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It is widely acknowledged that males and females exhibit contrasting degrees of sus-
ceptibility to infectious and non-infectious inflammatory diseases. This is particularly 
observed in respiratory diseases where human males are more likely to be affected by 
infection-induced acute inflammations compared to females. The type and magnitude 
of the innate immune inflammatory response play a cardinal role in this sex bias. Animal 
models mimicking human respiratory diseases have been used to address the biolog-
ical factors that could explain the distinct outcomes. In this review, we focus on our 
current knowledge about experimental studies investigating sex-specific differences in 
infection-induced respiratory diseases and we provide an update on the most important 
innate immune mechanisms that could explain sex bias of the inflammatory response. 
We also discuss whether conclusions drawn from animal studies could be relevant to 
human.
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inTRODUCTiOn

Respiratory infections caused by a wide range of microbial pathogens are the most common dis-
eases affecting humans worldwide leading to high rates of hospitalization in childhood and elderly. 
Human susceptibility to pneumoniae is clearly affected by sex as demonstrated by numerous clinical 
studies (1–4). We have previously reviewed this clinical aspect, so it will not be explored in further 
detail here (4). It is becoming clear that the severity of inflammatory symptoms vary between males 
and females according to the pathogen species and the type and magnitude of the inflammatory 
response triggered along the infection. Although there is an accumulating evidence for sex-specific 
differences in susceptibility to number of infectious respiratory diseases, the mechanisms at work 
are still scarce. Studies on murine infection models which are free of many confounders may 
enhance our understanding of the underlying biological factors. There are few animal studies in 
general and those affecting lung tissues in particular where sex impact on infection course was 
taken into account. In this review, we will provide an overview of infectious models used to study 
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the sex effect on the disease severity and we will summarize the 
most important innate immune factors that could account for 
sex differences in innate immune inflammatory response. We 
will discuss their relevance to human and we will highlight the 
gaps and perspectives regarding future research developments.

DiSTinCT OUTCOMeS OF inFeCTiOUS 
PneUMOniAe in MALeS AnD FeMALeS 
AnD ReLATiOn wiTH inFLAMMATORY 
ReSPOnSe

Differences in susceptibility to lung infectious diseases between 
males and females have been shown in mouse models using var-
ying clinically relevant microorganisms. It has been shown that 
intranasal inoculation of mice with the bacteria Streptococcus 
pneumoniae, the main etiological agent of pneumonia, results 
in a higher susceptibility of males compared to females (5). This 
was correlated with an early sharp increase of the multiplication 
of the bacteria in the lung, although the overall bacterial bur-
den in males and females was similar. Males exhibited higher 
inflammatory response with massive infiltration of neutrophils 
within pulmonary tissues and increased levels of cytokines and 
chemokines such as IL-17A, CXCL1, and CXCL2. Likewise, 
in an infectious model of the pathogenic bacteria Klebsiella 
pneumoniae, male mice were also more susceptible than females 
(6). The same trend in favor of females was observed in murine 
infection by Mycoplasma pulmonis using mice of different 
genetic background (7). Higher mortality was observed in 
males compared to females and this was associated with dense 
inflammatory cell infiltrates within pulmonary alveoli in males. 
However, there was no significant difference in the number 
of Mycoplasma recovered from the lung or in the serum anti-
Mycoplasma IgM response between males and females. Studies 
in murine models of mycobacterial infections have also shown 
sex bias with males being more severely affected than females 
[reviewed in Ref. (8)].

There are, however, some studies reporting that the advantage 
of females in controlling the infection and inflammation does 
not apply in certain infectious models. For instance, female mice 
infected with influenza virus had greatest impairment in the lung 
physiological function and produced higher levels of interferon 
(IFN)-γ and MCP-1 in bronchoalveolar lavage (BAL) fluids when 
compared to male mice, yet, no difference could be detected in 
the viral titer within the lung or in the BAL inflammatory cell 
recruitment (9). Female mice were also found to be more affected 
by a challenge with the opportunistic pathogen Pseudomonas 
aeruginosa than male mice, in the sense that a higher amount 
of bacteria and an increased level of expression of TNF-α and 
CXCL1 were observed within female lung tissues (10). However, 
these differences in bacteria burden and inflammatory response 
did not impact the survival rates between males and females 
and no sex difference could be seen regarding the numbers of 
polymorphonuclear cells, macrophages, and lymphocytes in the 
BAL fluids.

