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Abstract: Background: The brain–computer interface (BCI) is a highly cross-discipline technology
and its successful application in various domains has received increasing attention. However, the
BCI-enabled automobile industry is has been comparatively less investigated. In particular, there
are currently no studies focusing on brain-controlled driving mode selection. Specifically, different
driving modes indicate different driving styles which can be selected according to the road condition
or the preference of individual drivers. Methods: In this paper, a steady-state visual-evoked potential
(SSVEP)-based driving mode selection system is proposed. Upon this system, drivers can select the
intended driving modes by only gazing at the corresponding SSVEP stimuli. A novel EEG processing
algorithm named inter-trial distance minimization analysis (ITDMA) is proposed to enhance SSVEP
detection. Both offline and real-time experiments were carried out to validate the effectiveness of the
proposed system. Conclusion: The results show that a high selection accuracy of up to 92.3% can
be realized, although this depends on the specific choice of flickering duration, the number of EEG
channels, and the number of training signals. Additionally, energy consumption is investigated in
terms of which the proposed brain-controlled system considerably differs from a traditional driving
mode selection system, and the main reason is shown to be the existence of a detection error.

Keywords: brain–computer interface (BCI); steady-state visual-evoked potential (SSVEP); brain-
controlled driving mode selection

1. Introduction

Brain–computer interfaces (BCIs) are a specific type of communication system between
the human brain and the outside world. Generally, BCIs work through capturing and ana-
lyzing brain signals [1–3]. Recently, tremendous progress has been made in exploring the
ability of BCIs. BCI-based voice synthesis [4] and mental handwriting [5] have been pro-
posed with promising performances. High-density and high-resolution recording electrode
array, combined with sophisticated signal processing methods such as artificial intelligence,
form a powerful tool for realizing a BCI. Depending on the recording devices being invasive
or noninvasive, BCIs can also be divided into invasive [4,5] and noninvasive ones [1,2].
Although invasive devices provide a comparatively higher precision, considering that they
also can incur a much higher operation danger and maintenance cost, noninvasive devices
are utilized in most academic studies and practical applications.

Currently, BCIs mainly serve as a rehabilitation tool for the patients suffering from
neurological diseases or disabilities who cannot speak or move [6–9]. For example,
BCI-based high-speed mind-spellers [9] are developed to restore normal communica-
tions. Mind-controlled mechanical arms and wheelchairs [6,7] are developed to restore
normal activities. However, considering the rapid development of related devices and
algorithms, it is believed that BCIs can progress far beyond the current status. BCIs
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should be applied to a much wider variety of domains, and more groups of people
should benefit from them. Early attempts have already started to emerge. BCIs have
been applied to robot control [10], smart home [11], disaster management [12], and
multimedia interactions [13]. For example, in [14], the authors proposed to use a P300-
based BCI to switch various household appliances on and off. They delicately tuned
the detection procedure so that intentional control and non-control states can be clas-
sified with high precision. In [15], a shared controller was developed to enhance the
performance of a BCI-based wheelchair robot, and the automatic control of the robot
itself was intelligently combined with brain-actuated control. In [16], a 2D computer
cursor control system was built on top of a wireless BCI, and the cursor velocity was
controlled with the imagery of hand movement. Comparatively, in [17], the authors
proposed a hybrid BCI to enable cursor movement and clicking separately. A motor
imagery-based BCI was utilized for cursor movement and a P300-based BCI was utilized
for further clicking.

In addition to the domains introduced above, great attention has recently been paid
to applying BCI to smart vehicles from both academia and industry. Various prototype
systems are developed with the aim of having a more convenient and simpler driving
experience. In contrast to autonomous vehicles or unmanned vehicles, BCI-enabled smart
vehicles acquire the steering or control commands from drivers through a BCI channel.
For example, in [18], the authors presented a paradigm car-control system using a motor
imagery-based BCI. Two distinct motor imagery tasks were performed and a shared car con-
trol strategy with five different motions was realized. In [19], a steady-state visual-evoked
potential (SSVEP)-based BCI was applied to assist remote driving. To evaluate the pro-
posed system, 61 subjects were recruited and a mobile robotic car steering experiment was
conducted. The results show that all 61 subjects were able to finish the experiment within a
short period of time. In [20], a steering assistant system was developed by showing drivers
a guess of the intended turning direction and determining the presence of error-related
potentials in their electroencephalo-graph (EEG) signals, i.e., the presence of error-related
potentials implies that the prior guess is incorrect and the absence of error-related poten-
tials implies that the prior guess is correct. Additionally, the literature also investigated
brain-controlled vehicles from the perspective of action and brake detection [21–23], lateral
and longitudinal control [24], a collaborative control system incorporating computer vision
and radar, etc. In addition, a comprehensive review is given in [25], where brain-controlled
vehicles and aerial vehicles are introduced in details. However, research on brain-controlled
vehicles is still in its early stages and many important problems remain unsolved, among
which we find brain-controlled driving mode selection.

