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Introduction

Colon cancer is a complex disease characterized by a 
wide range of genetic and epigenetic alterations (1). 
Due to constant exposure to external factors and 
microenvironmental pressures, the adaptive process of 

colon cancer cells appears, which becomes particularly 
complicated for immunotherapy of colon cancer (2). In 
recent years, the role of endoplasmic reticulum stress (ERS) 
and its associated genes in cancer progression and therapy 
response has garnered significant attention. Previous study 
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has successfully developed and validated ERS-related gene 
signatures for predicting overall survival (OS) in lung 
adenocarcinoma (3).

The reaction process of tumor cells to immunotherapy is 
mainly regulated by endoplasmic reticulum, which controls 
the synthesis and modification of various proteins. When the 
homeostasis of the endoplasmic reticulum is disrupted, it is 
referred to as ERS (4). ERS has gained significant attention 
in cancer research in recent years as it is present in many 
types of malignancies (5). ERS pathway can be triggered 
by various factors, including hypoxia, oxidative stress, and 
nutrient deficiency, ultimately leading to the activation of 
the unfolded protein response (UPR). ERS-related genes 
interact with various signaling networks implicated in colon 
cancer progression, such as the Wnt/β-catenin, PI3K/Akt/
mTOR, MAPK/ERK, and NF-κB (6). These interactions 
can influence processes like cell proliferation, migration, 
invasion, and angiogenesis, ultimately impacting tumor 
behavior and response to therapy. Nonetheless, if this 
process persists, it may result in a maladaptive response.

ERS and its associated UPR can significantly affect the 
tumor microenvironment (TME), influence survival and 
contribute to the drug sensitivity of cancer cells, including 
in colon cancer. The expression of ERS-related genes 
like BiP/GRP78, ATF6, and IRE1α could predict survival 
outcomes in patients with cancer. High expression of 
GRP78 is often linked to poor prognoses and is indicative 
of a robust adaptive UPR, which can support cancer cell 

survival under the harsh conditions of the TME. The 
ERS has been found to promote various mechanisms of 
tumor progression, including tumor cell survival, treatment 
resistance, tumor invasion, and metastasis (7).

Additionally, studies have demonstrated that ERS plays a 
significant role in coordinating various cellular stress signals 
in colon cancer (8,9). Therefore, exploring the interactions 
between anticancer drugs and ERS could lead to potential 
anti-cancer strategies that may alter disease progression (5,10). 
ERS-related proteins may influence the immune landscape of 
tumors by modulating antigen presentation and the repertoire 
of immune cells in the TME, potentially impacting cell survival 
and therapy response in colon cancer (11). Furthermore, 
drugs associated with ERS could offer a new perspective for 
the treatment of colon cancer (12).

Therefore, exploring the role of ERS in colon cancer 
management could be beneficial. To achieve this, we 
conducted bioinformatics analysis to identify ERS-related 
genes, investigated their molecular mechanisms and 
evaluated their role in the sensitivity of immunotherapy for 
colon cancer. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2227/rc).

Methods

Data extraction and processing

The normalized RNA-sequencing count values of colon 
cancer and normal tissue (n=639) were downloaded from 
UCSC Xena (https://xenabrowser.net/datapages/), which 
have integrated The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression Project (GTEx) database. 
The count values were used to screen out the ERS-related 
differentially expressed genes (DEGs).

The fragments per kilobase million (FPKM) value, 
clinicopathological characteristics, and follow-up information 
of TCGA-colon adenocarcinoma (COAD) (n=443) were 
downloaded from TCGA website (https://portal.gdc.
cancer.gov/). And the FPKM values were transformed into 
transcripts per kilobase million (TPM) for further analyses. 
The series matrix files of GSE39582 (n=579) and GSE17536 
(n=232) datasets were retrospectively downloaded from the 
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/) to externally validate results from TCGA training 
cohort. The data from patients without complete survival 
information and repeated patient records were excluded.

