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1  | INTRODUC TION

Intelligent packaging as a newly emerging food protection has at-
tracted scientists and consumer attentions. Such packaging is able 
of detecting, recording, tracking, communicating, and providing nec-
essary information of food quality to ensure consumer safety. They 
are usually accompanied with smart devices. The most universally 
used smart devices in intelligent packaging include the following: (a) 
data carriers, (traceability during production to distribution with bar 
codes and Radio Frequency Identification (RFID) tags); (b) indicators 

(detecting food safety and quality); and (c) sensors (fast and defi-
nite measurement of the analytes in foods). The global active and 
intelligent packaging market is expected to grow at a Compound 
Annual Growth Rate (CAGR) of more than 4% during 2018–2024 
(DUBLIN, 2019). The active and intelligent packaging market was 
valued at USD 17.5 billion in 2019 and projected to grow to USD 
25.16 billion by 2025, at a CAGR of 6.78% during the forecast period 
of 2020–2025 (www.mordo rinte llige nce.com).

One of the newest methods for production of intelligent pack-
aging is the electrospinning technique. Electrospinning is a simple, 
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Abstract
Intelligent food packaging refers to packages with the ability to sense foodstuff 
changes and to inform customers of the packaging content variations. They are often 
accompanied by smart detecting devices. Providing a suitable platform to include 
these devices into packaging polymers has always been discussing. Electrospun na-
nofibers produced through the electrospinning have been recently utilized as an out-
standing and novel platforms for this purpose. Thus, the main aim of this study is to 
investigate recent trends in producing intelligent food packaging using electrospin-
ning technique. In this regard, this paper was categorized into two chief sections, 
including (a) the principal of electrospinning technique to fabricate fine nanofibers 
and the parameters affecting the quality of electrospun fibers, and (b) the role of 
nanofibers as a platform to cover pH indicators in intelligent food packaging.
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efficient, and low-cost technique capable of fabricating nonwo-
ven fibers, usually in submicron or nanoscale diameters (Mehta 
et al., 2017). In a contrast to other methods, this process could 
synthesize fibrous materials with higher surface areas and porosity, 
more responding to the surrounding environment variations, and 
high potential in controlling the release of incorporated compounds 
(Li et al., 2018). Therefore, electrospun nanofibers are considered 
as suitable platforms for covering indicators in intelligent packaging, 
though, their application in industrial scale is yet to come. A sche-
matic of application of electrospinning in intelligent food packaging 
is given as Figure 1. In this review paper, we discuss recent uses of 
electrospinning technique in developing the intelligent packaging 
containing nanofibers covering pH indicators.

2  | ELEC TROSPINNING PRINCIPLES

Electrospinning has stemmed from the works for fabricating na-
nofibers used in filtering and textile applications in the early 19th 
century. Since then, it has seen remarkable progresses in terms of 
processing methods, factors, expanded materials, and uses. These 
developments have been brought about to the worldwide accept-
ance of electrospinning as a practicable method for fabricating 
nanofibers for different purposes (Liu et al., 2019; Niu et al., 2020; 
Norris et al., 2020; Sun, Perry, & Schiffman, 2019; Xue, Wu, Dai, & 
Xia, 2019). It is a simple, cost-effective, flexible, unique, and suitable 
technique for large-scale manufacturing of nanofibers (Homocianu 
& Pascariu, 2019). This technique is not only worthwhile in produc-
ing polymeric nanofibers, but also in the production of nanofibers 
from metals, ceramics, metal oxides, inorganic, and organic compos-
ite materials (Zhao, Lu, & Wang, 2018). This is feasible by chang-
ing the traits of the operating, solution, and ambient conditions of 
the procedure. It is likely to handle the diameter of nanofibers as 
well, playing an indispensable role in the functional characteristics 
of the substances utilized in several applications (Zhang, Li, Wang, & 

Zhang, 2020a). Furthermore, nanofibers can be achieved in diverse 
forms such as hollow, core-shell, and porous nanofibers.