Different driving modes imply different driving characters of the vehicle. Generally,
different driving modes are demanded in different road conditions and by different drivers
with different driving preferences. Representative driving modes delivered by the auto-
mobile manufacturers currently include the economical mode, comfort mode, sport mode,
etc., respectively, with a different driving experience and different energy consumption.
Specifically, the sport mode has the most aggressive acceleration and consequently the high-
est energy consumption. Conventional cars only enable driving mode selection through
an interactive panel. This requires that drivers use one hand to scroll and select, which
turns out to be distracting and cumbersome. To resolve this problem, in this paper, we
propose a brain-controlled driving mode selection system based on SSVEP-BCI. The main
contributions of this paper can be concluded as follows. Firstly, different driving modes are
controlled by setting a damping coefficient to different values. The damping coefficient
is designed to rescale the acceleration commands sent by the drivers. Secondly, drivers
select the intended driving mode through gazing at a group of visual stimuli, each of which
represents a specific mode. Thirdly, the energy consumption of the proposed driving mode
selection system is analyzed considering the inevitable detection loss of a BCI.

The remainder of this paper is organized as follows. In Section 2, we introduce the
materials and methods, and in greater detail, the SSVEP-based BCI, the driving mode
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control logic and the energy consumption analysis. In Section 3, the results are presented
which include the SSVEP detection accuracy and the energy consumption. Conclusions are
drawn in Section 4.

2. Materials and Methods

In this section, three aspects of materials and methods are introduced for the proposed
brain-controlled driving mode selection system, namely the SSVEP-based driving mode se-
lection, SSVEP detection algorithm and energy consumption analysis. These are separately
introduced in the three following subsections.

2.1. SSVEP-Based Driving Mode Selection

There are several technical means to realize a BCI. Different technical means are
generally classified by the specific type of brain signal being utilized to develop a BCI.
These include motor imagery potential, event-related potential, SSVEP, etc. Among them,
SSVEP-based BCI achieves by far the highest information transfer rate due to its highest
signal-to-noise ratio and its well-understood signal structure. Generally, SSVEP is elicited
when the subjects are subject to repetitive and periodic light stimulation [26–28]. SSVEP
consists of different order harmonics with the fundamental frequency being the stimulation
frequency. In addition, SSVEP has a nonuniform power distribution over scalp. The
stronger response of SSVEP is elicited in the occipital region since that is where the visual
cortex is located. A basic paradigm of SSVEP-based BCI can be developed as shown in
Figure 1. A display screen is needed for stimulation purposes, on which multiple flickering
visual targets with distinct frequencies and phases are presented in different positions. Each
of the visual targets represents a different control command, whereas the specific mapping
varies for different applications. The subjects or the users output the intended commands
through gazing at the corresponding targets for a short period of time. Consequently,
SSVEP can be elicited and correct classification can be made by recording and processing
the EEG signals. After that, commands can be further passed to peripheral equipment to
realize certain functionalities, such as wheelchair steering and mechanical arm control, as
shown in Figure 1.

Figure 1. Basic work flow of the passive SSVEP-based BCI system.

As introduced above, BCI or brain-controlled interaction is a prospective substitute
for conventional manual approaches. Furthermore, SSVEP serves as a basic BCI paradigm
for various applications. In this paper, we try to develop a brain-controlled driving mode
selection system also based on SSVEP. The system design and the control logic are straight-
forward. Specifically, a part of the central console is utilized for stimuli presentation, as
shown in Figure 2. The number of flickering targets is chosen to be the number of different
driving modes. Each target represents a different driving mode, which for example, can
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be economical mode, comfort mode, or sport mode. An EEG machine is needed to closely
monitor the brain response of the driver. Signal processing and SSVEP detection algorithms
are embedded in the automotive control system to facilitate the whole selection procedure.
The detection algorithm will be introduced in the following subsection. To summarize, the
proposed system enables drivers to switch between different driving modes by adjusting
their eyesight without raising their hands from the steering wheel, thus achieving higher
control convenience and efficiency.