Collectively, these animal studies demonstrated a sexual 
dimorphism in the severity of pneumonia caused by various 

respiratory pathogens. In most cases, the severity of symptoms 
was found to correlate with a strong innate immune response 
triggered at the early phase of infection, but not to the overall 
number of invading microorganisms. Worth noting, the sex bias 
has been observed in different mouse strains, although most of 
the studies have used the C57BL/6 background (5–7, 9, 10). The 
clearance of invasive pathogens relies on the inflammatory and 
protective immune response whose magnitude should be tightly 
controlled, yet in males, the induced inflammatory response 
seems to be excessive and deleterious. These studies are consist-
ent with the finding that human males are a risk factor for a 
number of infectious diseases. For example, in human tubercu-
losis, the gender bias is clearly established with a male:female 
ratio of 1.6:1 reported for 2015 (WHO Global tuberculosis 
report 2016). As illustrated in a number of infectious respiratory 
diseases, men are more likely to develop severe airway inflam-
matory symptoms consisting mainly on polymorphonuclear 
neutrophil accumulation and elevated expression of cytokines 
and chemokines including IL-8, TNF-α, and IL-1β (1–4, 11–13). 
Females generally had more favorable outcome, particularly 
when virulent pathogens are endowed with high inflamma-
tory potential as is frequently the case of bacterial respiratory 
pathogens. Whether males or females are more affected relies 
not only on the pathogen species and its inflammatory potential 
but also on specific features of the host including age and genetic 
background.

POTenTiAL ROLe OF TOLL-LiKe 
ReCePTORS (TLRs) AnD X-LinKeD 
innATe iMMUne GeneS in SeX BiAS OF 
THe inFLAMMATORY ReSPOnSe

The immune mechanisms underlying sex differences in suscep-
tibility to infectious inflammatory diseases have not been fully 
delineated. The cause of this bias is probably multifactorial and 
includes sexual hormones and genetic background. We will not 
explore in the current review the role of sex steroids as this has 
been largely reviewed elsewhere (8, 14–16). Sex differences in 
many infectious and non-infectious inflammatory diseases are 
observed in all age groups including premature infants; therefore, 
one can consider that sexual hormones cannot fully explain this 
sex bias (4). We will focus on evidence highlighting the potent 
effect of TLRs and X chromosome-linked genes explored in dif-
ferent inflammatory settings.

Potential Role of TLRs
The control of the pathogen dissemination relies on an immediate 
inflammatory response triggered by the innate immune system. 
The initiation of the innate immunity is achieved through the 
recognition of molecular structures broadly shared among vari-
ous microorganisms (pathogen-associated molecular patterns) 
by specific receptors (pathogen-recognition receptors, PRRs) 
expressed on innate cells. TLRs are examples of PRRs allowing 
microbial sensing by immune cells. Upon ligation with specific 
pathogen motifs, i.e., lipopolysaccharides (LPS) for TLR4 and 
lipopeptides for TLR2, TLR transmits signals through adaptor 
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proteins like MyD88 which recruit different kinases including 
IL-1 receptor-associated kinases and, therefore, lead to NF-κB 
and MAP kinases activation and induction of inflammatory 
cytokines and chemokines (17). Differences in the level of TLR4 
and TLR2 expression between males and females have been sug-
gested as a mechanism that could partially explain sex differences 
in inflammatory response. For instance, it has been shown that 
macrophages from male mice expressed higher levels of TLR4 
compared to females following LPS endotoxic shock, hence 
contributing to excessive and deleterious inflammatory cytokine 
production in males (18, 19). In coxsackievirus infection model, 
increased expression of TLR4 has been also observed on splenic 
monocytes, dendritic cells, and CD3+, CD4+ lymphocytes from 
males compared to females, suggesting its potential implication 
in the disease severity (20). In this infectious model, resistance 
of female mice to coxsackievirus was found to correlate with 
higher TLR2 expression (20). However, there are some diver-
gent reports showing either no difference in TLR4 expression 
on macrophages between males and females (21) or increased 
expression of TLR4 in female mice (22). The latter study argued 
that despite the higher expression of TLR4 in females, the mag-
nitude of the inflammatory response is likely counterbalanced by 
resident immunomodulatory CD4+ T-lymphocytes that are more 
prevalent in resting tissues of females than males (22). Whether 
the level of expression of TLR4 or TLR2 in males and females 
could have a significant impact in the sex bias of the inflamma-
tory response needs further investigations. On the other hand, 
studies on endosomal TLR9 and TLR7 have shown their potent 
implication in sex differences in innate immunity. TLR9 sense 
non-methylated CpG-containing microbial genomic DNA and 
induce the production of type I IFNs that are crucial in promoting 
a protective immunity. A low level of expression of TLR9 was 
suggested as a factor contributing to the higher susceptibility of 
female mice to cytomegalovirus infection (23). Since TLR7/8 
are among innate genes located on the X chromosome, evidence 
of their potential contribution will be summarized in the next 
paragraph.

