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In lymphopenic mice, T cells become activated and undergo lymphopenia-induced

proliferation (LIP). However, not all T cells are equally sensitive to lymphopenia. Several

lymphopenia-insensitive T cell clones were described and their non-responsiveness

was mainly attributed to clone-specific properties. Here, we provide evidence for an

additional, host-dependent mechanism restraining LIP of lymphopenia-insensitive CD4+

T cells. We show that such cells undergo LIP in lymphopenic mice lacking IFN-γ

receptor (IFN-γR) expression, a process, which is promoted by the autocrine action of T

cell-derived IFN-γ. Additionally, LIP of lymphopenia-insensitive CD4+ T cells requires

an intact microflora and is accompanied by the massive accumulation of IL-6 and

dendritic cells (DCs). Consistent with these results, IL-6 neutralization and the DC-specific

restoration of IFN-γR expression are both sufficient to restrict LIP. Hence, the insensitivity

of CD4+ T cells to lymphopenia relies on cell-intrinsic properties and a complex interplay

between the commensal microflora, IL-6, IFN-γR+ DCs, and T cell-derived IFN-γ.
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INTRODUCTION

In lymphocyte-competent hosts, T cells continuously utilize homeostatic factors such as
Interleukin-7 (IL-7) and self-peptide-MHC complexes and thereby limit their availability (1).
Due to the lack of IL-7-consuming T cells, IL-7 accumulates in lymphopenic mice (2) and
humans (3). IL-7 is a potent activation and survival signal for T cells and its overabundance
promotes T cell responses (4). Consequently, the adoptive transfer of polyclonal naive CD4+

T cells into lymphopenic mice leads to their activation and subsequent lymphopenia-induced
proliferation (LIP) (5, 6). However, LIP represents a mixed reaction in response to different
stimuli. While IL-7 overabundance induces a comparably slow homeostatic proliferation (HP)
of T cells, the commensal microflora triggers a rapid response referred to as spontaneous
proliferation (SP) (7–11). Nevertheless, naive T cells undergoing LIP differentiate into interferon-γ
(IFN-γ)-producing effector/memory T cells, which is frequently associated with autoimmunity
(12, 13).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00140
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00140&domain=pdf&date_stamp=2019-02-07
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thomas.schueler@med.ovgu.de
https://doi.org/10.3389/fimmu.2019.00140
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00140/full
http://loop.frontiersin.org/people/624061/overview
http://loop.frontiersin.org/people/32803/overview
http://loop.frontiersin.org/people/397772/overview
http://loop.frontiersin.org/people/583085/overview


Knop et al. IFN-γ and CD4+ T Cell Activation

The degree of LIP varies strongly between T cell clones
(14–16). For example, ovalbumin (OVA)-specific CD4+ TCR-
transgenic (tg) OT-II T cells, contrary to polyclonal CD4+ T
cells, do not undergo LIP in irradiated hosts (14) and expand
only moderately in fully lymphopenic Rag-deficient (Rag−/−)
mice (10). TCR signal strength is a major factor that regulates
the sensitivity of a T cell to lymphopenia (15, 16). It is affected
by a complex interplay between TCR avidity and molecules
modulating TCR signal transduction (15, 17, 18). Hence, cell-
intrinsic mechanisms appear to determine whether a T cell is
sensitive to lymphopenia or not. However, it remained unclear
whether extrinsic mechanisms prevent LIP of lymphopenia-
insensitive CD4+ T cells.

In the present study, we show that lymphopenia-insensitive
OT-II cells expand massively in IFN-γ receptor (IFN-γR)-
deficient Rag−/− (RagγRko) mice, a phenomenon that is not
observed in IFN-γ-deficient Rag−/− (Ragγko) mice. LIP of
OT-II cells is associated with a strong increase in systemic
IL-6 and subsequent T cell accumulation. The lack of IFN-γ
and IFN-γR expression by OT-II cells impaired LIP to some
degree arguing for a growth promoting, autocrine effect of
OT-II-derived IFN-γ. Furthermore, we show that the commensal
microflora is crucial for OT-II LIP in RagγRko mice, which is
accompanied by the massive expansion of dendritic cells (DCs).
Finally, we show that IFN-γR expression exclusively in DCs
is sufficient to restrict OT-II expansion, DC accumulation and
IL-6 production in RagγRko mice. In summary, we provide
evidence that the suppression of CD4+ T cell activation in
response to lymphopenia is determined by a combination of
both, clone-specific properties and environmental factors such as
the commensal microflora, IL-6 and IFN-γR expression by DCs.