Figure 2. SSVEP-based driving mode selection system: a view of the car dashboard and the SSVEP
interface in the middle.

2.2. SSVEP Detection Algorithm

In the proposed system, accurate driving mode selection relies on accurate SSVEP
detection. The choice of SSVEP detection algorithm has a great impact on the detection
accuracy and consequently the drive mode selection accuracy that can be achieved. Various
detection algorithms have been proposed alongside the development of SSVEP-based BCIs
over the last two decades [29]. Among them, the inter-trial distance-minimization analysis
(ITDMA) algorithm showed compelling performance and is therefore in this paper for
SSVEP detection [30].

ITDMA is a training-based detection algorithm which means that before the real-time
usage of the proposed driving mode selection system, training data need to be recorded
as template signals so that individualized calibration can be realized. We consider such an
SSVEP-based driving mode selection system with Nf different driving modes, which means
that the number of SSVEP targets is also Nf . Let Γ = {Γ1, Γ2, . . . , ΓN f } denote the training set,
in which each Γi represents a training set corresponding to the ith SSVEP target. Specifically,
Γi = {Γi1, Γi2, . . . , ΓiNt}, and each Γim in Γi is a training signal trial, being a real matrix of
dimension Nc × T, i.e., Γim ∈ RNc×T. Each Γim is recorded when the subjects focus their
eyes on the ith SSVEP target. Nc is the number of channels or the number of the recording
electrodes. T is the number of time sampling points. Furthermore, Nt is the number of
training trials. In addition, it should be noticed that in SSVEP-based BCIs, training is mostly
carried out independently for each different subject, and so is the case in ITDMA.

Generally, the recorded EEG signal during task engagement comprises two basic
signal elements, i.e., the task-related SSVEP element s(t) ∈ R and the task-unrelated noise
element n(t) ∈ R. Denote the recorded multichannel EEG signal with x(t) ∈ RNc , and
a linear model is utilized to depict the relation between x(t) and s(t) and n(t). t is the
sampling time index. The model is shown to be:

xj(t) = r1,j · s(t) + r2,j · n(t), j = 1, 2, . . . , Nc, (1)
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where j is the channel index, and xj(t) is the jth element of x(t), i.e., the single-channel EEG
signal observed in the jth channel. r1,j and r2,j are the mixing coefficients corresponding to
s(t) and n(t), showing how much they, respectively, contribute to x(t).

In order to better recover the task-related SSVEP element s(t), a combination vector
ω ∈ RNc is utilized to sum up the observed EEG signals from different channels, which is
shown as:

ŝ(t) =

(
Nc

∑
j=1

ωjr1,j

)
· s(t) +

(
Nc

∑
j=1

ωjr2,j

)
· n(t). (2)

The combination vector ω is also called a spatial filter in the context of SSVEP detection.
Ideally, a well-tuned spatial filter ω leads to ∑Nc

j=1 ωjr1,j = 1 and ∑Nc
j=1 ωjr2,j = 0, and thus

we have ŝ(t) = s(t), i.e., the SSVEP element s(t) is perfectly recovered. However, the
equation system ∑Nc

j=1 ωjr1,j = 1 and ∑Nc
j=1 ωjr2,j = 0 is overdetermined, which means such

an ideal solution of ω does not practically exist, not to mention the difficulty brought by the
fact that the mixing coefficients r1,j and r2,j are also not known in advance. To circumvent
this problem, existing algorithms proposed to define their own criterion for optimal spatial
filters and solve the corresponding optimization problems. The optimality criterion varies
among different algorithms. Those algorithms range from task-related component analysis
(TRCA) [31], correlated component analysis (CORCA) [32], sum of squared correlation
analysis (SSCOR) [33], etc.

In the proposed driving mode selection system, SSVEP detection is carried out uti-
lizing the ITDMA algorithm [30]. In short, ITDMA calculates the spatial filters through
minimizing the inter-trial distance over the training set. Specifically, for the ith target, the
inter-trial distance over the training set Γi is defined as:

Nt

∑
m1=1

Nt

∑
m2=1,m2 6=m1

‖ω′Γim1 −ω′Γim2‖
2
2, (3)

where ‖ · ‖2
2 calculates the square of the Euclidean norm and ω′ is the transpose of ω. The

