Bacteroides thetaiotaomicron, which 

metabolized 46 different drugs including diltiazem, as an exemplary source species 

(Extended Data Fig. 6a). First, we isolated and sheared B. thetaiotaomicron gDNA to 2–8 kb 

fragments, cloned them into an E. coli expression vector, and arrayed 51,000 transformed E. 
coli clones in 384-well format. Sequencing 160 randomly selected clones revealed a mean 

insert length of 3.1 kb suggesting a homogenous ~25-fold genome coverage for the entire 

library (Fig. 3a). Second, we assembled 133 pools of 384 clones, incubated them with a 

mixture of the drugs metabolized by B. thetaiotaomicron, and measured drug and drug 

metabolite levels over time to identify active library plates that included clones that gained 

specific drug-metabolizing capacities (e.g., Extended Data Fig. 6b). Third, we pooled rows 

and columns of active library plates and repeated the drug metabolism assay to identify the 

plate position (bacterial clone) that gained drug metabolizing function (e.g., Extended Data 

Fig. 6c). Fourth, we sequenced the gDNA inserts carried by these active clones (e.g., Fig 

3b). To validate the identified genes (e.g., bt4096 for diltiazem metabolism), we i) repeated 

drug-metabolizing assays with expression constructs carrying PCR-amplified gene 
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sequences (Extended Data Fig. 6d-e), ii) demonstrated that the purified enzyme catalyzes the 

drug transformation (Fig. 3c), and iii) established that in-frame deletion of bt4096 in B. 
thetaiotaomicron leads to loss of diltiazem-metabolizing activity in vitro, which is restored 

by gene complementation in a heterologous genomic location (Fig. 3d).

Diltiazem is an oral calcium channel blocker used in the treatment of hypertension, 

arrhythmia, and angina pectoris. The drug is metabolized in vivo to multiple metabolites that 

maintain variable inhibition of calcium channels and are targets of distinct hepatic 

cytochromes, which gives rise to numerous potential drug-drug interactions14,15. Therefore, 

we assessed the impact of bacterial activity on intestinal and systemic levels of diltiazem and 

its metabolites. We colonized germfree mice with either B. thetaiotaomicron wildtype or the 

bt4096 deletion strain, orally administered diltiazem, and quantified the kinetics of the drug 

and 9 drug metabolites in 9 body compartments (Extended Data Fig. 6f and 7). Intestinal 

drug and metabolite levels demonstrate that deacetylation of both diltiazem and diltiazem 

metabolites in the gut is bt4096-dependent (Fig. 3e, Extended Data Fig. 6g and 8a, 

Supplementary Tables 10-11). Bacterial contribution to diltiazem metabolism is further 

accentuated when repeated oral doses (simulating typical treatment schemes) are 

administered; this also demonstrates the contribution of a single gut bacterial gene to 

systemic drug metabolism (Fig. 3f, Extended Data Fig. 8b, Supplementary Tables 10-11).

Using this gain-of-function approach, we identified 16 additional B. thetaiotaomicron gene 

products that (together with BT4096) metabolize 18 different drugs to 41 distinct 

metabolites; each validated by targeted cloning and expression in E. coli (Supplementary 

Tables 12-13). The resulting network of bacterial gene products, metabolized drugs, and 

produced drug metabolites reveals the specificity and cross-activity of these enzymes (Fig. 

4a). For example, BT0569 shows promiscuous hydrolase activity towards many structurally 

diverse drugs; BT2068 targets two and BT2367 only one of the 18 drugs metabolized by the 

gain-of-function library. Although the gain-of-function approach can identify redundant 

enzymes, none were found in the B. thetaiotaomicron genome for BT2068- or BT2367-

activities (Extended Data Fig. 9a-b). Indeed, in-frame gene deletion and complementation 

studies in B. thetaiotaomicron confirm that bt2068 and bt2367 expression is required and 

rate-limiting to metabolize norethindrone acetate and pericyazine, respectively (Fig. 4b-c). 

Wildtype and bt2068-complemented strains accumulate a norethindrone acetate metabolite 

that is 2.016 Da heavier than the parent drug, suggesting its reduction. BT2068 also 

metabolizes the structurally related compounds levonorgestrel and progesterone (Extended 

Data Fig. 9c-d). Bt2367 encodes a putative acyltransferase; notably, B. thetaiotaomicron 
converts pericyazine to metabolites with masses consistent with acetyl- and 

propionylpericyazine (Fig. 4c). Incubation of purified BT2367 with pericyazine and 

structurally related substrates together with reaction product LC-MS/MS analysis 

demonstrates that this enzyme uses acetyl-CoA and propionyl-CoA as cofactors to O-acylate 

pericyazine (Extended Data Fig. 9e-g). Together, the developed approach systematically 

identifies microbiome-encoded drug-metabolizing gene products resulting in gene-drug-

metabolite networks that provide mechanistic insights into microbiome (drug) metabolism.
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Microbial gene products explain human gut bacteria and community drug 

metabolism

To further expand our understanding of microbiome drug metabolism, we used the gain-of-

function approach to identify 13 drug-metabolizing gene products from Bacteroides dorei 
and Collinsella aerofaciens that collectively metabolize 16 drugs (Fig. 5a, Extended Data 

Fig. 10a-b, Supplementary Table 13). We next assessed whether the genomic presence of 

homologs of these identified drug-metabolizing gene products can explain drug metabolism 

activities across the 76 bacterial strains (Fig. 1c). For example, homologs of the diltiazem-

metabolizing enzyme BT4096 indicate diltiazem-metabolizing activity of these gut bacteria 

(Fig. 5b, Supplementary Table 14). To systematically investigate whether the identified drug-

metabolizing gene products explain drug metabolism activities of the tested species, we 

performed gene set enrichment analysis for the identified gene products among bacterial 

strains metabolizing specific drugs16. Indeed, many of the identified drug-metabolizing gene 

products show significant enrichment and hence likely contribute to the observed microbial 

drug metabolism (Fig. 5c, Supplementary Table 15). For example, the set of bacterial strains 

metabolizing norethindrone acetate is significantly enriched for a homolog to BD03091 and 

BT2068 (pFDR < 10−7), which are also homologous to one another (Fig. 5d, Extended Data 

Fig. 10c-d, Supplementary Tables 14-15). In fact, all strains carrying a BD03091/BT2068 

homolog also metabolize norethindrone acetate, whereas only three of the norethindrone 

acetate-metabolizing strains do not encode such an enzyme homolog. We repeated the 

enrichment analysis using combinations of identified (including non-homologous) enzymes 

that metabolize the same drug. The combination of enzyme sequences originating from 

different bacterial species targeting the same drug(s) further increases enrichment 

significance and the ability to explain microbial drug metabolism from genomes (Fig. 5c, 

Extended Data Fig. 10d-e, Supplementary Table 15). For example, we identified tinidazole-

metabolizing gene products from three different bacterial species (Fig. 4a, Extended Data 

Fig. 10b), none of which individually is significantly enriched among tinidazole-

metabolizing bacteria; however, their combination significantly (pFDR = 0.0045) explains 

tinidazole metabolism across species (Fig. 5c, e, Extended Data Fig. 10c-d).

To test whether the abundance of encoded drug metabolizing gene products can also explain 

drug metabolism of a complex microbial gut community, we used the diltiazem-

metabolizing enzyme BT4096 as an example. We measured ex vivo diltiazem deacetylation 

kinetics of fecal samples collected from 28 unrelated human donors. These gut communities 

exhibited significant differences in their diltiazem-metabolizing capacity, which correlates 

with bt4096 homolog abundance (measured by qPCR), but not bacterial density or B. 
thetaiotaomicron abundance (Fig. 5f, Extended Data Fig. 11a-b, Supplementary Table 16). 

Although diltiazem deacetylation is a chemically simple reaction, it requires a specific 

enzyme that is heterogeneously represented across strains and communities. As a result, 

gene abundance can partially explain the drug metabolizing capacity of individual gut 

isolates and of human gut microbial communities. To generalize this approach, we 

performed metagenomic sequencing of the 28 bacterial communities (Extended Data Fig. 