MATERIALS AND METHODS

Mice and Adoptive T Cell Transfer
Thy1.1+ B6.PL-Thy1a/Cy and Thy1.2+ B6.129S7-Rag1tm1Mom/J
(Rag−/−), C57BL/6J (B6), B6.SJL-PtprcaPepcb/BoyJ (CD45.1+),
B6.129S7-Ifnγ

tm1Ts (IFN-γ−/−), B6.129S7-Ifngrtm1Agt (IFN-
γR−/−), B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II) (expressing
a transgenic TCR specific for the chicken ovalbumin
(OVA)-derived, I-Ab-restricted peptide OVA323−339), B6.Cg-
Tg(Itgax-EGFP-CRE-DTR-LUC)2Gjh/Crl (CD11c-GCDL)
(19) and pCAGloxPSTOPloxP-IFNγR-IRES-GFP (IFN-γRSO)
transgenic mice (20) were housed under specific pathogen-free
conditions. Mice were crossed to generate Thy1.1/.2/CD45.1/.2-
disparate Rag−/−OT-II (OT-IIWT), Rag−/−IFN-γR−/−OT-II
(OT-IIγRko), and Rag−/−IFN-γ−/−OT-II (OT-IIγko) T cell
donors. Lymphopenic Rag−/− (RagWT), Rag−/−IFN-γ−/−

(Ragγko), Rag−/−IFN-γR−/− (RagγRko), and Rag−/−IFN-γR−/−

× CD11c-GCDL × IFN-γRSO (RagγRko × IFN-γRCD11c−ON)
mice served as T cell recipients. For the adoptive transfers
shown in Figures 2A,B, B6 or CD45.1+ mice served as
non-lymphopenic controls. For T cell transfers, single cell
suspensions were prepared from spleens and lymph nodes
of donor mice by forcing the organs through metal sieves.
To lyse erythrocytes, cell suspensions were incubated with
Ammonium-Chloride-Potassium lysis buffer for 90 s and

subsequent addition of RPMI with 10% FCS. After washing
with PBS/2mM EDTA, cell suspensions were resuspended in
PBS and filtered through 40µm cell strainers (BD and Corning,
Durham, NC). Single cell suspensions were counted, stained
with fluorochrome-labeled antibodies for 30min at 4◦C and
analyzed by flow cytometry to determine the frequency and
activation state of OT-II cells (Supplementary Figure 1). Cell
suspensions containing 1.6–10 × 105 naive CD4+ OT-II T
cells were injected i.v. into the tail vein of recipient mice. For
CFSE labeling, donor single cell suspensions (2.2–3.2 × 107

cells/ml) were incubated with 7.5µM CFSE (Biolegend) in
PBS for 20min at 37◦C. Subsequently, cells were washed twice
with ice cold PBS or RPMI/10% FCS and were resuspended in
PBS prior to injection. Cell suspensions containing 7.5–8 ×

105 CFSE+ OT-II T cells were injected i.v. into the tail vein of
recipient mice. Ten to thirteen days after transfer, spleens and
lymph nodes were isolated and single cell suspensions were
prepared as described. Erythrocyte lysis was performed with
spleen cell samples. Cells were counted and directly stained with
fluorochrome-labeled antibodies for 30min at 4◦C after blocking
FcR with purified anti-CD32/CD16 monoclonal antibodies
(2.4G2 ATCC R© HB-197TM). To neutralize IL-6 in vivo, mice
were i.p. injected with 500 µg of anti-IL-6 (MP5-20F3; BioXCell)
2 days prior to OT-II transfer. Treatment was repeated every
third day. Control mice received 500 µg control IgG1 (HRPN;
BioXCell). To deplete the commensal microflora, mice were
treated with 0.5 g/l vancomycin, 1.0 g/l metronidazole, 1.0 g/l
ampicillin, and 1.0 g/l neomycinsulfate via the drinking water
4 weeks prior to and during the experiment (21). Mice treated
with antibiotics did not show any obvious clinical symptoms. At
the day of analysis, however, their cecum was enlarged indicating
successful depletion of the commensal microflora.