An electrospinning device (Figure 2) is composed of a capillary 
tube or syringe, serving as the reservoir for keeping the polymer 
solution, a high voltage supplier, a metallic needle for dispens-
ing the solution, and a collector to gather nanofibers (Janssen & 
Solberg, 2019). The needle and syringe are brought together and 
termed the needle assembly. The process takes place in 3 phases, 
called jet initiation, elongation, and solidification.

More detailed information regarding the function of electro-
spinning can be found in studies of Deshwal and Panjagari (2018), 
Rostami, Yousefi, Khezerlou, Aman Mohammadi, and Jafari (2019), 
Kotomin, Kulichikhin, and Skvortsov (2018), and Chiu et al. (2020).

3  | PROPERTIES OF ELEC TROSPUN 
NANOFIBERS

The properties of nanofibers are significantly affected by various 
processing parameters, such as the instrumental conditions (applied 
voltage, flow rate, and distance to the collector), polymer solution 
properties (viscosity, surface tension, conductivity, and solvent polar-
ity), and the ambient conditions (temperature and humidity) (Maleki, 
Semnani Rahbar, Saadatmand, & Barani, 2018; Rostami et al., 2019).

3.1 | Effect of instrumental conditions

The applied voltage plays an important role in the electrospinning 
process. At low voltages, nonuniform fibers with beads may be 
formed, but at high voltages, there is tends to slightly decrease the 
length of the single jet, increase the apex angle of the Taylor cone, 
and produce thicker and nonuniform fibers, and also greater amounts 
of charge in high voltage will lead to drawn faster and a greater vol-
ume of solution from the tip of the needle, resulting in a smaller and 

F I G U R E  1   A schematic of application of electrospinning in intelligent food packaging
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less stable Taylor cone (Figure 3) (Ghorani & Tucker, 2015; Haider, 
Haider, & Kang, 2018; Motamedi, Mirzadeh, Hajiesmaeilbaigi, 
Bagheri-Khoulenjani, & Shokrgozar, 2017).

One of the other important parameters for successfully desirable 
electrospinning fibers is flow rate. The flow rate is the amount of 
polymer solution flowing from the needle to the Taylor cone per time 
(Xue et al., 2019). At low flow rates, the polymer solution will have 
adequate time for polarization, generating fibers with smaller diam-
eters; while high flow rates result in thicker fibers with larger diame-
ters owing to short drying time and low stretching force (Mercante, 
Scagion, Migliorini, Mattoso, & Correa, 2017). However, by the time 
the flow rate exceeds a critical level, the transferring rate of jet to 
the capillary tip surpasses the eliminating rate of the solution by the 
electrical force from the tip. This shift in the mass-balance ends up 
in a sustained, but unstable jet, fabricating nanofibers with beaded 
structures (Chang, Chan, & Chang, 2016; Weng & Xie, 2015).

The distance between the tip and the collector (TCD) affects 
the diameter and morphology of the fibers also. Bead formation can 

be detected at a very long distance. Also, at a very short distance, 
the solvent cannot be completely evaporated before reaching the 
collector (Luo, Stoyanov, Stride, Pelan, & Edirisinghe, 2012), lead-
ing to production of wet fibers. The TCD should be optimized to 
allow sufficient time for the fibers to dry (Ghorani & Tucker, 2015). 
Long, Kamsom, Nurfaizey, Isa, and Masripan (2017) have shown 
that shorter tip-collector distance produces wet, thick, and non-
uniform fibers. In a little bite long distance, the fibers have more 
time for stretching and elongating before accumulating on the col-
lector, leading to production of fibers with smaller diameter (Tong & 
Wang, 2007).

3.2 | Effect of polymer solution properties

Molecular weight of polymer and its concentration are two param-
eters that determine the solution viscosity, which can influence the 
morphology of the fibers. Polymers with high molecular weights have 
usually the viscosity more than polymers with low molecular weights 
owing to the increased entanglements of polymer chains (Mercante 
et al., 2017). Decrease in the molecular weight or the concentration 
of polymer solution is associated with the production of fibers with 
surface defects (beads), but high concentrations or higher molecular 
weights lead to the greater solution viscosity and the formation of 
uniform fibers with a few beads. However, helix-shaped, curly, and 
wavy fibers will be produced at very high concentration (Krumreich 
et al., 2019; Yang et al., 2004).