11c, Supplementary Tables 17-18). Consistent with the qPCR analysis, the abundance of 

BT4096 sequence homologs in this metagenomic data highly correlated with the 
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communities’ diltiazem deacetylation activity (Extended Data Fig. 11d, Supplementary 

Table 19). Unlike qPCR, metagenomic analysis does not rely on specific primers, which 

allowed us to examine whether less conserved drug-metabolizing genes also correlate with 

the drug metabolizing capacity of an individual’s microbiome. To this aim, we measured the 

ex vivo activity of the 28 communities to metabolize two additional drugs, norethindrone 

acetate and famciclovir, and quantified the metagenomic abundance of bacterial phyla, 

genera, species and gene products that we identified in the strain- and enzyme-targeted 

screens to metabolize these two drugs. We found that the gene abundance of identified drug-

metabolizing proteins significantly (p-value < 0.05) correlated with the communities’ 

capacity to metabolize the respective drug (Fig. 5g-h, Extended Data Fig. 11e-f, 

Supplementary Table 19). In the case of famciclovir, we also found significant correlations 

between drug-metabolizing microbiota activity and the abundance of certain bacterial 

species and broader phylogenetic groups, which is consistent with the results of the initial 

screen shown in Fig. 1c. These results provide a prospective approach to better understand 

and potentially predict microbiome drug metabolism, in cases when a drug-modifying 

reaction is catalyzed by a single gene product and also in cases mediated through the 

metabolic activity of defined members of a microbial community.

Discussion:

We provide an outline of the drug-metabolic activity of human gut bacteria and found that 

about two thirds of the 271 assayed drugs are metabolized by at least one strain in our 

survey. Notably, food and endogenous compounds likely serve as physiological substrates 

for many of these chemical transformations, as illustrated for cortisol and progesterone 

metabolism. We further developed an approach for microbiome-wide identification of 

(drug)-metabolic gene products and we validated 30 microbiome-encoded enzymes that 

collectively convert 20 drugs to 59 candidate metabolites. Depending on the drug and its 

formulation, we anticipate that such microbiome drug metabolism could play a role in 

determining intestinal and systemic drug and drug metabolite exposure. Together, these 

results complement previous studies that highlight the impact of drugs on bacterial fitness 

and microbiome composition17,18, and others that identify microbiome-induced changes in 

hepatic drug metabolism19,20. Further, this study provides a mechanistic understanding of 

microbiome (drug) metabolism that may enable rational strategies to manipulate individuals’ 

microbiota to beneficially alter metabolic microbiome-host interactions.

Methods:

Chemicals

Screened drugs were picked from the Pharmakon1600 library (MicroSource Discovery 

Systems) and pooling was performed by the Yale Center for Molecular Discovery. 

Compounds for follow-up studies were purchased individually (see Supplementary Table 20 

for details). LC-MS grade solvents were from Fisher Scientific and other chemicals were 

from Sigma Aldrich, if not otherwise indicated.
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Bacterial Culture Conditions

Bacterial strains used in this study are listed in Supplementary Table 1.

Anaerobic culture conditions –—A flexible anaerobic chamber (Coy Laboratory 

Products) containing 20% CO2, 10% H2, and 70% N2 was used for all anaerobic 

microbiology steps. All anaerobic culturing was performed on brain-heart-infusion (BHI; 

Becton Dickinson) agar supplemented with 10% horse blood (Quad Five Co.). Liquid 

cultures of bacterial gut isolates and whole communities for drug degradation assays were 

grown in Gut Microbiota Medium (GMM)21. To make unmarked deletion and 

complementation strains, B. thetaiotaomicron VPI-5482 (ATCC 29148) derived strains were 

grown anaerobically at 37°C in liquid TYG medium and on TYG agar supplemented with 

hemin and vitamin K22. For selection, gentamicin 200 μg/mL, erythromycin 25 μg/mL, 

and/or 5-fluoro-2-deoxy-uridine (FUdR) 200 μg/mL were added as indicated. CFU (colony 

forming unit) counting to determine mouse gut colonization levels and in vitro culture 

densities was performed anaerobically on BHI blood agar.

Aerobic culture conditions –—Escherichia coli strains for molecular cloning were 

grown aerobically at 37°C in LB medium (200 rpm shaking) and on LB agar supplemented 

with carbenicillin (100 µg/mL) or kanamycin (50 µg/mL).

Preparing Gain-of-Function Libraries, Strain Pooling, and Hit Validation

Bacterial strains, plasmids, and primers are listed in Supplementary Tables 1 and 12.

Preparing gain-of-function libraries –—Heterologous expression libraries were 

prepared as previously described23. In brief, genomic DNA was extracted from overnight 

cultures of the source bacterial strain24. DNA was sheared to 2–8 kb by focused 

ultrasonication (Covaris E220 with miniTUBE red) and fragments were cloned into PCR-

linearized expression vector pZE21 (primer #1–2) by blunt-ended ligation (Epicentre 

FastLinkTM kit). Before transformation, the ligation products were separated on a 0.5% 

agarose gel, the region between 5 and 10 kb was excised and DNA was extracted using a gel 

extraction kit (Qiagen). Ligation products were transformed into E. cloni®10G Elite 

competent cells (Lucigen) by electroporation. Overnight grown colonies were picked and 

arrayed in 384-well format into liquid LB medium supplemented with kanamycin using a 

colony picking robot (Molecular Devices QPix 420). After incubation overnight at 37°C, 

plates were replicated in duplicate onto LB agar plates supplemented with kanamycin. The 

first plate served for the initial drug assay described below to identify plates that contain 

drug-metabolizing gain-of-function hits. The second plate was stored at 4°C for use in the 

secondary assay to localize drug metabolizing clones within active plates as described 

below. Primer #3–4 were used for Sanger sequencing of representative library clones and 

identified drug-metabolizing clones.

Hit validation by targeted gene expression in E. coli –—To validate identified drug-

metabolizing gene products from gain-of-function screen, gene sequences were PCR-

amplified (primer #5–54, #95–150), cloned into the pZE21 expression plasmid by either 

blunt-end ligation (T4 polynucleotide kinase and ligase, NEB) or Gibson cloning 
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(NEBuilder HiFi DNA Assembly Kit, NEB), and electro-transformed E. cloni®10G Elite 

cells. Resulting strains were tested for specific drug-metabolizing activities.

Construction of B. thetaiotaomicron Targeted Mutants and Complementation Strains

Bacterial strains, plasmids, and primers are listed in Supplementary Tables 1 and 12.

Gene deletions and complementations –—A counter-selectable (FUdR, Sigma 

Aldrich) allelic exchange procedure25 was utilized to generate in-frame, unmarked deletions 

in a B. thetaiotaomicron VPI-5482 tdk background (wild type; WT) as described 5. In brief, 

primer #55–60, #63–68, #71–76, and #79–80 were used to generate pExchange-tdk suicide 

plasmids25 for deletion of bt2068, bt2367, and bt4096 by splicing by overlap extension 

PCR26, cloning via restriction sites BamHI and XbaI, plasmid sequencing, and PCR-

screening of resolved clones after second DNA recombination event. Gene 

complementations at various expression levels were performed as described5,27 using primer 

#61–62, #69–70, #77–78, and #81–82 and pNBU2-derived plasmids that integrate into the 

genome in single copy. Bt4096 complementation using the highest expressing promoters 

was not successful, possibly due to enzyme toxicity at high expression levels.

Bacterial Drug Metabolism Assays

Drug assays with axenic cultures and fecal communities –—Frozen glycerol 

stocks of bacterial strains (Supplementary Table 1) were plated on BHI blood agar and 

incubated at 37°C under anaerobic conditions. Single colonies were inoculated into 6 mL 

pre-reduced GMM (supplemented with 1% w/v arginine for Eggerthella lenta) and incubated 

anaerobically at 37°C for 24 h (Akkermansia muciniphila for 48 h). Drug-conversion assays 

were performed as described5,21. In brief, bacterial cultures were diluted into fresh, pre-

reduced GMM (1/5) containing tested drug(s) at 2 µM, incubated anaerobically until 

samples were collected and samples were stored at −80°C until further processing for 

analysis by LC-MS (see below).