Flow Cytometry
The following antibodies and reagents were used: anti-CD4
(RM4-5; Biolegend/eBioscience), -CD11c (N418; BD/Biolegend),
-CD44 (IM7; Biolegend), -CD45.1 (A20; Biolegend), -CD62L
(MEL-14; Biolegend), CD127 (A7R34; BD/Biolegend), -KLRG-
1 (2F1; Biolegend/eBioscience), -Ki67 (SolA15; eBioscience), -
I-Ab (AF6-120.1; Biolegend), -Thy1.1 (OX-7; Biolegend), -TCR
Vα2 (B20.1; Biolegend), streptavidin-BV510 (Biolegend) and
streptavidin-PE (Biolegend). For intranuclear staining of Ki67,
cells were first stained with the indicated antibodies directed
against cell surface molecules. Afterwards cells were fixed with
the Foxp3/Transcription Factor Staining Buffer Set (eBioscience)
according to the manufacturer’s instructions and subsequently
incubated with anti-Ki67 for 30min at 4◦C. Samples were
measured on LSRFortessa flow cytometer (Becton Dickinson)
and analyzed by FlowJo 9 and 10 software (FlowJo, LLC). To
calculate the fold expansion of OT-II cells or DCs, the respective
cell populations were quantified. For each experiment a mean
value was calculated for the RagWT group. Finally, cell numbers
of individual mice, including RagWT mice, were calculated in
relation to the mean value of the RagWT group. Relative mean
fluorescence intensities (MFIs) and relative frequencies of OT-II
cells or DCs were calculated in analogy.
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FIGURE 1 | CD4+ T cell LIP is amplified in IFN-γR-deficient mice. (A–C) CD4+Thy1.1+ OT-IIWT T cells were adoptively transferred into RagWT, Ragγko and RagγRko

mice (all Thy1.1−). After 10–12 days, recipient splenocytes were analyzed by flow cytometry. (A) Shown are frequencies, cell numbers and fold expansion of OT-IIWT

cells. (B) Relative fluorescence intensities, (C) relative MFIs for CD44 and CD127 and relative frequencies of KLRG-1hi and Ki67hi cells were determined after gating

on CD4+Thy1.1+ OT-IIWT cells. (A,C) Shown are pooled results from 3 to 4 independent experiments with a total of 11–17 mice per group and (B) representative

histograms from corresponding samples. (A,C) Graphs show mean values + SEM and statistical significances (***p ≤ 0.001; ****p ≤ 0.0001) were calculated to

values in RagWT mice.

IFN-γ and IL-6 Detection
Blood (supplemented with EDTA) was centrifuged 10min at 500
× g and 4◦C. The supernatant was centrifuged again 10min
at 900 × g and 4◦C to obtain the plasma that was analyzed
by an IFN-γ or IL-6 specific ELISA (eBioscience) according to
manufacturer’s instructions.

Statistical Analysis
Statistical analysis and graphical representations were done
using Prism 5 software (GraphPad Software). Statistical
significance was determined using a non-parametric two-tailed

Mann-Whitney U-test. ∗p≤ 0.05; ∗∗p≤ 0.01; ∗∗∗p≤ 0.001; ∗∗∗∗p
≤ 0.0001.

