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1. Introduction
Biofabrication, bioprinting, and bioassembly are three 
terms that have received great attention in recent 
years[1,2]. The definition of biofabrication has been 
highlighted as “the automated generation of biologically 
functional products with structural organization from 
living cells, bioactive molecules, biomaterials, cell 
aggregates such as microtissues, hybrid cell-material 
constructs through bioprinting or bioassembly”[1]. 
Defining terminologies and technologies in the field of 
biofabrication is much needed to establish a framework 
and provide a reference map to the research community. 
Recently, researchers proposed a refined working 
definition of Biofabrication, including Bioprinting 
and Bioassembly as complementary stra tegies within 
Biofabrication. While Moroni et al. established a 
guide for terminology in biofabrication and defined the 
efficiency of the respective biofabrication technologies 
using a metric system called spatial resolution/time 
for manufacturing (RTM) ratio as a quantitative cha-

racterization of the processes[2]. Several reviews have 
also highlighted current bioprinting technologies and 
compared the print resolution between the different 
technologies [2–5].  These published articles have 
provided the necessary basic clarity on the definition of 
biofabrication. However, much work is still needed to 
further categorize the 3D bioprinting process in terms of 
processes and terminology.

The field of 3D bioprinting started from the idea of 
combining additive manufacturing (AM) or 3D printing 
which uses layer-by-layer fabrication techniques with 
living organisms and biomaterials to produce complex 
tissues in vitro[6]. While there is much advancement 
in this field, the academia and industry have seen a 
lower adaptation rate of 3D bioprinting compared to 
AM due to the lack of clarity in processes, materials 
and applications. There exist some form of mismatch 
between these three.

This article aims to provide a classification of 3D 
bio printing processes that have been reviewed and 
described in detail in numerous reviews[3,7,8]. The details 
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of these processes are not the focus of this perspective 
article. Instead, the paper examines the concept of 
3D bioprinting within the general technology field of 
3D printing (Figure 1). Discussion presented include 
the definition of classification, example of techniques 
grouped under the same process, the range of materials 
and resolutions obtained and a summary on the 
application strategies of these techniques.   

2. Classification of Cell-compatible 3D 
Bioprinting Technologies
In Groll et al.[1] and Moroni et al.[2], bioprinting refers 
to the use of computer-aided transfer processes for 
patterning and assembling living and non-living 
materials with a prescribed 2D or 3D organization to 

produce bio-engineered structures. In this article, we 
proposed that these technologies can be categorized 
into four distinct process categories (Figure 2), namely 
material jetting, vat photopolymerization, material 
extrusion and bioassembly.  The classifications are 
based on the classification methods established for 
standardization of terminology in additive manufacturing 
with reference to the standard document ISO/ASTM 
52900:2015-12 Standard Terminology for Additive 
Manufacturing.   

2.1 Material Jetting
Material jetting is a process in which droplets of build 
material are selectively deposited onto a build bed to 
develop a three-dimensional object[9,10]. The process 

Figure 1. Process categories of 3D printing and proposed 3D bioprinting process categories

Figure 2. Categorizing biofabrication technologies and differentiating cell-compatible technologies
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Figure 3. Materials jetting: (A) Piezoelectric/thermal ink jetting. (B) Acoustic wave jetting. (C) Electrohydrodynamic jetting. (D) Laser-
induced forward transfer (LIFT).

involves formation and deposition of droplet material 
and displacement of material with or without cells onto 
a desired spatial position. Bioprinting technologies that 
form constructs based on droplet deposition include 
piezoelectric/thermal ink jetting, acoustic wave jetting, 
electrohydrodynamic jetting and laser-induced forward 
transfer (LIFT)[11–17]. Piezoelectric/thermal ink jetting 
uses piezoelectric/thermal force, which generates 
pressure pulsed in the nozzle to expel droplets (Figure 
3A). In contrary, acoustic wave jetting employs acoustic 
radiation force generated by acoustic actuator to produce 
droplets (Figure 3B) and electrohydrodynamic jetting 
applies an electric voltage to form droplets (Figure 
3C). In the case of LIFT which is nozzle-free jetting 
technique, a focused laser hits an absorbing layer 
generating a high-pressure bubble that propel droplets 
towards the desired build bed (Figure 3D).

Material jetting has been widely utilized in tissue 
engineering using a range of hydrogels including 
alginate, agarose, collagen, fibrinogen and thrombin, 
gelatin methacryloy (GelMA) etc. Xu et al. utilized 
piezoelectric ink jetting to fabricate vascular-like tubes 
using alginate material, which mimicked vascular 
constructs[18,19]. Coppi et al. employed thermal ink 
jetting to embedded human amniotic fluid-derived stem 

(AFS) cells in an alginate/collagen scaffold. The printed 
construct incubated in vitro in osteogenic medium before 
implantation into immunodeficient mice[20]. Michael 
et al. utilized LIFT to create a fully cellularized skin 
substitute. This construct implanted into mice and 
formed a tissue similar to simple skin after cultivation[21].  
Demirci and Montesano demonstrated encapsulation of 
single or a few cells ejected from an open pool using 
acoustic droplet ejection, and showed the potential 
of using this technology of printing cells in various 
biological fluids and hydrogels[22].