Gain-of-function screen –—All 384 colonies of a single arrayed library agar plate (see 

Preparing gain of function libraries section above) were collected en masse by scraping and 

resuspended in 750 µl of GMM (1/5). 225 µl of the cell suspension and an 8-fold dilution 

thereof were combined with 25 µl of GMM (1/5) with a drug mixture and incubated 

anaerobically at 37°C. 20 µL samples were collected after 0, 1, 2, 4, 6, 8, 12 and 24 h of 

incubation. Plates corresponding to pools that exhibited the capacity to metabolize one or 

more of the tested drugs were replicated into a 384-well plate containing 70 µL of LB 

supplemented with kanamycin and cultures were grown aerobically for 12 h at 37°C. For 

groups of 2×2 active plates, pools were assembled from 20 µL of each culture corresponding 

to each row (2×16 pools) and to each column (2×24 pools) and tested for drug-metabolizing 

activity. Identified active gain-of-function clones were colony-purified, four independent 

colonies were retested for drug-metabolizing activity, and two of the verified, clonal cultures 

selected for Sanger sequencing of the plasmid inserts (primer #3–4).
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Cloning, purification and enzymatic activity testing of BT4096 and BT2367

BT4096 –—Sequence analysis of bt4096 using the SignalP 4.0 server28 suggested an N-

terminal export signal with a cleavage site between residues 20 and 21. The open reading 

frame without this signal sequence was PCR-amplified (primer #85–86) and cloned into the 

pASG-IBA105 (IBA GmbH) expression plasmid (N-terminal Twin-Strep-Tag® protein 

fusion and anhydrotetracycline-inducible expression) following the vendor’s protocol for 

StarGate® cloning. E. coli (E. cloni® 10G, Lucigen) containing a sequence-verified plasmid 

(primer #87–88) was aerobically cultured (220 rpm shaking) in 1L LB medium with 

carbenicillin and protein expression was induced with anhydrotetracycline (200 ng/mL) 

during mid-exponential growth (OD600 = 0.4–0.6). After 3 h, bacteria were collected by 

centrifugation (4000 x g) and lysed on ice by sonication (8 pulses of 15 s at 45% amplitude 

in intervals of 60 s) in the presence of protease inhibitors (cOmplete™ protease inhibitor 

cocktail, Sigma Aldrich). Affinity purification was performed using a gravity flow Strep-

Tactin®XT Superflow® column (IBA GmbH) following the manufacturer’s 

recommendations. Protein purity was verified by SDS-PAGE and coomassie staining and 

quantified by Bradford protein assay using BSA as a standard (Biorad). Enzyme assays were 

performed in TrisHCl buffer (10mM, pH 7), supplemented with 2.5 mM MgSO4 and MnCl 

at 37°C; reaction volumes were 150 µL with BT4096 at 5 µg/µL and varying substrate 

concentrations: 250, 125, 62.5, 31.3, 15.6, 7.8, 3.9, 0 µM. 10 µL of sample were collected 

and quenched in ice-cold acetonitrile (10 µL) at times 30, 60, 90, 120, 150, 180, 210, 240, 

300, 360, 480, and 600 s of incubation. Samples were stored at −80°C until further 

processing and analysis by LC-MS (see below).

BT2367 –—The bt2367 open reading frame was PCR-amplified (primer #83–84) and 

cloned into the pASG-IBA103 (IBA GmbH) expression plasmid (C-terminal Twin-Strep-

Tag® protein fusion and anhydrotetracycline-inducible expression) following the vendor’s 

protocol for StarGate® cloning. E. coli (E. cloni® 10G, Lucigen) containing a sequence-

verified plasmid (primer #87–88) was used to express and purify the enzyme as described 

for BT4096 above. Enzyme assays were performed in TrisHCl buffer (10mM, pH 7), 

supplemented with 2.5 mM MgSO4 and MnCl at 37°C; reaction volumes were 100 µL with 

BT2367 at 10 µg/mL and 1 mM of cofactor (either acetyl-CoA or propionyl-CoA) and 100 

µM of substrate (either pericyazine, cyamemazine or 1-(3-aminopropyl)piperidin-4-ol) were 

used to test acyltransferase activity. 5 µL of sample were collected and quenched in ice-cold 

acetonitrile (15 µL) at times 0, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 40, 50, and 60 min of 

incubation. Samples were stored at −80°C until further processing and analysis by LC-MS 

and LC-MS/MS (see below).

qPCR analysis

Fecal DNA was extracted from a biomass pellet of 500 µL community cultures (see above) 

as described24,29. The abundance of specific bacterial species or bt4096 homologs was 

assessed by qPCR (primer #89–94) as described previously9,30. A CFX96 instrument 

(BioRad) and SYBR FAST universal master mix (KAPA Biosystems) were used.
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Animal experiments

All experiments using mice were performed using protocols approved by the Yale University 

Institutional Animal Care and Use Committee in accordance with the highest scientific, 

humane, and ethical principles and in compliance with federal and state regulations, 

including the Animal Welfare Act (AWA) and the Public Health Service (PHS).

Germfree (GF) 9–16 week old C57BL/6J mice were maintained in flexible plastic 

gnotobiotic isolators with a 12-hour light/dark cycle and GF status monitored by PCR and 

culture-based methods. Conventional C57BL/6J mice (Jackson Laboratories) were 

purchased at the age of 6–7 weeks and kept in the lab for 2–3 weeks before experiments. All 

mice were provided a standard, autoclaved mouse chow (5013 LabDiet, Purina) ad libitum.

Dexamethasone treatment –—Serum kinetics of dexamethasone following oral 

administration was determined using 20 (n = 4 per time point) conventional C57BL/6J mice 

treated with 10 mg/kg of dexamethasone suspension in PBS. One blood sample was 

collected from each animal into lithium heparin tubes (BD Life Sciences) by submandibular 

bleeding and a second sample was collected at time of euthanization. Serum was collected 

by centrifugation (2500 rcf, 4°C, 10 min) of heparinized blood and stored at −80°C until 

further processing and analysis by LC-MS (see below).

To compare dexamethasone metabolism between germfree mice and mice mono-colonized 

with C. scindens (ATCC 35704), individually caged germfree C57BL/6J mice were either 

directly treated with dexamethasone (as above) or colonized with C. scindens (ATCC 35704) 

by oral gavage of 200 µL of an overnight bacteria culture in GMM. After 4 days, bacterial 

loads were determined by CFU plating on BHI blood agar before dexamethasone was orally 

administered to the mice as described above. Mice were sacrificed 7 h after drug 

administration, serum was collected as described above and tissue samples were collected 

into sample tubes and snap-frozen. Fecal samples were collected before euthanization and 

re-suspended in PBS (1 mL) through vigorous shaking. 20 µL were then plated on BHI 

blood agar plates and incubated aerobically and anaerobically at 37°C to check animals for 

contamination.

Diltiazem treatment –—Germfree C57BL/6J mice were mono-colonized with B. 
thetaiotaomicron wild type or bt4096 mutant strain and bacterial loads were determined by 

CFU plating four days after colonization as described above. Single-dose treatment: 5 mice 

per timepoint and group were treated with 50 mg/kg of diltiazem suspension in PBS with 

20% glycerol or solely vehicle for non-treated controls (n = 5 per group). One early blood 

sample (at 0.5, 1, 1.5, 2, and 2.5 h after drug administration) was collected from each animal 

by submandibular bleeding and a second sample was collected when mice were sacrificed 

(at 3, 5, 7, 9, and 12 h after drug administration). In addition to serum, the following tissues 

were collected after euthanization: luminal content of duodenum (SI), jejunum (SII), ileum 

(SIII), cecum, and colon, and feces, liver and bile. Samples were collected and stored as 

described above. Multiple-dose treatment: 6 and 5 mice mono-colonized with B. 
thetaiotaomicron wild type or bt4096 mutant strain, respectively were treated five times with 

50 mg/kg of diltiazem suspension in PBS with 20% glycerol in intervals of 6 h. Six h after 
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the last treatment, a blood sample was collected from each animal by submandibular 

bleeding and animals were sacrificed for sample collection as described above after an 

additional 6 h.