The ERS-related genes were acquired from Molecular 
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Signatures Database (MSigDB; http://www.broad.mit.edu/
gsea/msigdb/) and GeneCards (https://www.genecards.org/). 
The genes from GeneCards website with relevance score >10 
were selected. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Consensus unsupervised clustering

By comparing the count values of colon normal and tumor 
samples using Deseq2 packages of R software (version 
4.1.2), ERS-related genes with adjusted P values <0.05 
and the |log2fold change| values >1 were identified as 
DEGs. The volcano plot of DEGs was visualized with the 
EnhancedVolcano R package. To further explore inherent 
characteristics of ERS-related genes in colon cancer, 
the consensus clustering was used to classify the samples 
according to ERS-related DEGs. The ConsensusClusterPlus 
R package was used for clustering, and the optimal subgroup 
number was accessed using cumulative distribution function 
(CDF). Subsequently, the correlation between the ERS 
clusters and clinicopathology characteristics was analyzed by 
chi-square test.

ERS-related prognostic model establishment and validation

The least absolute shrinkage and selection operator 
(LASSO) analysis was carried out to establish a prognostic 
model with ERS-related DEGs based on glmnet R package. 
The risk score was calculated based on the gene expression 
and LASSO coefficients. Patients were divided into high- or 
low-risk group according to the median value of risk score. 
The Eq. [1] which was used to calculate the risk score was 
as follow:

[1]( ) ( )
1

Risk score expression gene coefficien genet
n

i i
i=

 = × ∑

OS analyses of TCGA cohort were carried out using 
survival R packages, which was further validated by the 
GSE39582 and GSE17536 testing sets. The prognostic 
accuracy of model was evaluated using time-dependent 
receiver operating characteristic (ROC) and concordance 
index (C-index) with timeROC and pec R package.

To explore whether ERS-related group is an independent 
predictor of colon cancer, the risk score and other clinical 
features were brought into in the univariate and multivariate 
Cox analysis. Besides, a nomogram that integrated the risk 
group and clinical characteristic was developed to predict 
OS rates suing rms R package. Subsequently, calibration 

plots were applied to explore the predictive performance of 
the nomogram.

Biological function and mechanisms analysis

The Gene Ontology (GO) and the gene set enrichment 
analysis (GSEA) were used to investigate the potential 
biological function and signaling pathway between the two 
risk groups. The R packages of enrichplot, clusterProfiler, 
limma, and org.Hs.eg.db were used for the above analysis.

Single-sample GSEA (ssGSEA), ESTIMATE, immune 
checkpoint analysis, and drugs response

The infiltrating scores of 24 immune cell subsets of samples 
were calculated by the ssGSEA algorithm based on gene 
set variation analysis (GSVA) R package (13). In addition, 
ESTIMATE algorithm was used to evaluate the immune 
and stromal scores between two groups with ESTIMATE R 
package (14).

The correlation of risk score and immune checkpoints 
was employed to examine the immunotherapeutic 
responses. Ultimately, pRRophetic R package was used to 
evaluate chemotherapeutic drugs response by the semi-
inhibitory concentration (IC50) of colon cancer patients.

Statistical analysis

All statistical analyses were conducted using R (version 
4.3). We considered P values less than 0.05 as statistically 
significant, using a two-sided approach. Descriptive 
statistics were employed to analyze data from colon cancer 
patients in TCGA, GTEx, and GEO. Categorical variables 
were presented using frequencies and proportions, while the 
correlation between the ERS clusters and clinicopathology 
characteristics was analyzed by chi-squared test.

Results

Consistent clustering and clinicopathology characteristics

There were 178 genes identified as ERS-related DEGs, 
a volcano plot revealed the top 20 of ERS-related DEGs 
(Figure 1A). The consistent clustering of the TCGA cohort 
was based on the DEGs obtained previously. According to 
the CDF curve, k=3 appeared to be selected optimally and 
TCGA-COAD patients were divided into three subtypes 
(Figure 1B-1D). Among the clinicopathology features, 
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histologic type (P<0.001), tumor stage (P=0.03), metastasis 
(P=0.006), and colon cancer subtype (P<0.001) were 
associated with ERS cluster acquired previously (Figure 1E).

Risk model establishment and validation

Using the LASSO regression, we extracted six ERS-related 
genes when the value of log (λ) was the minimum likelihood 
of deviance (Figure 2A,2B). The LASSO regression analysis 
was used to establish a prognostic model with ERS-related 
genes in COAD.