RESULTS

Host IFN-γR Expression Restrains
Commensal-Driven OT-II LIP
We have shown that host IFN-γR signaling restricts LIP of CD8+

T cells (22). Whether this mechanism prevents LIP of CD4+

OT-II T cells was unclear. To address this issue, naive CD4+

T cells from Rag−/− OT-II TCRtg mice (OT-IIWT cells) were
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adoptively transferred into IFN-γR-deficient Rag−/− (RagγRko)
and IFN-γR-competent Rag−/− (RagWT) mice. To elucidate a
potential contribution of host-derived IFN-γ, IFN-γ-deficient
Rag−/− mice (Ragγko) were reconstituted with OT-IIWT cells in
parallel. Within 10–12 days, OT-IIWT cells expanded massively
in RagγRko but not in RagWT or Ragγko spleens (Figure 1A).
LIP was associated with the up-regulation of CD44, CD127,
KLRG-1, and Ki67 indicating full activation and proliferation of
OT-IIWT cells in RagγRko mice (Figures 1B,C). LIP is induced
in T cell areas of secondary lymphoid organs (SLOs) (23) and
IFN-γ regulates T cell migration to and positioning in SLOs
(24–26), which is guided by chemokine-producing stromal cells
(27). However, stromal cell composition differs significantly
between lymph nodes (LNs) and spleen (28). We therefore
asked next whether OT-II expansion is equally well induced in
either SLO. To address this question, CFSE-labeled OT-IIWT cells
were transferred into RagWT and RagγRko mice. C57BL/6 (B6)
served as non-lymphopenic controls. After 12 days, recipient
LNs and spleens were analyzed. As shown in Figures 2A,B,
the frequencies of CFSElo OT-IIWT cells were lower in LNs
than in spleen of both recipients. However, CFSElo OT-IIWT

cells were clearly more abundant in RagγRko spleens and LNs
(Figures 2A,B) indicating higher frequencies of rapidly dividing
OT-IIWT cells in either organ. Of note, in addition to the
rapidly dividing CFSElo OT-II cells, a population of CFSEint

cells was detectable in the spleen, but not LNs, of RagγRko mice
(Figures 2A,B). This suggests different, organ-specific velocities
of OT-II LIP. Nonetheless, OT-IIWT LIP was most pronounced in
the spleens of RagγRko mice. We therefore focused on this organ
in the following experiments.

Under lymphopenic conditions, the rapid-type of T cell
proliferation relies on the presence of an intact commensal
microflora (7, 10). Whether this is also the case for OT-II
expansion in RagγRko mice was studied next. For this purpose,
RagWT and RagγRko mice were treated with a mixture of
antibiotics prior to and during reconstitution with OT-IIWT cells.
This treatment regimen efficiently depletes commensals (21, 29).
As expected, OT-IIWT expansion was impaired in untreated
RagWT mice but was very efficient in untreated RagγRko mice
(Figure 2C, white bars). On the contrary, antibiotic treatment
blocked OT-IIWT LIP in RagγRko mice (Figure 2C). Together, the
data presented so far indicate that recipient IFN-γR expression
restrains commensal-driven spontaneous proliferation (SP) (7–
11) of OT-II cells under lymphopenic conditions.

IL-6 Accumulates in RagγRko Mice and
Promotes OT-II SP
IL-6 promotes commensal-dependent SP of CD4+ and CD8+

T cells in lymphopenic mice (9, 10). To elucidate whether IL-6
levels are altered in our experimental system, plasma samples
from OT-IIWT-reconstituted RagWT and RagγRko were analyzed
10–12 days after T cell transfer. As shown in Figure 3A, plasma
levels of IL-6 were strongly elevated in OT-IIWT-reconstituted
RagγRko mice (Figure 3A; + OT-IIWT) but not in untreated
controls (Figure 3A; –OT-IIWT). In order to test whether IL-6
promotes OT-IIWT SP in RagγRko mice, RagWT, and RagγRko

mice were treated with neutralizing monoclonal anti-IL-6
antibodies (αIL-6 mAb) prior to and after reconstitution with

OT-IIWT cells. Control mice received isotype-matched control
mAbs. As shown in Figure 3B, αIL-6 treatment did not affect
frequencies, cell numbers or relative expansion rates of OT-IIWT

cells in RagWT mice. As expected, OT-IIWT cells were by far most
abundant in isotype-treated RagγRko mice, an effect that was fully
reverted by IL-6 neutralization. Accordingly, expression levels of
CD44 and Ki67 were strongly reduced in OT-IIWT cells recovered
from αIL-6-treated RagγRko mice as compared to isotype-treated
controls (Figures 3C,D). Hence, IL-6 is up-regulated upon T cell
transfer and is crucial for OT-IIWT activation, proliferation and
subsequent accumulation in RagγRko mice.