Mass Spectrometry Analysis of Drugs and Metabolites

Extraction of solid tissues and liquid samples –—Solid tissues and liquid samples 

were prepared for LC-MS and LC-MS/MS analysis by organic solvent extraction 

(acetonitrile:methanol, 1:1) at -20°C after the addition of internal standard mix 

(sulfamethoxazole, caffeine, ipriflavone, and yohimbine each to a final concentration of 80 

nM) as described5,29.

LC-MS and LC-MS/MS analysis –—Analyses was performed as previously 

described5,29. In brief, chromatographic separation was performed by reversed-phase 

chromatography (C18 Kinetex Evo column, 100 mm x 2.1 mm, 1.7 mm particle size, and 

according guard columns, Phenomenex) using an Agilent 1200 Infinity UHPLC system and 

mobile phase A: H2O, 0.1% formic acid and B: methanol, 0.1% formic acid and column 

compartment was kept at 45°C. 5 µL of sample were injected at 100% A and 0.4 mL/min 

flow followed by a linear gradient to 95% B over 5.5 min and 0.4 mL/min. To ensure 

reproducible chromatographic separation (retention shifts between samples < 2% or 

0.15min) columns were changed after 1000 sample injections. The qTOF (Agilent 6550) 

was operated in positive scanning mode (50 – 1000 m/z) with the following source 

parameters: VCap: 3500 V, nozzle voltage: 2000 V, gas temp: 225 °C; drying gas 13 L/min; 

nebulizer: 20 psig; sheath gas temp 225 C; sheath gas flow 12 L/min. Online mass 

calibration was performed using a second ionization source and a constant flow (5 µL/min) 

of reference solution (121.0509 and 922.0098 m/z). Tandem mass spectrometry analysis 

(LC-MS/MS) was performed using the chromatographic separation and source parameters 

described above and the auto-MS/MS mode of the instrument with a preferred inclusion list 

for parent ions with 20 ppm tolerance, Iso width set to ‘narrow width’ and collision energy 

to either 15, 20 or 30 eV. The MassHunter Quantitative Analysis Software (Agilent, version 

7.0) was used for peak integration based on retention time and accurate mass measurement 

of chemical standards. Quantification of in vivo samples was based on dilution series of 

chemical standards spanning 0.001 to 10 µM and measured amounts were normalized by 

weights of extracted tissue samples. The MassHunter Qualitative Analysis Software 

(Agilent, version 7.0) and Mass Profiler Professional (Agilent, version 13.0) with standard 

parameters were used for untargeted feature extraction and peak alignment, respectively 

allowing tolerances for mass of 0.002 amu or 20 ppm and for retention time of 0.15min or 

2%. Statistical analysis and plotting were performed in Matlab 2017b (MathWorks).

Analysis of drug metabolism screen

Identification of metabolized drugs –—For each bacterial strain, drug fold changes 

were calculated between time points 12 h and 0 h in the 4 pools that contained a specific 

drug (Supplementary Table 2), and between these drug-containing pools and the 3 non-drug 

controls at time points 0 h and 12 h. Statistical significance of the drug intensity differences 

was assessed with two-sided t-test (ttest2 function in MatLab), and p-values were FDR-

corrected for multiple hypotheses testing using the Benjamini-Hochberg procedure (mafdr 
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function in MatLab with ‘BHFDR’ parameter). To account for fast drug metabolism (within 

seconds after exposure), fold changes to control at time point 0 h were used for drug and 

strain combinations for which i) log2(fold change to control at t=0h) < −5 and ii) pFDR(fold 

change to control at t=0h) < 0.05 and iii) log2(fold change to control at t=0h) < log2(fold 

change at t=12h to t=0h). To account for variability in drug measurements, for each drug an 

adaptive fold change threshold was calculated as either (20%) or (mean+2std of the fold 

changes, for which log2(fold change at t=12h to t=0h) > 0, to account for measurement 

noise), whichever was greater. Hierarchical clustering was performed with clustergram 

function in MatLab using Euclidean distance between the drug fold change vectors for each 

bacterial strain.

Identification of candidate drug metabolites –—For each drug and each bacterial 

strain, intensities of all compounds detected in the drug-containing pools (n=4) versus all 

other pools (n=20) were compared by calculating fold change and statistical significance 

with two-sided t-test (ttest2 function in MatLab). All p-values were FDR-corrected for 

multiple hypotheses testing with Benjamini-Hochberg procedure (mafdr function in MatLab 

with ‘BHFDR’ parameter). The FDR-corrected p-value threshold for candidate drug 

metabolites was set to 10−6 based on the distribution of p-values of parent drugs in their 

corresponding four pools versus all other pools (combinatorial pooling scheme shown in 

Extended Data Fig. 1a, Supplemental Table 2). Briefly, histograms of the pFDR values 

calculated for the candidate metabolites were compared with the histograms of the pFDR 

values of the drugs detected in the corresponding drug pools (positive controls) and the 

pFDR values of metabolites calculated for a random pooling scheme not included in the 

experiment (negative controls). The pFDR distributions appeared to be bimodal, and 

findpeaks function in MatLab2017b was used to find the pFDR threshold that corresponds to 

the local minimum between the distribution peaks, thus separating high confidence pFDR 

values prevalent in the positive controls. Detailed analysis scheme, distribution plots and 

analysis scripts are available on GitHub (mszimmermann/drug-bacteria-gene_mapping).

Candidate metabolites were filtered according to the following exclusion criteria: i) 

metabolite intensity in the drug pools at t=0 h is > 104 ion counts (corresponding to twofold 

the minimal intensity for chromatographic feature extraction: 5*103 ion counts), and 

log2(fold change to other pools at t=0 h) < 1; or ii) metabolite intensity in the drug pools at 

t=12 h is > 104 ion counts, and log2(fold change to other pools at t=12 h) < 1; or iii) the 

difference of mass defects between the drug and the metabolite is > 0.2 amu; or iv) retention 

time difference between the drug and the metabolite is < 0.1 min; or v) metabolite mass is 

similar to one of the metabolites filtered at step iv) (mass difference < 0.002 amu) and 

retention time is similar to an unfiltered metabolite of the same drug (difference < 0.1 min). 

Additionally, metabolites were filtered based on whether the parent drug was metabolized, 

whether the metabolite was identified for a single drug or multiple drugs, and whether the 

metabolite was increasing in at least one strain at 12 h compared to 0 h (log2(fold change) > 

1 and pFDR < 0.05). Mass difference between the parent drug and candidate metabolites 

were calculated for each drug-metabolite pair and smoothened with 0.002 Da window.
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Chemoinformatics

Chemical similarity analysis –—Chemical similarity analysis between the 271 selected 

drugs and the 2099 clinically approved drugs from DrugBank31 was performed using 

Morgan chemical fingerprints calculated with AllChem.GetMorganFingerprintAsBitVect 

function from the RDKit AllChem module (Open Source Chemoinformatics, http://

www.rdkit.org). Chemical fingerprints were converted into a binary matrix and subject to 

principal component analysis. Chemical structure similarity for the drug clusters identified 

with hierarchical clustering was performed using the maximum common substructure 

function in RDKit (rdFMCS.FindMCS).

Functional chemical group analysis –—For each drug, the existence of chemical 

functional groups was calculated with available functions from the rdkit.Chem.Fragments 

module (Open Source Chemoinformatics, http://www.rdkit.org). Functional group 

enrichment among metabolized drugs, drugs belonging to specific clusters, or drugs 

undergoing specific mass difference transformation upon bacterial metabolism, was 

calculated with Fisher’s exact test. All p-values were FDR-corrected for multiple hypotheses 

testing using the Benjamini-Hochberg procedure (mafdr function in MatLab with ‘BHFDR’ 

parameter).