The surface tension influences nanofiber morphology as well. 
At low surface tension, beadless fibers can be formed. This fac-
tor depends on the polymer and solvent properties, being con-
trolled by changing their mass ratio (Rogina, 2014; Xue et al., 2019). 
Uniform fibers can be produced when the surface tension of the 
solution is reduced at a fixed concentration (Fang, Yang, Yuan, 

F I G U R E  2   An illustration of an 
electrospinning device

F I G U R E  3   Figures of Taylor cone at different voltages (Vc, 
Critical voltage)
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Charlton, & Sun, 2017; Moreira, de Morais, de Morais, da Silva Vaz, 
& Costa, 2018).

The solution electrical conductivity is the other factor influ-
encing the fibers morphology by facilitating the elongation of the 
droplets and the formation of a single or multiple jets (Thenmozhi, 
Dharmaraj, Kadirvelu, & Kim, 2017). Conductivity can be in-
creased by addition of salts, ions, or conducting polymers to the 
polymer solution, which bring about the fabrication of high-qual-
ity nanofibers with fewer defects and smaller diameters (Abutaleb 
et al., 2017; Afshari, 2016).

3.3 | Effect of ambient conditions

The effect of the ambient conditions around the electrified jet has 
rarely been investigated. Humidity and temperature are thought to 
affect fiber morphology and the productivity of the electrospinning 
process (Haider et al., 2018). At high humidity, pores can be formed 
on the fiber surface (Casper, Stephens, Tassi, Chase, & Rabolt, 2004). 
Most of them studies report, that increasing the humidity, caused an 
increase in the number, diameter and distributed size pores (Cheng, 
Qin, Hu, Yu, & Zhu, 2017; Ramakrishnan et al., 2019; Shao, Yan, 
Chen, & Xiao, 2018).

Ambient temperature can significantly influence both the vola-
tilization of the solvent and the viscosity of the polymer solution. 
Increasing the temperature provides a lower polymer solution vis-
cosity and a higher solvent evaporation rate from the jet surface, 
which tends to produce of smaller diameter fibers. Shahabadi, 
Kheradmand, Montazeri, and Ziaee (2015) exhibited the effect of 
temperature on the morphology and diameter of electrospun fibers. 
They found that, as the temperature increased from 20 to 30°C, the 
diameter of the fibers decreased, and this reduction was related to 
the reduced viscosity of polymer solutions, increased solvent evap-
oration rate, and also high solubility of the polymer in the solvent.

4  | APPLIC ATION OF ELEC TROSPINNING 
IN FOOD PACK AGING

One of the essential processes used for maintaining the quality of 
foodstuffs in a period of production, transportation, and storage is 
packaging (Cruz, Alves, Khmelinskii, & Vieira, 2018). The main aim of 
packaging is preservation of food products from physical, chemical, 
and biological degradation (Ghoshal, 2018). Therefore, it delays the 
deterioration of foods as well as facilitating the transportation and 
distribution (Barska & WyrWA, 2017). The four basic functions that 
can be achieved by packaging are as follows: protection, conveni-
ence, containment, and communication (Ghaani, Cozzolino, Castelli, 
& Farris, 2016). For example, concerning its communication perfor-
mance, packaging presents various information about food such 
as material type, color, shape, volume of the substance, and nutri-
tional composition and calorie content to the consumer (Dalmoro 
et al., 2017).

Today, packaging technologies have been extensively developed, 
including active and intelligent packages to promote quality, safety, 
and the product shelf life (Fang, Zhao, Warner, & Johnson, 2017). 
One of the current technologies used in the food packaging is elec-
trospinning. There are various techniques of forming nanofibers, 
such as high-volume production procedures, including gas jet tech-
niques, island-in-sea, and melt fibrillation, or highly cost methods, 
e.g. self-assembly and nanolithography. Nevertheless, their useful-
ness is restricted by combinations of limited material ranges, feasi-
ble fiber assembly, production rate, and cost. Electrospinning has a 
privilege with its relatively high fabrication rate and comparative low 
cost (Ramakrishna et al., 2006).