Material jetting, as a droplet-based technique, provides 
a high-throughput method with great advantages due 
to its agility to precise control on displacement of 
biologicals and to the ability to provide high resolution. 
Recent developments of those aforementioned tech-
niques have reported that the general size of jetted 
droplets is in the range of 1 pL to 7000 pL in volume[23]. 
Further, smaller volume enables higher resolution (lower 
to 10 µm)[7,24]. Another advantage of material jetting is 
that it allows to print cells or materials with a gradient 
concentration throughout the 3D structure by varying 
droplet densities or sizes[25]. It also provides great 
promise enabling “scaffold free” bioprinting by direct 
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deposition of cells.

2.2 Material Extrusion  
In material  extrusion techniques,  biomaterials 
are extruded from the nozzle producing defined 
structures[26–28]. Extrusion-based printing can be divided 
into three categories based on the mechanism for 
extruding materials. Mechanical extrusion uses motor 
to drive piston downwardly, where material extrusion is 
determined by rate of motor’s displacement; Pneumatic 
dispensing system supplies air pressure into the syringe 
cartridge, where the difference between supplied 
air pressure and ambient pressure drives the flow of 
material; the third setup uses a rotary-screw, where 
the angular turn of the screw affects the amount of 
material extruded. In extrusion-based bioprinting, both 
pneumatic[29–38] and mechanical systems[39,40] have been 
commonly used for dispensing cell-hydrogel (Figure 
4). The use of rotary screw extrusion in bioprinting 
has been limited only when high viscosity material 
such as PCL melt is used (Figure 4)[40]. Alternatively, 
valves can be placed at the nozzle to regulate the 
flow of the hydrogel[41]. Such printing method is also 
termed as microvalve bioprinting [42]. Droplets or 
strands of hydrogel can be dispensed using microvalve 
bioprinting[43].

With adjustable pressure setting, extrusion-based 
bioprinting can process material with wide range of 
viscosity 30–6 × 107 mPa.s[44]. A printing method termed 
as conformal printing involves deposition of Agarose 
hydrogel filament that act as support structures for 
subsequent cell-hydrogel filament[39]. This conformal 

printing strategy can also be observed in hybrid printing 
of construct with thermoplastic filament adjacent to 
cell-laden hydrogel filament. Hybrid bioprinting, that 
integrates other fabrication methods such as melt-
extrusion and electrospinning with bioprinting, fabricates 
construct with enhanced structural fidelity due to the 
additional scaffolding material[45–51]. 

Resolution from material extrusion technology is 
determined by variables such as nozzle size, applied 
pressure on material, printing speed, substrate wettability, 
and printing temperature[44,52,53]. Highest resolution of 
15–400 µm has been reported[30,37,39–41,45,49,54–59]. 

2.3 Vat Polymerization Printing
In vat polymerization printing (VPP), a container 
filled with cell-hydrogel suspension is subjected to 
selective curing of polymer to form 3D structures. The 
components of vat polymerization printing system used 
for bioprinting resembles closely of those from additive 
manufacturing counterparts. VPP systems comprise of an 
energy source that selectively initiates the polymerization 
process within the entire vat containing photosensitive 
polymer. Three dimensional constructs are formed point 
by point through laser curing in stereolithography (SLA) 
(Figure 5). Alternatively, UV light can be area-projected 
in digital light processing (DLP) (Figure 5) into the vat 
of photopolymer using digital micro-mirror device[60–62].

Hydrogels used in this printing system are light 
sensitive photopolymers such as polyethylene glycol–
diacrylate (PEGDA) and gelatin-methylacryloyl 
(GelMA). Notably, there has been increase research 
i n t e r e s t  i n  u s ing  non -UV based  sys t ems  fo r 

Figure 4.  Illustration of Material Extrusion with/without cells.
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Figure 5. Vat polymerization: (A) Stereolithography. (B) Digital Light Processing.

polymerization[63,64]. UV light has been reported to 
damage cell DNA which may be detrimental for 3D 
bioprinting[65,66]. Photoinitiators such as eosin Y and 
lithium phenyl-2,4,6-trimethylbenzoylphosphinate 
(LAP) are used for curing photopolymers under visible-
light. 