Analysis of drug-metabolizing capacity of bacterial strains and communities

Protein sequence alignments –—Bacterial strains’ genome sequences and protein 

sequences of the candidate genes were downloaded from NCBI. Sequence similarity 

between the genomes and proteins of interest was assessed by searching the translated 

nucleotide database using protein query (tblastn) with default parameters32. Sequence 

similarity between candidate proteins was assessed with protein blast (blastp) with default 

parameters32. Protein similarity networks and drug-gene-metabolite networks were 

visualized in Cytoscape v3.4.033.

Gene set enrichment analysis –—Enrichment of strains encoding a given protein 

among strains metabolizing a given drug was assessed using the gene set enrichment 

procedure16. In brief, for each drug, the strains were sorted according to the percent of 

parent drug that was metabolized, and enrichment of strains encoding y% similar sequence 

to the protein of interest was calculated with Fisher’s exact test for each set of strains 

metabolizing more than x% of the drug, where x ranged between 100% and 20% (with 

step=20%) and y ranged between 100% and 50%. For enrichment analysis of gene 

combinations, maximal sequence similarity to the corresponding genes was used. The lowest 

p-value was recorded for each drug-gene pair. All p-values were FDR-corrected for multiple 

hypotheses testing using the Benjamini-Hochberg procedure (mafdr function in MatLab with 

‘BHFDR’ parameter).

Analysis of microbial community drug metabolism –—For the human gut 

communities, drug metabolism of each community was represented with conversion slopes 

of the drug and the corresponding drug metabolite. To assess the velocities of drug 

consumption and drug metabolite production, concentration slope was calculated by fitting a 

piecewise linear function to the corresponding concentration curves with polyfit function in 
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MatLab 2017b. Correlation between drug consumption or metabolite production slopes and 

specific gene abundance, bacterial 16S abundance or bacterial CFU mL−1 was calculated 

with corr function in MatLab 2017b.

Metagenomic analysis

Sample preparation and sequencing –—DNA from bacterial community samples was 

extracted as described above for the qPCR analysis. Library preparation and sequencing was 

performed at the Yale Center for Genome Analysis. The Kapa Biosystems Hyper prep kit 

WGS was used for the preparation of the metagenomic sequencing libraries. 2×150bp 

sequencing was performed on an Illumina Novaseq 6000 instrument with a S4 flow-cell to 

target depth of ~20 Mio reads per sample. Raw sequencing data were deposited on the 

publicly available ENA server (accession no. PRJEB31790).

Data preprocessing –—Metagenomic sequencing data preprocessing and analysis was 

performed with bioBakery tools34. Paired-end reads from each sample were filtered with 

KneadData v0.6.1 to trim adaptor sequences with trimmomatic-0.38 and to exclude reads 

mapping to the human genome35. Filtered paired-end reads were merged before further 

processing.

OTU construction and taxonomic assignment –—OTU construction and taxonomic 

assignment was performed with MetaPhlan2 v2.6.036 on the filtered and merged sequencing 

data. OTU tables were subsequently merged into a summary OTU table with 

merge_metaphlan_tables function (Supplementary Table 17).

Diversity analysis –—Diversity analysis was performed with Qiime 1.837. OTU tables 

from metagenomic analysis were converted to biom tables with biom -convert functions. 

Shannon’s alpha-diversity metric was calculated with alpha_diversity.py function with -m 

shannon parameter.

Quantification of protein sequence abundance –—Protein sequence abundance 

quantification was performed with ShortBRED v0.9.538. Target protein sequences were 

downloaded from NCBI in amino acid fasta format. ShortBRED markers were created with 

shortbred-identify function using Uniref90 downloaded from https://www.uniprot.org/

downloads as a reference39. Protein sequence abundance was quantified using the created 

reference markers with shortbred_quantify function using built in USEARCH 

v11.0.667_i86linux32 tool40. The resulting tables for each sample were merged into one 

summary table (Supplementary Table 18).

Correlation analysis –—Correlation analysis between drug or metabolite conversion 

slopes was performed in MatLab2017b with corr function (resulting in Pearson’s correlation 

coefficient and p-value calculated using Student’s t-distribution for statistics 

t=r*sqrt((n-2)/(1-r^2) with n-2 degrees of freedom, where r is the correlation coefficient, and 

n is the sample size) (Supplementary Table 19).

Metagenomics analysis workflows are available on GitHub (https://github.com/

mszimmermann/drug-bacteria-gene_mapping).
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Human fecal material

All samples were collected under Yale University Human Investigation Committee protocol 

number 1106008725 at Yale University School of Medicine and stored in the Goodman 

laboratory, using ID numbers which are not associated with study volunteer names or other 

identifying information. Study volunteers were recruited through the campus billboard 

advertisement and reviewed an information sheet describing the study prior to deciding to 

participate. Eligibility criteria included age (20–60 years) and general health status 

(generally healthy, no long-term chronic diseases or illnesses, no cold, no flu or apparent 

bacterial or viral infection at the time of contact, not currently on antibiotics or no antibiotic 

use in the past 2 months, and regular bowel movement). No information was collected from 

the subjects except for their age and gender (Supplementary Table 9 and 16). Fecal samples 

were then collected and stored as previously described21.

Statistics and Reproducibility

Statistical analysis of all data was performed in MatLab R2017b. No statistical methods 

were used to predetermine sample size. For mouse experiments, mice were randomized 

before allocation to study groups and respective cages. All other experiments conducted for 

the study were not randomized, and the investigators were not blinded to either allocation 

during experiments or to outcome assessments.

All in vitro experiments were performed once with indicated replication. Mouse experiments 

in Fig. 3f and Extended Data Figs. 5a, 8b were performed once, in Extended Data Fig. 5b 

twice, and in Fig. 3e and Extended Data Fig. 8a three times with indicated replication 

(Supplementary Tables 7-8 and 10) that resulted to comparable observations between 

repeats. In Figs. 3e-f and Extended Data Figs. 5a-b and 8, horizontal lines represent mean 

values of independent animals. P-values were calculated with a two-sided unpaired 

Student’s t-test, and FDR-corrected for multiple hypotheses testing with Benjamini-

Hochberg procedure. The exact number of animals used per time point and calculated pFDR 

values per compound and time point are indicated in Supplementary Tables 7-8 and 10-11.

In Fig. 2a, volcano plot represents mean fold changes between n=4 drug-containing pools 

and n=20 non-drug-containing pools (vehicle controls), and p-values were calculated with a 

two-sided unpaired Student’s t-test and FDR-corrected for multiple hypotheses testing with 

Benjamini-Hochberg procedure. In Figs. 5d-e, bar plots and error bars represent mean and 

STD of n=4 independent cultures. In Fig. 5f, each color represents a different human donor, 

lines depict the mean of n=4 independent samples.

Data and code availability

All data generated during this study are included in this published article and its 

Supplementary Tables. Data are available from FigShare: https://doi.org/10.6084/

m9.figshare.8119058. Raw sequencing data were deposited on the publicly available ENA 

server (accession no. PRJEB31790). Raw metabolomics data were deposited on the public 

repository MetaboLights (accession no. MTBLS896).
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Analysis pipeline schemes, scripts and input files for analyzing data and generating figures 

are available on GitHub (https://github.com/mszimmermann/drug-bacteria-gene_mapping) 

and archived at Zenodo (https://doi.org/10.5281/zenodo.2827640).