Fundamental traits of electrospun fibers for detecting and sens-
ing applications are including the 1D-confinements features, the 
great orientation of structural components induced lengthwise the 
fibers, intensely constraint of both material and electronic diffusion 
perpendicular to nanofibers axis along with high porosities (up to 
90%) (Mercante et al., 2017). The mixture of porosity and high sur-
face area makes the opportunity to build multifunctional nanostruc-
tures capable of covering different indicators.

Despite these benefits, low throughput of electrospinning and 
the difficulty of processing in conventional equipment (due to high 
rigidity of biopolymers) and the low barrier property to moisture 
and oxygen (due to hydrophilicity biopolymers) has restricted indus-
trial applications of electrospinning in packaging (Ding et al., 2019; 
Zhang, Li, Wang, & Zhang, 2020b). Also, because of the biodegrad-
able nature of biopolymers used in food technologies, there is a lack 
of feasibility for a longer use or even a reuse of the electrospun bio-
polymer materials. The application of this technology in intelligent 
food packaging is discussed below.

4.1 | Combination of electrospun nanofibers and 
indicators in intelligent food packaging

4.1.1 | Intelligent food packaging

According to The Commission of the European Communities, “in-
telligent food contact materials” are materials that monitor the 
condition of packaged food or the environment surrounding the 
food (Communities, 2004). Intelligent packaging is a system with 
one or more intelligent functions including monitoring, detecting, 
sensing, recording, tracing, and communicating during transport 
and storage, which promotes and enhances safety, quality, and 
shelf life of food products and also reports information about pos-
sible problems to the consumer or food manufacturers (Kalpana, 
Priyadarshini, Leena, Moses, & Anandharamakrishnan, 2019; 
Poyatos-Racionero, Ros-Lis, Vivancos, & Martínez-Máñez, 2018). 
In order to achieve real-time monitoring of a product during the 
supply chain, various smart devices, including indicators (for moni-
toring temperature, freshness, integrity, leakage, and pH), data 
carriers (bar codes) and sensors (gas sensors and biosensor) have 
been explored (Chowdhury & Morey, 2019; Ghaani et al., 2016; 
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Müller & Schmid, 2019). This intelligent technology finds several 
applications in food spoilage detection, chemical contamination 
detection, anticounterfeit products, and pharmaceutical traceabil-
ity (Bibi, Guillaume, Gontard, & Sorli, 2017; Dalmoro et al., 2017). 
Application of different smart devices in intelligent packaging of 
foodstuff is given in Table 1.

Biopolymers as well as plastics are widely used in intelligent 
food packaging. Even though various natural polymers have ad-
vantages (like biodegradable, renewable, and low cost) over plas-
tics (Ghoshal, 2018; Khezerlou, Ehsani, Tabibiazar, & Moghaddas 
Kia, 2019), the full replacement of them with synthetic polymers 
seems not to be practical because of problems associated with 
technical and economical issues (Rogovina, Prut, & Berlin, 2019). 
Different biopolymers can be easily turned into a layer of nano-
fibers using the electrospinning method. This layer is utilized in 
two forms in food packaging, meaning as a single and independent 
layer (Akinalan Balik, Argin, Lagaron, & Torres-Giner, 2019) or as 
an extra layer in the structure of biodegradable or synthetic plas-
tic packages (Akinalan Balik et al., 2019; Pardo-Figuerez, López-
Córdoba, Torres-Giner, & Lagaron, 2018). In the both conditions, 
nanofiber layer can be employed as a platform for covering differ-
ent compounds and substances such as food indicators. Anyway, 

going through the electrospinning-related recent studies reveals 
the application of pH indicators as the only smart devices com-
bined with electrospun nanofibers in intelligent food packaging. 
Electrospun fibers synthesized from polymer solutions are suitable 
candidates as platforms for coating different indicators by virtue 
of their high surface area, porosity, flexibility, absorption capac-
ity, low-cost production, and portable nature (Shen et al., 2011). 
Such fibers containing indicator materials show a high potential 
in food packaging owing to their high sensing sensitivity and fast 
response time, and thus enabling a better freshness evaluation of 
foods (Kalpana et al., 2019).