OT-II-Derived IFN-γ Promotes SP in an
Autocrine Fashion
T cell-intrinsic IL-6R signaling promotes the expansion of IFN-
γ-producing effector/memory CD4+ T cells under lymphopenic
and non-lymphopenic conditions (30, 31). Consequently, the
blockade of OT-IIWT activation and subsequent SP in αIL-6-
treated RagγRko mice (Figures 3B–D) correlated with a strong
reduction of plasma IFN-γ levels (Figure 3E).

Since IFN-γ directly promotes CD4+ T cell responses (32–
34), we hypothesized that OT-II-derived IFN-γ supports SP in
RagγRko mice in an autocrine fashion. To test this hypothesis,
IFN-γ-deficient OT-II (OT-IIγko) cells were transferred
into RagγRko and RagWT mice. After 11–12 days, OT-IIγko

frequencies, cell numbers and relative expansion rates were
determined. As shown in Figure 4A, some expansion of OT-
IIγko cells was detectable in RagγRko. This was associated with
the up-regulation of CD44, KLRG-1 and Ki67 (Figures 4B,C).
Importantly, however, OT-IIγko cells expanded less well in
RagγRko mice (∼10-fold; Figure 4A) than OT-IIWT cells
(∼50-fold; Figure 1A) suggesting a growth-promoting effect of
autocrine IFN-γ.

To further test this possibility, equal numbers of OT-IIWT

and OT-IIγRko cells were co-transferred into RagγRko and RagWT

mice. OT-IIWT cells expanded ∼60-fold while OT-IIγRko cells
expanded only ∼20-fold (Figure 4D). Thus, SP of OT-IIγko and
OT-IIγRko cells occurs in RagγRko mice. Compared to OT-IIWT

cells, OT-IIγko and OT-IIγRko expansion was less pronounced
suggesting that OT-II-derived IFN-γ promotes SP in an autocrine
fashion. However, we cannot exclude a contribution of host-
derived IFN-γ, which accumulates in IFN-γR-deficient mice due
to lack of its consumption (22).

IFN-γR+ DCs Restrain CD4+ T Cell SP in
RagγRko Mice
Dendritic cells (DCs) producing elevated levels of IL-6 promote
aberrant T cell activation and subsequent IFN-γ synthesis (35).
Furthermore, the induction of EAE relies on the accumulation
of IL-6-producing DCs (36). Under lymphopenic conditions,
MyD88-dependent recognition of the commensal microflora is
sufficient to induce IL-6 production by DCs thereby promoting
SP of CD4+ T cells (10) similar to what we have observed in
OT-IIWT-reconstituted RagγRko mice. Furthermore, DCs express
high levels of MHCII, which is crucial for CD4+ T cell LIP
(14, 37). Based on these data we speculated that DC responses
were altered in RagγRko mice. When splenic CD11c+MHCIIhi

DCs were quantified in OT-IIWT-reconstituted RagWT and
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FIGURE 2 | OT-II LIP is more pronounced in spleen than in lymph nodes. (A,B) CFSE-labeled OT-IIWT cells were adoptively transferred into RagWT, RagγRko mice

and (B) B6 mice. After 12 days, recipient (A) lymph nodes and (B) spleen were analyzed by flow cytometry. (A,B) Histograms show relative fluorescence intensities for

CFSE after gating on CD4+CD45.1+ OT-IIWT cells and numbers indicate percentages. Bar diagrams show cell numbers and fold expansion of OT-IIWT cells (mean

(Continued)
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FIGURE 2 | values + SEM; *p ≤ 0.05). Results in bar diagrams were pooled from 6 mice per group analyzed in one experiment. (A) Histograms are representative of

one experiment with 6 RagWT and 6 RagγRko. (B) Histograms are representative of 2 independent experiments with a total of 10 RagWT, 10 RagγRko, and 4 B6 mice.