Extended Data
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Extended Data Figure 1. Setup of drug assay, characterization of tested drugs, and summary of 
metabolic bacteria-drug interactions.
a, Schematic representation of combinatorial pooling scheme using 21 drug pools (A-U) and 

3 non-drug controls (V-X). Each of the 271 drugs is tested in quadruplicate (present in 4 

pools) and any two drugs are tested in the same pool at most twice (Supplementary Table 2). 

b-c, Molecular weight (b) and LogP (c) distribution of 271 tested drugs (red) in comparison 

with 2099 clinically approved drugs (DrugBank31). d, Distribution of predicted colon drug 

concentration for 58 of the 271 drugs tested (data from Maier et al.17). The predicted median 

and mean concentration in the large intestine for these compounds is 103 uM and 362 uM, 
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respectively, when each drug is administered at its standard oral dose. e, Number of drugs 

metabolized as a function of the selection threshold (metabolized fraction). f, Number of gut 

bacteria that metabolize a given drug. g, Number of drugs metabolized by each bacterial 

strain.
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Extended Data Figure 2. Metabolism of drugs previously reported to be transformed by bacteria 
and functional chemical group distribution.
a, Percent of consumption between 0 h and 12 h for each drug after incubation with each gut 

bacterial species/strain are shown. Bars and error bars depict the mean and STD of n=4 

assay replicates. b, Distribution of functional chemical groups in drugs that are metabolized 

or not metabolized across the 76 tested bacterial strains. Abundance of each chemical group 

among the 271 selected drugs and 2099 clinical drugs (DrugBank31) is indicated.
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Extended Data Figure 3. Hierarchical clustering of bacterial strains/species and drugs according 
to microbial drug metabolism.
a, Dendrogram of bacterial strains from Fig. 1c (X-axis). b, Dendrogram of drugs from Fig. 

1c (Y-axis).
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Extended Data Figure 4. Structural drug features targeted for biotransformation and 
microbiome metabolism of dexamethasone.
a, Examples of drugs associated with a particular mass shift between a parent drug and its 

metabolite. Functional groups that are enriched in drugs undergoing a specific mass shift 

(Fig. 2d) are highlighted. b, Dexamethasone metabolism by each of the 76 tested bacterial 

strains. Bar plots and error bars represent mean and STD of n=4 assay replicates. c, 

Validation of C. scindens (ATCC 35704) desmolase activity by mass comparison of 

metabolites produced from either dexamethasone or D5-dexamethasone and their LC-

MS/MS spectra. Shaded areas correspond to mean ± standard deviation, n=6 independent 

cultures. Highlighted in red are representative ion fragments to illustrate the loss of the 

dexamethasone side chain (labeled with 2 deuterium atoms, compared to the steroid 

backbone labeled with 3 deuterium atoms).
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Extended Data Figure 5. Microbial corticosteroid metabolism in vivo and in human gut 
communities.
a, Dexamethasone serum profile in conventional mice following a single oral dose of 

dexamethasone. Line depicts fit of first order drug elimination kinetics. n=4 mice of either 

gender were used for each time point. Data are provided in Supplementary Table 7. b, 

Dexamethasone and dexamethasone metabolite levels across tissues of germ-free and C. 
scindens (ATCC 35704) mono-colonized mice after 7 hours of drug exposure. Horizontal 

lines show mean values of n=6 animals. * p ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 (unpaired two-

sided Student’s t-test). Data and p-values are provided in Supplementary Table 8. c, C. 
scindens (ATCC 35704) desmolase activity for different corticosteroids. Shaded areas 

correspond to mean ± standard deviation, n=6 independent cultures. d, Bacterial density of 
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human gut communities. CFU, colony forming units measured by anaerobic culturing. 

Horizontal bars represent mean of n=4 independent cultures. e, Ex vivo dexamethasone 

metabolism of gut communities isolated from 28 humans (each color represents a different 

human donor, lines depict the mean of n=4 replicate assays). C. scindens species abundance 

(quantified by species-specific qPCR) is not sufficient to explain the dexamethasone-

metabolizing activity of these human gut communities. Data are provided in Supplementary 

Table 9. f, Correlation between community CFU mL−1 values and dexamethasone (left) or 

androgen dexamethasone metabolite (right) consumption and production slopes after 12 

hours of incubation with each of the 28 human gut communities. P-values were calculated 

for the null hypothesis that there is zero correlation against the two-sided alternative that 

there is non-zero correlation (also see methods).
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Extended Data Figure 6. Gain-of-function approach to identify microbial drug-metabolizing 
gene products: B. thetaiotaomicron diltiazem metabolism as an example.
a, Drugs metabolized by B. thetaiotaomicron and candidate drug metabolites identified by 

untargeted metabolomics. b, Identification of active 384-well library plates that include 

clones with diltiazem deacetylation activity. c, Mapping of diltiazem-converting activity 

within active plates to identify active clones. d, Four independent E. coli clones 

demonstrating gain of diltiazem-metabolizing activity carry inserts that map to the same 

region in the B. thetaiotaomicron genome. e, Validation of BT4096 activity by targeted 

expression of the open reading frame in E. coli. Shaded areas depict the mean and STD of 

independent cultures/assays (n=4). f, Bacterial load of gnotobiotic mice mono-colonized 
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with either B. thetaiotaomicron wildtype or the bt4096 mutant strain. Horizontal bars 

represent mean of n=35 independent mice per group. P-value was calculated with unpaired 

two-sided Student’s t-test. g, In vitro enzyme assay with N-desmethyldiltiazem as substrate 

to demonstrate that BT4096 also deacetylates N-desmethyldiltiazem, which is the major 

metabolic product of murine diltiazem metabolism. Lines and shaded areas depict the mean 

and STD of n=4 assay replicates, respectively.
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Extended Data Figure 7. In vivo diltiazem metabolism and tandem mass spectrometry to validate 
metabolite identities.
a, Structures of diltiazem in vivo metabolites41. b, Exemplary tandem-MS analysis to 

validate identities of diltiazem metabolites. LC-MS/MS data for all diltiazem metabolites are 

compiled in Supplementary Table 21. The experiment was performed n=3 times with 

comparable results.
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Extended Data Figure 8. bt4096-depended in vivo diltiazem metabolism.
a, Diltiazem and diltiazem metabolite kinetics in different tissues following a single oral 

dose of diltiazem in gnotobiotic mice mono-colonized with either B. thetaiotaomicron 
wildtype or the bt4096 mutant strain. b, Intestinal diltiazem and diltiazem metabolite levels 

following multiple oral doses of diltiazem in mice mono-colonized with either B. 
thetaiotaomicron wildtype or the bt4096 mutant strain. Five oral doses were administrated to 

animals in six hour intervals. Tissues were collected 12 hours after the last oral dose of 

diltiazem. For all mouse experiments: Horizontal lines show the mean of n=5 animals and 

times reflect hours after oral diltiazem administration. * p ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001 
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(unpaired two-sided Student’s t-test with FDR correction for multiple hypotheses testing). 

Data and p-values are provided in Supplementary Tables 10-11.
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Extended Data Figure 9. Validation of identified drug-metabolizing gene products.
a, B. thetaiotaomicron gDNA fragments identified in norethindrone acetate and pericyazine 

metabolizing E. coli clones. b, All drug-metabolizing gain-of-function hits were validated by 

assays with E. coli expression constructs carrying PCR-amplified gene sequences and their 

combinations in case of operons (e.g., BT_2068–2066 metabolizing norethindrone). c, d, 

Levonorgestrel and progesterone-metabolizing activity of BT2068 shown by E. coli 
expressing bt2068 (c) and B. thetaiotaomicron wildtype, bt2068 mutant, and complemented 

strains (d). Promoter strengths for gene complementation are P1E6 > P4E5 >P2E5 > P5E4 

>P1E4 > P2E3. e, Exemplary LC-MS/MS validation of O-acetyl-pericyazine. The 
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experiment was performed n=3 times with comparable results. f, Enzymatic validation of O-

acetyl- and O-propionyl-transferase activity using purified BT2367 and periciazine as 

substrate. e, Enzymatic validation of O-acyl-transferase activity of purified BT2367 using 

substrates structurally similar to pericyazine. While no acetyl-transferase activity could be 

measured for cyamemazine, aminopropylpiperidinol is converted to o-acetyl-

aminopropylpiperidinol by BT2367. In (a-d) and (f-g), shaded areas depict the mean and 

STD of independent cultures/assays (n=4).
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Extended Data Figure 10. Identified drug-metabolizing gene products explain observed drug 
metabolism of gut bacteria.
a, Genome coverage and fragment size distribution in E. coli gain-of-function libraries 

specific for B. dorei (based on 78 sequenced clones) and C. aerofaciens (based on 81 

sequenced clones). Both libraries contained ~37,000 clones. b, Network of enzyme-

substrate-product drug metabolic interactions for B. dorei and C. aerofaciens. Each node 

represents an enzyme (rectangles), a drug substrate (hexagons) or a metabolite product 