4.1.2 | Indicator

Indicators are defined as substances, determining the presence 
or the concentration of other substances or the measure of reac-
tion between different substances by means of a specific change, 
particularly in color (Ghaani et al., 2016; Müller & Schmid, 2019). 
They can put across information to consumers that are related 
to the absence or presence of a specific substance, the level of 
a reaction between particles, or the concentration of a particular 

TA B L E  1   Application of different smart devices in intelligent packaging of foodstuff

Type of 
smart 
device Smart material Feature Packaging polymer Food References

Indicators Alizarin pH-based Chitosan Fish Ezati and Rhim (2020)

Echium amoenum Bacterial cellulose Shrimp Mohammadalinejhad, Almasi, and Moradi 
(2020)

Black carrot Cellulose-chitosan Pasteurized 
milk

Ebrahimi Tirtashi et al. (2019)

Roselle Starch
Polyvinyl alcohol
Chitosan

Pork Zhang et al. (2019)

Alizarin Starch-cellulose Rainbow trout Ezati, Tajik, Moradi, and Molaei (2019)

Bromocresol green Polypropylene Rainbow trout Rastiani et al. (2019)

black carrot Bacterial nanocellulose Rainbow trout
Common carp

Moradi, Tajik, Almasi, Forough, and 
Ezati, (2019)

Black rice bran Gelatin Fish Ge et al., (2019)

Tamarind seed Litmus lichen Full cream 
milk

Liang and Wang (2018)

Anthocyanin and 
poly-lysine mixtures

CO2-based Nylon/LLDPE Chicken 
breast

Saliu and Della Pergola (2018)

Sensor Optical oxygen 
sensor

O2 determining Polyethylene and 
ethylene-vinyl acetate 
blend

Beef Kelly, Santovito, Cruz-Romero, Kerry, and 
Papkovsky (2020)

Optical oxygen 
sensor (Optech-O2 
Platinum)

O2 determining laminate plastic Meat Kelly, Cruz-Romero, Kerry, and Papkovsky 
(2018)

Radio Frequency 
Identification 
sensor

Dioxygen 
and carbon 
dioxide 
determining

Wheat gluten Cheese Saggin et al., (2019)
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material. Indicators used in food packaging transport information 
to a consumer on the subject of food quality, microbial activity, 
or other characteristics of foods. In most cases, such information 
is exhibited by immediate visual variations, e.g., different intensi-
ties in color or the diffusion of dyes along the indicator geometry 
(Kalpana et al., 2019).

Indicators are although simple tools, but important in guaran-
teeing food safety, which allow a decrease in the loss of foodstuff 
and the cost of losses related to the repair or replacement of dam-
aged products. In the broader senses, these smart devices could 
be categorized as internal and external indicators. The former 
represent indicators that are physically present inside the pack-
age and the latter represent indicators that are located outside 
the package (Pavelková, 2013). A distinct property of indicators is 
the kind of information they convey, which may be qualitative or 
semiquantitative. In spite of the large diversity of indicators, all of 
them can be categorized within three categories of freshness in-
dicators, time-temperature indicators, and gas indicators (Fuertes 
et al., 2016). According to our investigations, pH indicators are the 
only indicators coated within electrospun nanofibers, which have 
been prepared to be applied in food packaging. Some recent stud-
ies concerning the application of electrospun nanofibers contain-
ing indicators are given in Table 2.