( )

( ) ( )

The prognostic risk score PMM2 0.3472 STC2 0.0603
EIF2AK1 0.0520 HSPA1A 0.0480
SLC8A1 0.0403 KCNQ1 0.0682

= × − + ×

+ × + ×

+ × − + × −

[2]

To identify the ERS-related risk model in patient 
survival prediction, we divided the TCGA training cohort 
samples into two risk groups according to median risk score  
(Figure 2C-2E). Kaplan-Meier (K-M) survival plots of 
TCGA training cohort demonstrated that patients with 
higher risk score had significant poorer prognosis than 
those with lower risk score (Figure 2F). We verified it in the 
GSE39582 and GSE17538 cohorts from GEO database 
(Figure 2G,2H).

The area under the curve (AUC) values of the risk 
model for 1-, 3-, and 5-year were 0.721, 0.731, and  
0.770 respectively, suggesting that the risk model had 
accurate predictive performance (Figure 3A). When 
compared with other clinicopathological factors, the risk 
score showed better predicative performance and AUC of 
3-year was 0.731 (Figure 3B). In addition, the 3- and 5-year 
C-index of risk score was 0.701 and 0.713 respectively, 
which was better than other clinical characteristics 
(Figure 3C). Then, we further employed the univariate 
and multivariate Cox analyses, demonstrating that the 
prognostic value of ERS-related risk group (Figure 3D,3E).

Nomogram construction

A nomogram was established for predicting the OS 
probability based on risk group and other clinical features 
(Figure 3F). The calibration plot of the nomogram 
demonstrated good consistency between the actual 
observation and prediction (Figure 3G).

GO and GSEA

According to molecular function of GO, the DEGs 

between the two groups were enriched in monocarboxylic 
acid binding, carboxylic acid binding, phosphatidylcholine 
binding, and so on (Figure 4A). The results of GSEA 
demonstrated that the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways of two risk groups were 
mainly concentrated in biosynthesis and metabolism, 
such as butanoate metabolism, fatty acid metabolism and 
propanoate metabolism (Figure 4B).

TME, immune checkpoint analysis, and drugs sensitivity

Based on ssGSEA algorithms, the significant differences 
of the immune cell in TME were observed between the 
two risk groups (Figure 5A). The infiltration levels of 
cytotoxic cells, dendritic cell (DC), immature DC (iDC), 
macrophages, natural killer (NK) cells, plasmacytoid DC 
(pDC), T helper (Th)1 cells were evidently higher in the 
high-risk group, while B cells, Th cells, and Th17 cells had 
lower infiltration in the high-risk group. Moreover, the 
patients in high-risk group showed higher stromal scores 
(P=0.007) and ESTIMATE score (P=0.03) than those in 
low-risk group (Figure 5B).

The correlational analysis showed that the risk score was 
positively correlated with the expression of PD1 (PDCD1) 
(Figure 5C). By drug sensitivity comparison, the colon 
cancer patients in high-risk groups showed lower IC50 in 
A.770041, ABT.888, AG.014699, and so on (Figure 5D), 
indicating the patients were more sensitive to these drugs.

Discussion

Colon cancer is a prevalent and deadly form of cancer. 
The regulation and control of ERS signaling is primarily 
managed by three transducers: ATF6, IRE1, and PERK (9).  
ERS has been linked to a range of diseases, including 
cardiovascular and rheumatic diseases (5,15).

The ERS has gained significant attention in cancer 
research due to its connection to cellular functions and its 
role in maintaining and restoring metabolism (16). Research 
in recent years has revealed that the ERS plays crucial roles 
in colon cancer initiation, progression, and apoptosis (17).

Activation of ERS plays a role in regulating the 
differentiation of epithelial stem cells in the mouse 
intestine (18). Additionally, ERS has been shown to induce 
differentiation in colon cancer stem cells and is relevant to 
chemotherapy sensitivity. Furthermore, increased ERS and 
nuclear reprogramming can lead to a pro-metastatic state 
in cancer (19). As such, exploring ERS further could offer a 
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Figure 3 The risk model validation, nomogram establishment and calibration curves. (A) The ROC curves of TCGA cohort. (B) The ROC 
curves of risk score combined with clinical characteristics in the TCGA cohort. (C) The C-index curves of risk model. (D,E) Univariate 
and multivariate Cox analyses of risk group and other clinical characteristic. (F) Constructed nomogram for predicting OS. (G) The 
calibration plot for 1-, 3-, and 5-year OS. AUC, area under the curve; CI, confidence interval; OS, overall survival; ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas.

potential therapeutic approach for preventing and treating 
colon cancer (20,21).