Formula (3) is adopted as the objective function that the ITDMA algorithm tries to minimize.
In addition, it should be noticed that the spatial filters are calculated by ITDMA in a target-
independent fashion, i.e., the spatial filter ω obtained by minimizing (3) is actually the spatial
filter ω(i) designated for only the ith target. However, minimizing (3) with no constraints
is mathematically not a well-defined optimization problem and always produces a zero
solution. Therefore, a regularization condition is considered here, which is shown as:

Nt

∑
m=1

Nc

∑
j1=1

Nc

∑
j2=1

ωj1 ωj2Cov(Γim(j1, t), Γim(j2, t)) = 1. (4)

Literally, this regularization condition implies that the integrated training signal is of
unity power. The integrate training signal is formed by concatenating the Nt trials in Γi in
series. Then, the approach ITDMA adopts to obtain the spatial filter is to minimize (3) condi-
tioned on (4). Denote P = ∑Nt

m1=1 ∑Nt
m2=1,m2 6=m1

Γ(m1,m2)Γ(m1,m2)′ with Γ(m1,m2) = Γim1 − Γim2 ,

and Q ∈ RNc×Nc being a square matrix with Q(j1, j2) = ∑Nt
m=1 Cov(Γim(j1, t), Γim(j2, t)),

and the optimization problem stated above can be further simplified as:

min
ω

ω′Pω,

s.t. ω′Qω = 1,
(5)

which is actually a common constrained optimization problem and the optimum spatial filter
ω(i) is given by the eigenvector corresponding to the minimum eigenvalue of matrix Q−1P.

As introduced above, since the ITDMA algorithm calculates the spatial filters in a
target-independent way, N f spatial filters can be obtained in the training stage, i.e., ω(1),

ω(2), . . . and ω(N f ). Considering the similarity among the N f spatial filters and in order to
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make full use of them, an ensemble spatial filter E is developed by ITDMA in the test stage
and it is given by:

E =
[
ω(1), ω(2), . . . , ω(N f )

]
, (6)

where all N f spatial filters are taken into account. During the test stage, the task is to decide
by which SSVEP target a new test signal S ∈ RNc×T is elicited by. The decision rule taken
by ITDMA is shown to be:

π = arg
N f

min
i=1
‖E′S− E′Γ̄i‖F, (7)

where ‖ · ‖F calculates the Frobenius norm, and the template signal Γ̄i is obtained by
averaging all Nt signal trials in the training set Γi, which is shown as

Γ̄i =
1

Nt

Nt

∑
m=1

Γim. (8)

In short, upon the ensemble spatial filter E, the target which achieves the minimum
distance between the spatial-filtered test signal and template signal is decided to be the
detection result. The basic workflow of ITDMA is presented in Figure 3, where the whole
detection process of ITDMA is divided into two separate parts, namely the training stage
and the test state. Additionally, it should be noticed that in contrast with existing SSVEP
detection algorithms such as TRCA, CORCA and SSCOR which take correlation values
as their algorithmic metric in both the training stage and the test stage, ITDMA takes the
distance metric instead, and that is also where ITDMA attains its name.

Figure 3. Basic workflow of ITDMA for SSVEP detection.

2.3. Energy Consumption Analysis

The selection of the driving mode has a direct impact on the energy consumption
of vehicles. Intuitively, the more aggressive the driving mode is, the higher energy con-
sumption can be incurred. In [34], the authors investigated the relation between energy
consumption and driving characters, and developed an oil consumption model. In [35],
the authors investigated the impact of driving characteristics on an electric vehicle energy
consumption and range. The results they achieved showed that energy consumption is
considerably affected by driving style, and a difference in energy consumption up to 30%
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can be made between the moderate driving manner and aggressive driving manner. In [36],
the authors tried to build a black-box model to describe the relationship between energy
consumption and factors such as velocity, road condition and acceleration, and based on
this model, driving modes can be optimized so that more energy can be saved.

We consider an electric car. The instantaneous energy consumption can be derived
through analyzing the automobile kinetics. Specifically, according to Newton’s laws of
motion, the kinetic equation is shown as:

F = mg f + δm
dv
dt

+
ρCD A

2
v2, (9)

where F is the driving force, m is the mass of vehicle, f is the rolling friction factor, δ is the
scaling factor of vehicle mass, ρ is the air density, CD is the aerodynamic drag coefficient, A
is the frontal area, v is vehicle velocity, and t is time. Generally, we choose ρ = 1.2258 kg/m3.
It should be noticed that Equation (9) assumes that the urban road is of high quality. To
calculate the energy consumption, we discretize Equation (9) as:

Ft = mg f + δm
vt+1 − vt

∆t
+

ρCD A
2

vt
2, (10)

where t is now the discrete time index and ∆t is the time interval. According to Equation (10),
the energy consumption can be calculated as:

Et =
T

∑
t=1

Ft × vt × ∆t, (11)

where the energy consumed in each discrete time interval is computed and summed up. T
is the ending time.