4.1.3 | pH indicator

Typically, visual pH indicators, representing the freshness of food 
products are constituted of two important parts, solid support 
and a dye which is sensitive to pH alterations (Ghorbani, Kaffashi, 
Shokrollahi, Seyedjafari, & Ardeshirylajimi, 2015) Packaging con-
taining a pH indicator is one of the novelties of this branch, which 

is gradually developing. These dyes usually originate from various 
sources of vegetables and fruits. As soon as a particular food starts 
its spoiling process, a pH change befalls. This change is one of the 
most important indicators of food quality. At the beginning of the 
deterioration process, due to the pH variations, the color of indicator 
changes in the packaging (Medina-Jaramillo, Ochoa-Yepes, Bernal, 
& Famá, 2017). In this case, a package that specifies the pH of food 
before buying or consumption is a great means, ensuring the safety 
and quality of products to the consumer.

Given the animal or plant nature of foodstuff, there is a little 
difference in the function of indicators. In the cases, the edible 
material is a vegetable or a fruit, direct changes of pH on the sur-
face of materials leads to the variation in the color of indicator. 
For instance, Maftoonazad and Ramaswamy (2019) synthesized a 
sensitive and rapid detection system of pH changes in Rutab (fresh 
date fruits) throughout the storage using electrospun polyvinyl al-
cohol nanofibers incorporated with red cabbage extract (RCE) as 
a pH indicator. The process parameters were as follow: applied 
voltage: 10, 15, 20, and 25 kV, feed rate: 0.5, 0.7, 1, 1.5, and 2 ml/
hr, and collector distance: 10, 15, 20 cm. The average diameter 
for PVA fibers was 255 ± 53.4 nm, whereas the diameters of PVA 
fibers having 10, 20, and 30% of RCE were 655, 677, and 749 nm, 
respectively. The optimum conditions found for producing fine 
nanofibers were 15 kV voltage, 1 ml/hr flow rate, and 15 cm dis-
tance between needle and collector. After 72 hr, all aforemen-
tioned percentages of RCE incorporated in optimized nanofibers 
possessed violet color, indicating the spoilage of date due to the 
pH decrease to about 6. After 96 hr, their color changed to pur-
ple and pH decreased sharply (about pH of 5.3), resulting in the 
complete fruit spoilage at 25°C. These findings showed the possi-
bility of designing a system, enabling a real-time monitoring of pH 
changes in Rutab.

TA B L E  2   Application of electrospinning in intelligent packaging containing pH-based indicators

Indicator
Concentration 
of indicator Polymer Solvent

Processing
conditions

Average
diameter
(nm) References

Red cabbage 15% w/v Chitosan/ polyvinyl 
alcohol

Distilled water 15 kV, 6 ml/hr, 
15 cm

- Jung et al. (2019)

Red cabbage 30% w/v Zein Ethanol (75% v/v) 16 kV, 1 ml/hr, 
16 cm

444–510 Prietto 
et al. (2018)

Phycocyanin
(microalgae)

9% w/v
3% w/v

Poly lactic acid
poly ethylene oxide

Chloroform: 
Dimethylformamide 
(9:1 v/v)

15 kV, 0.6 ml/
hr,14 cm

921–1318 Moreira, Terra, 
Costa, and de 
Morais (2018)

Red cabbage 10% w/v Polyvinyl acohol – 10,15, 20, 
25 kV, 0.5, 
0.7, 1, 1.5, 
2 ml/hr, 10, 
15, 20 cm

255–749 Maftoonazad and 
Ramaswamy 
(2019)

Açaí fruit 11% w/v
6% w/v

Polycaprolactone 
polyethylene oxide

Chloroform/ methanol 
(3:1 v/v)

20 kV, 0.6 ml/
hr, 12.5 cm

1635 da Silva, da 
Silveira 
Mastrantonio, 
Costa, and de 
Morais (2019)
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By the time, there is a need to package a protein base food, the 
increase in the total volatile base nitrogen (TVB-N) indirectly causes 
the color change of indicator through increasing the pH. Total vol-
atile base nitrogen is a collection of biogenic amines, including am-
monia, dimethylamine (DMA), and trimethylamine (TMA), formed 
in nonfermented foodstuff in the course of storage. This index is 
widely used as a freshness criterion of different protein food prod-
ucts, especially seafood quality (Shukla, Kandeepan, Vishnuraj, & 
Soni, 2016, Ahmad, Heng, Salam, & Hanifah, 2018, Prabhakar, Vatsa, 
Srivastav, & Pathak, 2020). Microbial growth is a main cause of 
TVB-N production. In fact, TVB-N rise mostly is caused by decar-
boxylation of proteins by bacteria. The microbiological degradation 
of Trimethylamine N-oxide (TMAO) to TMA and ammonia is the pri-
mary step in this process. All these volatile base nitrogen engender 
alkaline conditions.