(C) OT-IIWT cells were adoptively transferred into RagWT and RagγRko mice. After 11–13 days, recipient splenocytes were analyzed by flow cytometry. Four weeks

prior to and during T cell transfer, mice were treated with antibiotics (Antibiot.) or were left untreated. Shown are pooled results (mean values + SEM; *p ≤ 0.05; **p ≤

0.01; ***p ≤ 0.001; ****p ≤ 0.0001) from 2 independent experiments with a total of 8–9 mice per group.

FIGURE 3 | IL-6 accumulates in RagγRko mice and promotes OT-II SP. (A–E) RagWT and RagγRko mice were reconstituted with OT-IIWT cells as described in

Figure 1. (A) Untreated mice served as controls (-OT-IIWT ). (B–D) Prior to and after T cell reconstitution, mice were treated with neutralizing anti-IL-6 (αIL-6) or

isotype-machted control antibodies (isotype). Ten to twelve days after T cell transfer, (A) IL-6 and (E) IFN-γ plasma levels were determined by ELISA and (B–D)

recipient splenocytes were analyzed by flow cytometry. (B) Shown are frequencies, cell numbers and fold expansion of OT-IIWT cells in isotype- and αIL-6-treated

RagWT and RagγRko mice. (C) Relative fluorescence intensities, (D) relative MFIs for CD44 and relative frequencies of Ki67hi cells were determined after gating on

CD4+Thy1.1+ OT-IIWT cells in isotype- and αIL-6-treated RagγRko mice. (A,B,D,E) Shown are pooled results from 2 to 3 independent experiments with a total of

5–11 mice per group and (C) representative histograms from corresponding samples. (A,B,D,E) Graphs show mean values + SEM; *p ≤ 0.05; **p ≤ 0.01; ***p ≤

0.001; ****p ≤ 0.0001.

RagγRko mice, their numbers were strongly increased in the latter
(Figure 5A; + OT-IIWT). This was not the case in untreated
RagγRko mice (Figure 5A; –OT-IIWT) suggesting that OT-IIWT

activation is a prerequisite for DC accumulation in RagγRko

recipients.
Whether the DC-specific restoration of IFN-γR expression is

sufficient to block OT-IIWT SP and subsequent DC accumulation
in RagγRko mice was tested next. For this purpose, we made use
of a novel transgenic mouse line, allowing IFN-γR expression
after the Cre-mediated deletion of a loxP-flanked DNA-Stop
cassette (20). To activate this “switch-on” (IFN-γRSO) construct
and express the transgenic IFN-γR specifically in DCs, IFN-γRSO

mice were crossed to CD11c-GCDL mice expressing Cre under
the control of the CD11c promoter (19). Subsequently, CD11c-
GCDL × IFN-γRSO mice were crossed to RagγRko mice in
order to generate T and B cell-deficient, fully lymphopenic
RagγRko × CD11c-GCDL × IFN-γRSO mice lacking IFN-γR
expression on all cells except DCs. These mice are termed
RagγRko × IFN-γRCD11c−ON hereafter. Finally, OT-IIWT cells
were transferred into RagWT mice, RagγRko × IFN-γRCD11c−ON,

and RagγRko controls. After 11–13 days, the numbers of splenic
OT-IIWT cells were determined. As opposed to RagWT mice,
OT-IIWT cells expanded strongly in RagγRko mice (Figure 5B).
The values obtained with RagγRko × IFN-γRCD11c−ON mice
reached intermediate levels showing that IFN-γR expression by
DCs is sufficient to restrain OT-IIWT SP. Similarly, DC expansion
was most pronounced in OT-IIWT-reconstituted RagγRko mice,
reached intermediate levels in RagγRko × IFN-γRCD11c−ON

mice and was least efficient in RagWT mice (Figure 5C;
+OT-IIWT). On the contrary, DC numbers did not differ between
untreated RagWT, RagγRko × IFN-γRCD11c−ON and RagγRko

mice (Figure 5C; –OT-IIWT) suggesting a causal link between
OT-IIWT SP and DC expansion in RagγRko mice (Figures 5A,C).
Importantly, specific IFN-γR expression by DCs was sufficient
to limit expansion of OT-IIWT cells and DCs as well as IL-6
up-regulation (Figure 5D) in RagγRko × IFN-γRCD11c−ON mice.