We try to characterize the influence of different driving modes on the energy con-
sumption of vehicles. Different driving modes are actually different transfer functions
between an automotive response such as acceleration and deceleration, and the actual
operations of drivers. Take the three aforementioned driving modes, for example, i.e., the
economical mode, comfort mode and sport mode; among these, the sport mode tends to
more aggressively transfer the operation commands of drivers, particularly during the
startup and the acceleration stage. We considered a simplified mathematical model to
describe the different driving modes focusing on the startup and the acceleration stage,
which is given as:

a = aideal + (1− λ)auser, (12)

where aideal is the ideal recommended acceleration, auser is the acceleration command sent
from the driver, a is the actual acceleration, and λ is the acceleration damping coefficient
with a positive value between 0 and 1. According to Equation (12), different driving modes
can be realized by setting the damping coefficient λ to different values. Generally, a smaller
choice of λ implies a more aggressive and more active driving mode. For example, if λ = 1,
then the acceleration is constant and always equals the recommended value for the sake of
energy efficiency; however, the driving experience is to a certain extent compromised.

To evaluate the influence of different driving modes on energy consumption, three
experienced drivers were recruited to participate in a simulated driving experiment with
simulation software. In the experiment, the three drivers were required to drive the same car in
closed roads for 5 km. Along the route, except for the two crossroads where the drivers needed
to brake and restart the car, they drove at a constant speed. Some of the related parameters
are shown in Table 1. These parameters are chosen according to [37]. The vehicle velocity was
recorded during the whole experiment, and then the energy consumption can be calculated
considering Equation (11) together with the vehicular power amplification module.
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Table 1. Parameter settings in the driving experiment.

Parameters Value

aideal 2 m/s2

auser 0.5 m/s2

m 1500 kg

f 0.015

δ 1.2

CD 0.3

A 2 m2

v 15 m/s

The results are shown in Figure 4 with the horizontal axis being the driving distance
and the vertical axis being the energy consumption. For each driver, three experiment
trails were completed independently. In each experiment trial, the damping coefficient λ
was set to a different value, i.e., λ = 0, λ = 0.5, λ = 1, corresponding to three different
driving modes. As shown in Figure 4, the results are derived by averaging over the three
drivers. It can be seen that the energy consumption increases as the driving distance varies
from 0 to 5000 m. In addition, two jumps of energy consumption can be found in Figure
4 at 1000 m and 3000 m distance, respectively, corresponding to two crossroads where
the drivers needed to brake and restart the vehicle, for which considerable energy was
consumed. When λ = 0, the total energy consumed to finish the drive is 4105 KJ. When
λ = 0.5, the value is 3618 KJ. When λ = 1, the value is 3206 KJ. The results indicate that a
smaller choice of damping coefficient λ or a more aggressive driving mode causes higher
energy consumption.

Figure 4. Energy consumption versus driving distance.

3. Results and Discussions
3.1. Experiment Settings
3.1.1. SSVEP interface

In this section, we provide the experiment results about the proposed SSVEP-based
driving model selection system. A prototype test system was developed exactly as shown
in Figure 2. A portable screen was utilized for visual-stimuli display. The screen is placed in
the middle of the central console. Three different driving modes are considered here, which
means that three SSVEP targets are realized to represent them. The three driving modes are
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differentiated by the damping coefficient λ introduced in the final section. Three different
values of λ were chosen to be λ = 0, λ = 0.5, and λ = 1. As for the corresponding SSVEP
targets, the flickering frequencies are chosen to be 10 Hz, 12 Hz, and 14 Hz. A synchronized
SSVEP system is adopted in the experiment, which means that periodically, a time stamp
is generated and all three SSVEP targets start to flicker and last for a short period of time.
During this flickering stage, the drivers select the intended driving mode through gazing
at the corresponding SSVEP target in a synchronized manner. In the experiment, the time
stamp arrives every 5 s, which means that every 5 s, a driving mode selection command
can be generated and output. The 5 s of time is further divided into two parts, with the first
being the flickering stage as introduced above, and the second being the rest stage. The rest
stage is used to separate two consecutive flickering stages, allowing the drivers to have
some rest and minimize the interference between two consecutive selection commands.
In the experiment, the duration of the flickering stage is set to 1.5 s, which means that the
duration of the rest stage is 3.5 s.