Of the current vat polymerization-based printing 
system, digital light processing technique prints 
constructs with higher resolution and at a fast printing 
speed than optical projection systems. An in vitro 
triculture liver tissue model made of complex 3D 
honeycomb pattern was printed using dynamic optical 
projection stereolithography[67]. The features printed 
using the DLP-based system mimics the in vivo features 
of the liver. The triculture model with biomimetic liver 
lobule features presents a physiologically relevant model 
with great potential in pathophysiological studies and 
drug screening applications. Other than higher resolution 
and faster fabrication speed, DLP-based system can 
produce complex designs with lumen-like features to 
support maturation of tissue construct. For instance, 
a pre-vascularized tissue with an intricate network 
mimicking the branching system of vasculature was 
printed using DLP-based system[61]. Resolution from 
VPP technology is determined by variables such as 
curing time, curing depth, wavelength of light source. 
The highest resolution reported in the literatures can be 
in the range of 5–100 µm[60,61,68].

2.4 Bioassembly 
In many reports, bioassembly is defined as the fabrication 
of hierarchical constructs in prescribed organization 
through automated assembly of pre-formed cell-
containing fabrication untis[1]. In this article, we propose 

the name Bio-Placer, which include processes such as 
pick and place of spheroids and magnetic bioprinting 
(Figure 6). These pre-formed modular units of cells may 
exist as spheroids[69–71], cylindrical rods[70], and even 
sheets (toroids and honeycombs)[72]. The relationship 
of bioassembly with other 3D bioprinting proceses will 
depend on further evolution and development of the 
definition as well as the bioassembly technology.

2.5 Pick and Place of Microtissues 
Other than the methods that requires delivery of 
spheroids through suspensions, robotic arms have been 
designed to directly manipulates spheroids in a pick and 
place manner. One of such pick and place method is 
described as Kenzan method[73,74]. The setup comprises 
of needles that are arranged in arrays for placement of 
cell spheroids (Figure 6A). A suction is used to pick 
and transfer spheroids from the well plates and onto 
the needle arrays. The spheroids are placed in a pre-
defined configuration. Of which, the spheroids on needle 
arrays are incubated for several days prior to removal 
from the array platform. Another approach that directly 
picks microtissues using a custom-made device that 
grips the microtissues through suction (Figure 6B)[72,75]. 
Microtissues are first formed through seeding cells onto 
agarose mold. Spheroids, toroids and honeycomb sheets 
of microtissues are lifted from the mold using a gripper. 
Toroids microtissues were aligned vertically through 
stacking microtissues with aligned lumens. 

2.6 Magnetic Bioprinting 
Another method for microtissue assembly uses magnetic 
forces to control positioning of cells (Figure 6C). 
Magnetic bioprinting is a contactless technique for 
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manipulating and assembling cells into different shapes. 
Two distinct methods are used in this setup. Firstly, in 
label-free diamagnetophoretic printing, cell-medium 
was mixed with a paramagnetic buffer and exposed to 
an external magnetic field[76]. Cells suspended in the 
medium moved towards a region of lower magnetic 
field strength. The shape of 3D cell assemblies was 
controlled through changing the magnet configuration. 
In the second approach, cells are magnetized through 
incubating with magnetic nanoparticles overnight[77,78]. 
The magnetized cells were seeded in a low-adherent 
plate, forming cell aggregates through levitation. 
Thereafter, the magnetized cell aggregates were re-
suspended in medium and patterned using a ring-shaped 
magnet. Spatial patterning of the cell aggregates into 
desired morphology are controlled through varying 
variation in the shape of magnetic template used[79]. 
Limitation in the magnetic field strength in constructing 
larger construct requires further improvisation for 
miniaturization[76]. Nevertheless, cytotoxicity and 
plau sible internal stresses of the engulfed magnetic 
nanoparticles may have detrimental effects on the cells. 
A summary of bioprinting and bioassembly technologies 
is given in Table 1.

3. Conclusions and Outlook 
3D Bioprinting has become an enabling fabrication tool 
in various applications using different material systems 

and spanning across micro- and macro-scales. There 
have been numerous works in making 3D bioprinting 
more adoptable for real applications. One of these 
examples include the use of multimaterials to create 
3D microchannels to enable vascularization. This 
multimaterials 3D bioprinting system can be applied 
similarly like a fused deposition modelling (FDM), 
which is a material extrusion AM technique[80]. Hybrid 
bioprinting is another future trend that combine natural 
and synthetic materials. This hybrid system can use 
strong biodegradable polymer as support and bioactive 
hydrogel as model materials to create exterior of 3D 
scaffolds[51]. As 3D bioprinting advances and more 
techniques start to emerge, standardized classification 
of technology using consistent terminology is necessary 
to serve as a baseline towards development of standards 
for 3D Bioprinting. The proposed classification here 
will also promote knowledge and helps to stimulate new 
research by defining the processes based on the physical 
principles of the technologies. 
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