In the study, we first employed consensus clustering to 
identify clusters with ERS-related DEGs. The differences 
in clinical features between these clusters confirmed the 
heterogeneity of ERS in colon cancer. We established 

a prognostic model using the LASSO method and 
calculated a risk score for each patient based on candidate 
genes to identify patterns. We determined the prediction 
performance of ERS risk model based on TCGA training 
set and verified it in the external GSE39582 and GSE17538 
queues from GEO database. We also established a 
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Figure 4 GO and GSEA. (A) GO pathway enrichment between the two groups. (B) The GSEA analysis: the KEGG pathways of two 
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nomogram combining the risk model and the clinical 
characteristics of colon cancer, and visualized the prognostic 
factors by quantitative methods. The greatest advantage 
of the risk model developed in this study is its potential to 
enhance the sensitivity of immunotherapy for colon cancer. 
By identifying specific ERS-related genes (PMM2, STC2, 
EIF2AK1, HSPA1A, SLC8A1, KCNQ1) that can improve 
the effectiveness of immunotherapy, this model offers a 
personalized approach to treatment. This tailored strategy 

may lead to more targeted and successful interventions, 
improving patient outcomes and potentially reducing the 
need for broader, less specific treatments.

In recent years, the immune landscape has been attached 
great importance in clinical cancer research. Increasing 
evidence highlights the important role of TME in 
progression of colon cancer (22,23). We proved that these 
are closely related to tumor immunity and drug sensitivity 
through GO analysis and GSEA. We investigated the 
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Figure 5 TME and drugs sensitivity. (A) The ssGSEA for the association between immune cell subpopulations of two risk groups. *, P<0.05; **, P<0.01; ***, 

P<0.001. (B) TME score in the two risk groups. *, P=0.03; **, P=0.007. (C) Correlations between risk score and immune checkpoint. *, P<0.05. (D) The IC50 

values evaluate drugs sensitivity between two groups. aDC, activated dendritic cell; DC, dendritic cell; iDC, immature dendritic cell; NK, natural killer; pDC, 

plasmacytoid dendritic cell; Tcm, central memory T cell; Tem, effector memory T cell; TFH, follicular helper T cell; Tgd, gamma delta T cell; Th, T helper; 

TReg, regulatory T cell; TME, tumor microenvironment; IC50, semi-inhibitory concentration; ssGSEA, single-sample gene set enrichment analysis.
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association between ERS risk model and tumor immune 
cell infiltration. The TME of the two ERS risk groups were 
explored by ssGSEA and ESTIMATE algorithm. These 
findings suggested that ERS plays an important role in 
immunotherapy of colon cancer.

Cumulative evidence demonstrates that ERS is relevant 
with chemotherapy resistance in cancers (23). We found 
that colon cancer patients in high-risk groups may be more 
sensitive to specific drugs according to drug sensitivity 
comparison. The roles of ERS in colon cancer may be 
helpful to explore potential therapeutic strategies. To 
achieve more precise and personalized immunotherapy 
responses based on the results of this study, we will establish 
these ERS-related genes as biomarkers for predicting 
immunotherapy responses in colon cancer patients.

However, there are several challenges in translating these 
results into clinical applications. One significant hurdle is 
the need for further validation and verification through 
in vivo and in vitro experiments to confirm the efficacy 
and safety of targeting these ERS-related genes in clinical 
settings. Additionally, the complexity of biological systems 
also pose challenges in predicting and ensuring the success 
of such targeted interventions (24).

Conclusions

We established a risk model with ERS-related genes 
(PMM2, STC2, EIF2AK1, HSPA1A, SLC8A1, KCNQ1), 
which enhance the sensitivity of immunotherapy for colon 
cancer. These findings may provide a new perspective for 
the individualized treatment of colon cancer.
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