(circles), and each edge represents a validated metabolic interaction (targeted cloning of the 

gene into E. coli results in metabolism of a given drug or production of a specific drug 
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metabolite). c, Comparison between maximal BD03091 and CA01707 identity of a given 

bacterial strain and its metabolism of norethindrone acetate and tinidazole, respectively. d, e, 

Reciprocal BLAST analysis of identified drug-metabolizing proteins. Line-width depicts the 

% of length (d) and identity (e) of mutual protein sequence alignment. e, Specific drug 

metabolism rates of 67 genome sequenced gut bacteria and presence of homologs to 

respective drug-metabolizing gene products. Notably, roxatidine acetate, famciclovir, 

diacetamate and diltiazem (Fig. 5b) all undergo the same chemical transformation 

(deacetylation), yet distinct sets of gene products explain their microbial metabolism. Bars 

and error bars represent mean and STD of n=4 assay replicates. Gene locus tag 

abbreviations: BD: BACDOR; CA: COLAER.
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Extended Data Figure 11. Identified drug-metabolizing gene products explain observed drug 
metabolism of bacterial gut communities.
a-b, Diltiazem conversion to desacetyldiltiazem by 28 different human gut communities 

(each color represents a different human donor, lines depict the mean of n=4 assay 

replicates). Microbiota diltiazem-metabolizing activity does not correlate with either total 

bacterial culture densities or microbiota abundance of B. thetaiotaomicron (quantified by 

species-specific 16S-RNA qPCR). P-values were calculated for the null hypothesis that there 

is zero correlation against the two-sided alternative that there is non-zero correlation (also 

see methods). c, Composition and diversity of the 28 bacterial communities based on 
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metagenomic sequencing. d, Correlation analysis between microbiota diltiazem-

metabolizing activity and community CFU or metagenomic abundance of BT4096 

homologs, diltiazem-metabolizing bacterial species, genera, and phyla identified in this 

study. e-f, Correlation analysis identical to (d) for the metabolism of norethindrone acetate 

and famciclovir by the 28 bacterial communities (each color represents a different human 

donor, lines depict the mean of n=4 replicate assays). P-values were calculated for the null 

hypothesis that there is zero correlation against the two-sided alternative that there is non-

zero correlation (also see methods). Data are available in Supplementary Tables 16-19.
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Acknowledgments:

We thank the Goodman lab for helpful discussions and N.A. Barry, L. Valle, D. Lazo, W.B. Schofield, P.H. Degnan, 
T. Wu, and the Yale Center for Molecular Discovery for technical assistance.

Funding: This work was supported by NIH grants GM118159, GM105456, AI124275, DK114793, the Center for 
Microbiome Informatics and Therapeutics, the Burroughs Wellcome Fund, the Yale Cancer Center, and the HHMI 
Faculty and Pew Scholars Programs to A.L.G. M.Z. received Early and Advanced Postdoc Mobility Fellowships 
from the Swiss National Science Foundation (P2EZP3_162256 and P300PA_177915, respectively) and a Long-
Term Fellowship (ALTF 670–2016) from the European Molecular Biology Organization. M.Z.K. received an Early 
Postdoc Mobility Fellowship from the Swiss National Science Foundation (P2EZP3_178482).

References:

1. Obach RS & Esbenshade TA Pharmacologically Active Drug Metabolites: Impact on Drug 
Discovery and Pharmacotherapy. Pharmacol Rev 65, 578–640 (2013). [PubMed: 23406671] 

2. Sousa T et al. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. 
J Pharm Sci 103, 3171–3175 (2014). [PubMed: 25091594] 

3. Haiser HJ et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium 
Eggerthella lenta. Science 341, 295–298 (2013). [PubMed: 23869020] 

4. Okuda H, Ogura K, Kato A, Takubo H & Watabe T A possible mechanism of eighteen patient 
deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. 
J Pharmacol Exp Ther 287, 791–799 (1998). [PubMed: 9808711] 

5. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R & Goodman AL Separating host and 
microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019). 
[PubMed: 30733391] 

6. Wallace BD et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 
831–835 (2010). [PubMed: 21051639] 

7. Klatt NR et al. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. 
Science 356, 938–945 (2017). [PubMed: 28572388] 

8. Aziz RK, Hegazy SM, Yasser R, Rizkallah MR & ElRakaiby MT Drug pharmacomicrobiomics and 
toxicomicrobiomics: from scattered reports to systematic studies of drug–microbiome interactions. 
Expert Opin Drug Metab Toxicol 14, 1043–1055 (2018). [PubMed: 30269615] 

9. Goodman AL et al. Identifying genetic determinants needed to establish a human gut symbiont in its 
habitat. Cell Host Microbe 6, 279–289 (2009). [PubMed: 19748469] 

10. Wilson ID & Nicholson JK Gut microbiome interactions with drug metabolism, efficacy, and 
toxicity. Transl Res (2016). doi:10.1016/j.trsl.2016.08.002

11. Winter J et al. Mode of action of steroid desmolase and reductases synthesized by Clostridium 
‘scindens’ (formerly Clostridium strain 19). The Journal of Lipid Research 25, 1124–1131 (1984). 
[PubMed: 6512418] 

Zimmermann et al. Page 35

Nature. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Morris GN, Winter J, Cato EP, Ritchie AE & Bokkenheuser VD Clostridium scindens sp. nov., a 
Human Intestinal Bacterium with Desmolytic Activity on Corticoids. International Journal of 
Systematic and Evolutionary Microbiology 35, 478–481 (1985).

13. Ridlon JM et al. Clostridium scindens: a human gut microbe with a high potential to convert 
glucocorticoids into androgens. The Journal of Lipid Research 54, jlr.M038869–2449 (2013).

14. Boyd RA et al. The pharmacokinetics and pharmacodynamics of diltiazem and its metabolites in 
healthy adults after a single oral dose. Clin. Pharmacol. Ther. 46, 408–419 (1989). [PubMed: 
2791444] 

15. Molden E, Åsberg A & Christensen H Desacetyl-Diltiazem Displays Severalfold Higher Affinity to 
CYP2D6 Compared with CYP3A4. Drug Metab. Dispos. 30, 1–3 (2002). [PubMed: 11744603] 

16. Subramanian A et al. Gene set enrichment analysis: A knowledge-based approach for interpreting 
genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545–
15550 (2005).

17. Maier L et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–
628 (2018). [PubMed: 29555994] 

18. Wu H et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 
diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 850–858 (2017). 
[PubMed: 28530702] 

19. Clayton TA, Baker D, Lindon JC, Everett JR & Nicholson JK Pharmacometabonomic 
identification of a significant host-microbiome metabolic interaction affecting human drug 
metabolism. Proceedings of the National Academy of Sciences 106, 14728–14733 (2009).

20. Björkholm B et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE 4, 
e6958 (2009). [PubMed: 19742318] 

21. Goodman AL et al. Extensive personal human gut microbiota culture collections characterized and 
manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences 108, 6252–
6257 (2011).