The efficacy of CD4+ T cell responses correlates positively
with the amount of IFN-γ available in the early phase of
the response (32, 34). We have shown previously that IFN-γ
accumulates in IFN-γR-deficient mice, most probably due to

Frontiers in Immunology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 140

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Knop et al. IFN-γ and CD4+ T Cell Activation

FIGURE 4 | CD4+ T cell-derived IFN-γ promotes SP in an autocrine manner.

(A–C) OT-IIγko (3–4 independent experiments with 12–17 mice per group) or

(D) equal numbers of Thy1.1+ OT-IIWT and Thy1.1/1.2+ OT-IIγRko T cells (4

mice per group) were transferred simultaneously into Thy1.2+ RagWT and

RagγRko mice. After 11–12 days, recipient splenocytes were analyzed by flow

cytometry as described in Figure 1. Overlay shows the relative abundance of

Thy1.1+ OT-IIWT and Thy1.1/1.2+ OT-IIγRko T cells in RagWT and RagγRko

mice. (A,C,D) Graphs show mean values + SEM; *p ≤ 0.05; ***p ≤ 0.001;

****p ≤ 0.0001.

the lack of its receptor-mediated clearance (22). Hence, elevated
levels of steady-state IFN-γ may explain the rapid and strong
induction of OT-IIWT responses in RagγRko mice. To test whether
decreased OT-IIWT responses in RagγRko × IFN-γRCD11c−ON

mice (Figure 5B) correlate with reduced steady-state IFN-γ
levels, we compared plasma samples of untreated RagγRko and
RagγRko × IFN-γRCD11c−ON mice. As shown in Figure 5E, IFN-γ
levels were significantly lower in RagγRko × IFN-γRCD11c−ON

mice. This suggests that IFN-γR+ DCs consume IFN-γ thereby
reducing its availability for OT-IIWT cells. This competition for
IFN-γ would provide an explanation for the reduced levels of SP
in RagγRko × IFN-γRCD11c−ON mice (Figure 5B).

DISCUSSION

T cell clones are not equally sensitive to lymphopenia-related
activation signals (14–16). For example, ovalbumin-specific
CD4+ T cells from OT-II TCRtg mice represent one of
several T cells clones, which are resistant to lymphopenia-
induced activation (14). It is well accepted that T cell clone-
specific features such as CD5 levels correlate closely with
the sensitivity to lymphopenia (15, 16, 38). Here, we provide
evidence for an additional, recipient-dependent mechanism that
restrains expansion of adoptively transferred CD4+ T cells. This
mechanism relies on a complex interplay between the commensal
microflora, IFN-γR+ DCs and CD4+ T cells.

The commensal microflora triggers IFN-γ production
by various immune cells in the steady-state (39, 40). In
IFN-γR-deficient mice, IFN-γ accumulates due to the lack of
its consumption (22). Thus, elevated IFN-γ levels in RagγRko

mice may provide early activation signals to OT-II cells initiating
the rapid expansion we have observed. This interpretation is
in accordance with our finding that both, OT-IIWT expansion
and steady-state levels of IFN-γ, were decreased in RagγRko

× IFN-γRCD11c−ON mice. This suggests that IFN-γR+ DCs
efficiently reduce amounts of circulating IFN-γ thereby
restricting its availability for OT-II cells.