Potential Role of X Chromosome-Linked 
innate immune Genes and MicroRnAs
A number of innate immune genes are located on the X chro-
mosome both in human and mice and this may have significant 
consequences on their expression in males and females. Because 
males have one X chromosome, and females have two, one of 
the X chromosomes is randomly inactivated in females to assure 
an equal gene expression with males. Consequently, females 
have mosaic cells expressing two X-linked gene alleles, which 
is considered as a great advantage to cope with genetic diseases 
associated with recessive mutations occurring on the X chromo-
some (24). Among X-linked genes, about 15% escape inactivation 
and 10% have variable degree of inactivation (25). This may lead 
to an overexpression of some X-linked genes in females and if 
innate immune genes are affected by this silencing escape, it can 
result in a differential innate immune response between males 
and females. Females have, therefore, an advantageous genetic 
diversity that may explain their improved survival from number 
of infectious inflammatory diseases.

Innate Immune Genes
The chromosome X contains TLR7/8 encoding genes that are cru-
cial in sensing viral single-strand RNAs (ssRNAs) and inducing 
a protective type I IFN response. It should be noted that TLR7/8 
can also recognize ssRNAs from phagosomal Gram-positive bac-
teria, as shown in conventional dendritic cells (26). The induction 
of TLR7/8-dependent type I IFN in the early phase of infection 
is crucial for the host defense against invasive pathogens by 
promoting a protective inflammatory response (27). Differences 
in the overall expression of TLR7/8 on innate cells between males 
and females have not been reported. A study performed in a 
humanized mouse model has shown that TLR7 ligation resulted 
in a higher frequency of IFN-α- and TNF-α-producing plasma-
cytoid dendritic cells (pDCs) in females compared to males (28). 
In human, there are very few studies that sought to pinpoint how 
TLRs can influence the innate immune response in men and 
women. Plasmacytoid DCs from women were shown to exhibit 
a higher TLR7-mediated IFN-α production when compared to 
pDCs from men (29). This was attributed to a stronger activation 
rather than overexpression of TLR7 in females. Considering the 
important role of pDCs in inducing a protective immunity to 
viral pathogens, this may have a significant effect on the disease 
progression in men and women (30). Increased activation of 
TLR7-dependent immune response was shown, however, to be 
associated with chronic inflammations in females like in systemic 
lupus erythematosus (31). On the other hand, different studies 
have shown that TLR8 gene polymorphism has sex-specific 
effects in some infectious diseases, like in human tuberculosis 
where men are more severely affected than women (32, 33).

The cascade of TLR signaling and NF-κB activation involve 
the recruitment of kinases including IL-1 receptor-associated 
kinase-1 (IRAK-1) (34). IRAK-1 is the most studied gene regard-
ing the sex bias of the inflammatory response. Interestingly, 
IRAK-1 is located on the X chromosome and is considered among 
genes that escape the X inactivation process, which may favor 
an enhanced NF-κB-dependent gene transcription in females 
(25). The chromosome X inactivation escape combined with the 
chromosome X mosaicism may favor an effective innate immune 
inflammatory response in females leading to a better outcome of 
infection-induced acute inflammations. The impact of IRAK-1 
mosaicism on sex bias of the inflammatory response has been 
investigated in mice and human. In a mouse model of inflam-
matory colitis, IRAK-1 was shown to have a sex-specific role in 
the evolution of the disease (35). Notably, mosaicism of IRAK-1 
expression in mice results in an immune cell deficiency leading 
to an improved sepsis outcome, as in IRAK-1-deficient mice (36). 
In human, a variant IRAK-1 haplotype with persistent increase of 
kinase activity was associated with a strong NF-κB activation and 
a severe inflammation (37–39). Recently, a study on cord blood 
cells revealed higher expression of IRAK-1 in female neonates 
compared to males and this was suggested as an immune advan-
tage for females in infection-induced inflammatory diseases (40). 
Whether the overexpression of IRAK-1 is accompanied by an 
increased kinase activity was not shown in this study. Provided 
this is true, how this finding is an immune advantage for female 
neonates remains to be reconciled with previous reports argu-
ing that the upregulation of IRAK-1 is associated with a severe 
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inflammation while its downregulation improved sepsis (36, 37). 
This discrepancy may be related to the particular status of the 
neonatal innate immune cells compared to adults (41).