Guo et al. (2020) developed double layer nanofiber mats com-
posed of a colorimetric fiber layer (pullulan-purple sweet potato 
extract [PL-PSPE]) and an antibacterial layer (zein-glycerol-carvacrol 
[ZN-GL-CA]) using the electrospinning technique to detect the pH 
changes of pork. PSPE is a halochromic dye that changes color over 
the pH range of 2–3 to 7.2. Optimum fibrous mats were made at volt-
age of 9 kV, feed rate of 0.7 ml/hr, and distance from tip-to-collector 
of 12 cm. The fabricated nanofibers were able to determine changes 
of pH as a result of variations in color of sweet potato extract. The 
mat color changed from purple and blue to green then, the color 
reversed. The change in ΔE values of double layer mats was 7.56, 
providing faster and more sensitive detection.

Aghaei, Ghorani, Emadzadeh, Kadkhodaee, and Tucker (2020) 
produced zein electrospun nanofibers covering alizarin as a 
halochromic indicator based on TVB-N for controlling the freshness 
of rainbow trout fillets throughout the storage time. They regulated 
the electrospinning process to 20, 25, and 30 kV voltage, 1 ml/hr 
flow rate, and 12 cm distance between the needle tip and collec-
tor. The average diameter of formed fibers was 79–619 nm. The fi-
bers exhibited a yellow color at the beginning, when the TVB-N was 
nearly 17 mg/100 g food sample, then light purple color on day 6 
(TVB-N of approximately 23 mg/100 g food sample), and finally ma-
genta color on day 12 (TVB-N of approximately 33 mg/100 g food 
sample). These color changes toward getting darker indicated that 
the fabricated system could successfully monitor the freshness of 
fillets by evaluation of TVB-N amount.

In a similar survey, Aghaei, Emadzadeh, Ghorani, and Kadkhodaee 
(2018) developed a halochromic system composed of cellulose ac-
etate nanofibres synthesized by electrospinning method (voltage: 
25 kV, flow rate: 0.5 ml/hr, tip–collector distance: 15 cm) containing 
alizarin. They investigated the fish spoilage at the refrigerator tem-
perature for 12 days. The color changes were strongly influenced 
by increasing the amount of TVB-N of product. They found that 
no color change was observed in the first 48 hr, when the TVB-N 
slightly increased from 11 to 13 mg/100 g sample, but after this, the 
color changed to very light brick at the TVB-N level of 18 mg/100 g 
sample, and at the end of the period it changed to violet (TVB-N of 
22 mg/100 g sample).

5  | CONCLUSION

Electrospinning technique has been developed significantly during 
recent few years. This method is known as an efficient technique to 
produce nanofibers with high surface to volume ratio, absorbance 
capacity, porosity, and small pore size. These characters make elec-
trospun nanofibers possible to be accompanied with different food 
spoilage indicators in an intelligent packaging. All these advantages 
lead to fast response, easy-to-visualize, and real-time freshness 
monitoring of foodstuff. Given the novelty of intelligent packag-
ing possessing electrospun nanofibers, the most of such packaging 
produced in recent years are pH indicators. Therefore, the develop-
ment of these packages to monitor compounds such as ethanol is 
predictable. According to our knowledge, two important issues are 
missing throughout the studies, which may be addressed in future 
researches. First, there was not any report to compare the effec-
tiveness of indicators in packages prepared with the help of elec-
trospinning technique and other usual packages. Second, almost 
the majority of such packaging have been developed together with 
indicators derived from fruits and vegetables and none of them did 
not benefit from the help of a sensor, which could exactly and quan-
titatively monitor the characteristics of foodstuff may be due to the 
economic issues.
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