22. Holdeman LV, 1929, Moore WEC & Cato EP Anaerobe laboratory manual. (1977).

23. Forsberg KJ et al. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. 
Science 337, 1107–1111 (2012). [PubMed: 22936781] 

24. Goodman AL, Wu M & Gordon JI Identifying microbial fitness determinants by insertion 
sequencing using genome-wide transposon mutant libraries. Nat Protoc 6, 1969–1980 (2011). 
[PubMed: 22094732] 

25. Koropatkin NM, Martens EC, Gordon JI & Smith TJ Starch Catabolism by a Prominent Human 
Gut Symbiont Is Directed by the Recognition of Amylose Helices. Structure 16, 1105–1115 
(2008). [PubMed: 18611383] 

26. Warrens AN, Jones MD & Lechler RI Splicing by overlap extension by PCR using asymmetric 
amplification: an improved technique for the generation of hybrid proteins of immunological 
interest. Gene 186, 29–35 (1997). [PubMed: 9047341] 

27. Whitaker WR, Shepherd ES & Sonnenburg JL Tunable Expression Tools Enable Single-Cell Strain 
Distinction in the Gut Microbiome. Cell 169, 538–546.e12 (2017). [PubMed: 28431251] 

28. Petersen TN, Brunak S, Heijne, von G & Nielsen H SignalP 4.0: discriminating signal peptides 
from transmembrane regions. Nat Methods 8, 785 (2011). [PubMed: 21959131] 

29. Lim B, Zimmermann M, Barry NA & Goodman AL Engineered Regulatory Systems Modulate 
Gene Expression of Human Commensals in the Gut. Cell 169, 547–558.e15 (2017). [PubMed: 
28431252] 

30. Cullen TW et al. Antimicrobial peptide resistance mediates resilience of prominent gut 
commensals during inflammation. Science 347, 170–175 (2015). [PubMed: 25574022] 

31. Wishart DS et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids 
Res 46, D1074–D1082 (2018). [PubMed: 29126136] 

32. Camacho C et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). 
[PubMed: 20003500] 

33. Shannon P et al. Cytoscape: a software environment for integrated models of biomolecular 
interaction networks. Genome Res 13, 2498–2504 (2003). [PubMed: 14597658] 

Zimmermann et al. Page 36

Nature. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. McIver LJ et al. bioBakery: a meta’omic analysis environment. Bioinformatics 34, 1235–1237 
(2018). [PubMed: 29194469] 

35. Bolger AM, Lohse M & Usadel B Trimmomatic: a flexible trimmer for Illumina sequence data. 
Bioinformatics 30, 2114–2120 (2014). [PubMed: 24695404] 

36. Truong DT et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12, 
902–903 (2015). [PubMed: 26418763] 

37. Caporaso JG et al. QIIME allows analysis of high-throughput community sequencing data. Nat 
Methods 7, 335–336 (2010). [PubMed: 20383131] 

38. Kaminski J et al. High-Specificity Targeted Functional Profiling in Microbial Communities with 
ShortBRED. PLoS Comput. Biol 11, e1004557 (2015). [PubMed: 26682918] 

39. Suzek BE et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence 
similarity searches. Bioinformatics 31, 926–932 (2015). [PubMed: 25398609] 

40. Edgar RC Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–
2461 (2010). [PubMed: 20709691] 

41. Yeung PK et al. Pharmacokinetics and metabolism of diltiazem in healthy males and females 
following a single oral dose. Eur J Drug Metab Pharmacokinet 18, 199–206 (1993). [PubMed: 
8243504] 

Zimmermann et al. Page 37

Nature. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Drug-metabolizing activities of human gut bacteria.
a, Schematic representation of the assay. b, Chemical diversity of tested compounds 

compared to 2099 clinical drugs (DrugBank31). c, Heatmap of the 176 drugs metabolized by 

at least one of the 76 human gut bacterial strains. Strains and drugs are arranged by 

hierarchical clustering according to metabolic activities. d, e, Examples of drugs that cluster 

together according to their metabolism. See methods and Supplementary Table 3 for 

statistics and reproducibility.
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Fig. 2. Bacteria-derived drug metabolites.
a, Representative volcano plot showing compounds detected by untargeted metabolomics 

associated with a specific drug metabolized by a given bacterial strain (e.g., diltiazem 

metabolism by B. thetaiotaomicron). The 4 pools containing a given drug are compared to 

all other pools (x-axis, fold change; y-axis, pFDR). Experimentally determined masses of 

diltiazem-associated compounds are indicated. Compounds significantly associated with 

diltiazem pools are shown in blue, others are in gray. b, Number of drug-specific compounds 

detected before (grey) and after (blue) measurement artifact elimination. c, Mass shifts 

detected between drugs and their specific metabolites. d, Chemical group enrichment 

analysis of drugs undergoing the same mass shift upon microbial conversion. Mass 

differences and chemical groups are arranged by hierarchical clustering according to the 

fraction of metabolized drugs containing a specific chemical group. See methods and 

Supplementary Tables 5-6 for statistics and reproducibility.
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Fig. 3. Identification and in vivo characterization of microbial drug-metabolizing gene products: 
B. thetaiotaomicron diltiazem metabolism as an example.
a, Scheme for generation of an arrayed gain-of-function library, source genome coverage, 

and insert size distribution of the B. thetaiotaomicron library. b, Mapping of active insert 

sequences to the B. thetaiotaomicron genome. c, Enzymatic validation using purified 

BT4096. d, Diltiazem-metabolizing activity of B. thetaiotaomicron wildtype, bt4096 mutant, 

and bt4096 complemented strains at different expression levels (promoter strength: P2E5 > 

P1E4 > P2E3). e, Intestinal kinetics of diltiazem and deacetylated diltiazem metabolites after 

single oral diltiazem administration to mice mono-colonized with either B. thetaiotaomicron 
wildtype or bt4096 mutant strains. f, Serum levels of diltiazem and deacetylated diltiazem 

metabolites after serial oral diltiazem administration to mice mono-colonized with either B. 
thetaiotaomicron wildtype or bt4096 mutant strains. In (c-d) shaded areas depict the mean 

and STD of independent assays/cultures (n=4). For (e-f): times reflect hours after oral 

diltiazem administration and horizontal lines depict the mean per timepoint. * p ≤ 0.05, ** ≤ 

0.01, *** ≤ 0.001 (pFDR). See methods and Supplementary Tables 10-11 for statistics and 

reproducibility.
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Fig. 4. Genome-wide identification of drug-metabolizing gene products in B. thetaiotaomicron.
a, Network of enzyme-substrate-product drug metabolic interactions for B. 
thetaiotaomicron. Each node represents an enzyme (rectangles), a drug substrate (hexagons) 

or a metabolite product (circles), and each edge represents a validated metabolic interaction 

(targeted cloning of the gene into E. coli results in metabolism of a given drug or production 

of a specific drug metabolite). b, Norethindrone acetate-metabolizing activity of B. 
thetaiotaomicron wildtype, bt2068 mutant, and complemented strains. c, Pericyazine-

metabolizing activity of B. thetaiotaomicron wildtype, bt2367 mutant, and complemented 

strains. In (b-c), promoter strengths are P1E6 > P4E5 >P2E5 > P5E4 >P1E4 > P2E3. Shaded 

areas depict the mean and STD of independent cultures (n=4). See methods for statistics and 

reproducibility.
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Fig. 5. Microbiome-encoded drug-metabolizing gene products explain drug metabolism of gut 
bacterial strains and communities.
a, Genes identified from libraries of B. thetaiotaomicron, B. dorei, and C. aerofaciens 
genomic DNA. b, Diltiazem metabolism rates for the 67 bacterial strains from Figure 1 with 

available genome sequences, presence of BT4096 homologs in their genomes, and 

comparison between maximal BT4096 identity and diltiazem metabolism of each strain. c, 

Gene set enrichment analysis for specific drug-metabolizing gene products and their 

combinations among the bacterial strains metabolizing each drug. Enrichment is shown for 

single (upper panel) and combined (lower panel) drug-metabolizing gene products among 

sets of bacterial strains metabolizing a given drug. d-e, Norethindrone acetate and tinidazole 

metabolism of the 67 genome-sequenced gut bacteria and presence of homologs of identified 

drug-metabolizing gene products. f, Diltiazem conversion to desacetyldiltiazem by 28 

different human gut communities and correlation between microbiota diltiazem-

metabolizing activity and qPCR-measured abundance of bt4096 homologs. g-h, Metabolism 

of norethindrone acetate and famciclovir by 28 different human gut communities. Right 

panels provide correlation coefficients between community drug metabolizing activity and 

the metagenomic abundance of drug metabolizing bacterial gene products, species, genera 

and phyla identified in this study. For (f-h) each color represents a different human donor, 

lines depict the mean of n=4). See methods and Supplementary Tables 14-16 and 18-19 for 

statistics and reproducibility.
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