MicroRNAs
miRNAs are small non-coding RNAs of about 22 nucleotides. 
They have emerged in the last decade as key negative regulators 
of genes implicated in divers biological processes, through bind-
ing to and repressing translation of complementary messenger 
RNA (42, 43). They are transcribed either in intergenic or intronic 
regions of the genome. While intronic miRNAs are coregulated 
with their host genes, intergenic miRNAs have independent 
transcription units (44–46). The role of miRNAs in modulat-
ing the immune response is now well recognized (47–49). The 

FiGURe 1 | Simplified view of some mechanisms of cell type-specific signaling downstream of toll-like receptors (TLRs) potentially implicated in the sex bias of 
infection-induced airway inflammation: pathogen-associated molecular patterns (PAMPs) like lipopolysaccharides and single-strand RNA (ssRNA) interact with innate 
cells, i.e., polymorphonuclear (PMNs) cells and monocytes/dendritic cells through surface expressed TLR4 or endosomal TLR7/8, respectively, leading to the 
recruitment of adaptor molecules like MyD88 and activation of IL-1 receptor-associated kinase-1 (IRAK-1) among other kinases that culminate through TNF 
receptor-associated factors (TRAFs) with the activation of the transcription factors NF-κB and interferon regulatory factors (IRFs) and subsequent production of the 
inflammatory mediators (TNF-α, IL-1β, etc.) and type I interferon (IFN) gene products. Differences in the expression and/or activation of one of the cascade signaling 
partners between males and females may result in distinct inflammatory responses. Innate genes lying on the X chromosome, e.g., IRAK-1, likely influence the 
magnitude of the inflammatory response in females through a potent escape from X inactivation process. X chromosome-linked miR223 and miR106a are potentially 
key miRNAs that may contribute to the contrasting outcome of the inflammatory response in males and females by regulating the innate immune signaling in PMNs 
and monocytes, respectively.

aberrant expression of miRNAs has been associated with a 
broad range of inflammatory diseases (50–54). Noteworthy, 
X chromosome is highly enriched in genes encoding miRNAs 
(10% of total miRNAs) compared to Y chromosome, with an 
order of density twofold higher than on autosomes both in mice 
and humans (28). Around 50% of identified X-linked miRNAs 
are shared between human and mice. For instance, number 
of reports described the crucial role of X-linked miR223 and 
miR106a in the differentiation of neutrophils and monocytes, 
the key cell players of the innate immunity at early stages of 
infection. Studies on miR-223-deficient mice revealed higher 
numbers of granulocytes and hypermature neutrophils, indicat-
ing that miR-223 negatively regulates granulocyte generation and 
maturation (55, 56). Furthermore, miR223 KO mice were shown 
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COnCLUDinG ReMARKS AnD 
PeRSPeCTiveS

Although caution should be made when extrapolating animal 
studies to human, it is now agreed that the differential outcome 
frequently observed in infectious respiratory diseases between 
males and females is likely a consequence of excessive and 
damaging inflammatory response rather than microbial burden 
within host tissues. The evidence currently available suggest 

the potential implication of TLRs and X-linked innate immune 
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and sometimes conflicting. More investigations are needed to 
study not only the actual role of TLR signaling in the sex bias 
of the innate immune response but also the possible implica-
tion of other intracellular PRRs sensing nucleic acids including 
NOD-like and AIM2-like receptors. As schematically illustrated 
in Figure  1, some concepts are emerging, yet, the underlying 
mechanisms remain to be unraveled. Despite the considerable 
progress in miRNA biology and their role in the regulation of 
the immune and inflammatory response, their impact on sex 
differences of inflammatory diseases remains to be elucidated. 
Sex-biased expression of miRNAs could control directly the dif-
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inflammatory response. This stresses the need for systematic 
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Such investigations would be a pivotal step toward defining 
sex-specific biomarkers that are clinically relevant and whose 
biological function could be explored in experimental models of 
infection and inflammation.
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