However, increased rates of OT-II expansion in RagγRko mice
do not only rely on host-derived IFN-γ. As we have shown
here, OT-II-derived IFN-γ acts in an autocrine manner. Hence,
host- and OT-II-derived IFN-γ may synergize in promoting
full-blown OT-II expansion in RagγRko mice. OT-II expansion
is accompanied by the up-regulation of CD127, which would
facilitate their IL-7-dependent survival (41–43) and provides
one explanation for the accumulation of OT-II cells in RagγRko

mice. Importantly, the accumulation of DCs and IL-6 correlates
positively with the degree of OT-II expansion in RagγRko mice
and might be interrelated. DCs produce IL-6 in response to
the commensal microflora (10) and express MHCII, which are
both required for CD4+ T cell expansion under lymphopenic
conditions (10, 14, 37). Since (i) T cell-intrinsic IL-6R signaling
is critical for CD4+ T cell responses (30, 31), (ii) IL-6 prevents
apoptosis of naive and effector CD4+ T cells (44, 45), and
(iii) counter-regulates DC function (35, 46–50) we suggest a
direct, growth-promoting and/or anti-apoptotic effect of IL-6
on OT-II cells expanding in RagγRko mice. Although the T
cell-stimulatory potential of DC-derived IL-6 is well established
(10, 35, 36) recent findings identified multiple hematopoietic
and non-hematopoietic cell types as potential IL-6 producers
(36). Importantly, different IL-6 producers appear to regulate
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FIGURE 5 | IFN-γR+ DCs restrain CD4+ T cell SP in RagγRko mice. (A–D) OT-IIWT cells were adoptively transferred into RagWT and RagγRko mice. After 11–13

days, recipient splenocytes were analyzed by flow cytometry. (A) Results of 2–6 independent experiments with a total of 10–25 mice were pooled to calculate the

numbers and fold expansion of CD11c+MHCIIhi DCs after reconstitution with OT-IIWT cells (+OT-IIWT ). DC numbers from untreated RagWT and RagγRko mice were

determined as well (-OT-IIWT ). (B–D) Frequencies, cell numbers and fold expansion of OT-IIWT cells/DCs as well as plasma IL-6 levels were analyzed in RagWT,

RagγRko × CD11c-GCDL × IFN-γRSO (RagγRko × IFN-γRCD11c−ON) and RagγRko mice. Pooled results of 2 independent experiments with a total of 8 mice per

group are shown. (E) Steady-state levels of IFN-γ were determined in plasma samples of 8–9 untreated RagγRko × IFN-γRCD11c−ON and RagγRko mice. (A–E)

Graphs show mean values + SEM; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

different aspects of the same CD4+ T cell response (36). Hence,
it remains to be shown for our experimental system whether
(i) DCs and/or other cell types up-regulate IL-6 expression in
OT-II-reconstituted RagγRko mice, whether (ii) the elevation
of IL-6 levels in these mice results from the accumulation
of DCs producing constant amounts of IL-6, and whether
(iii) there is a causal relationship between the cellular origin
of IL-6 and its growth-promoting effect. As reported only
recently, definite answers to such questions would require the
combined use of cell type-specific IL-6 reporter as well as

conditional IL-6 knockout mice (36) and their integration into
our experimental systems. However, this would be beyond the

scope of this study and therefore remains an important task for
the future.

From previous experiments we know that only effector, but

not naive, OT-IIWT cells activate immature DCs (51). This
suggests that IFN-γ-associated OT-II activation is an integral

part of a self-amplifying loop in RagγRko mice, which involves

the T cell-dependent accumulation of DCs, which in turn
promote OT-II expansion. The lack of IFN-γR signaling in DCs
increases their lifespan (52) and T cell-stimulatory potential (53)
providing an additional explanation for the accumulation of DCs
in RagγRko mice. In accordance with this interpretation, IFN-γR
re-expression in DCs is sufficient to disrupt this self-amplifying

loop and to down-modulate DC accumulation, IL-6 levels and
OT-II cell expansion.

In summary, we demonstrate that the sensitivity of CD4+

T cells to lymphopenia is not only determined by cell-intrinsic
properties but also by a complex interplay between CD4+ T
cells, the commensal microflora and IFN-γR+ DCs.We postulate
that T cell- and host cell-specific mechanisms have to co-
operate to restrain spontaneous proliferation, the commensal-
driven form of LIP. The molecular nature and the relative
importance of either mechanism may vary for different T cell
clones.
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