3.1.2. Offline and Real-Time Driving Mode Selection

Three drivers took part in the experiment. The experiment was comprised of two
parts, i.e., the offline experiment and the real-time experiment. In the offline experiment,
simulated driving mode selection was conducted. The drivers sat in the driving seat
and switched between the three driving modes as constructed by a predetermined order.
The EEG signal was recorded and processed, and the selection accuracy was calculated
by comparing the detection results and the predetermined order in an offline manner.
Comparatively, in the real-time experiment, similarly to the prior experiment introduced in
the last section, the drivers were also required to finish a simulated drive of 5 km in closed
road. The driving mode was selected using the proposed SSVEP-based selection system
at the beginning and remained unchanged until the end of the 5 km drive. It should be
noticed that the actual driving mode during the 5 km drive might possibly be the intended
mode of the driver, but it could also not be the intended one due to detection errors. During
the real-time experiment, the vehicle status was also recorded and energy consumption
was estimated. The offline experiment was repeated 20 times, and the real-time experiment
was repeated 5 times.

3.1.3. EEG Recording and Preprocessing

During the experiment, the drivers wore an electrode cap to capture EEG and signals were
recorded using a Synamps2 system (Neuroscan, Inc., Herndon, VA, USA). The sampling rate
was 1000 Hz. The electrodes FPz and Cz (according the international 10–20 system) were chosen,
respectively, the ground and the reference. Six active channels near the occipital region were
chosen for EEG recording and later detection process. These were POz, PO4, PO6, O1, Oz and
O2. To preprocess the EEG signals, the following procedures were adopted. First, raw signals
were down-sampled to 250 Hz. Second, a notch filter at 50 Hz and a band-pass filter between 7
and 70 Hz were jointly utilized to remove noise. Third, a visual pathway latency of 135 ms was
considered, which means only signals recorded 135 ms after the stimulus onset were used [29].
In addition, in the offline experiment, the EEG signals were recorded and stored and later
processed. The detection accuracy was estimated following cross-validation. Comparatively,
in the real-time experiment, EEG signals were recorded and immediately processed, and the
detection result was subsequently translated to execute driving-mode selection.

3.1.4. Subjects

Six graduate students participated in the experiment (two females, with an average
age of 25). All six of them took part in the offline experiment, and only three of them took
part in the real-time driving experiment. All subjects had driving licenses. All subjects
signed their consent and received financial compensation.
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3.2. SSVEP Detection Performance

In this subsection, we present the results about SSVEP detection accuracy, i.e., the
driving mode selection accuracy of the proposed brain-controlled system. More specifi-
cally, we present how the ITDMA algorithm is compared with the benchmark algorithms
(TRCA [31] and SSCOR [33]) in terms of SSVEP detection accuracy. Considering that all
three algorithms were training-based algorithms, leave-one-out cross-validation was
used to evaluate the detection accuracy, which means the 20 signal-trials recorded in
the offline experiment take turns to be the test signal with the other 19 signal-trials
being training signals. Additionally, the information transfer rate was also evaluated to
verify the efficiency of the proposed brain-controlled system [38]. The formula used to
calculate the information transfer rate is given by:

ITR =
1
T0
·
(

log2 N f + P log2 P + (1− P) log2

(
1− P

N f − 1

))
, (13)

where N f is the number of SSVEP targets, P is the detection accuracy and T0 is the average
time consumed to output one command; the rest time between every two adjacent SSVEP
trials was chosen to be 0.5 s. Before diving deep into detection performance analysis,
Figure 5 provides an example of refined SSVEP signal after denoising, spatial filtering, and
trial averaging (10 Hz stimulation, 250 Hz sample rate, 1 s signal length).

Figure 5. An example of a refined SSVEP signal after denoising, spatial filtering, and trial averaging
(10 Hz).

3.2.1. SSVEP Detection Accuracy Versus Flickering Duration

First, we investigated how the SSVEP detection accuracy of ITDMA varies with the
duration of the flickering stage. Intuitively, longer stimulation incurs higher the signal-
to-noise ratio of SSVEPs and consequently a higher detection accuracy. We analyzed
the signals recorded in the offline experiment and obtained the following results. For
these results, the detection accuracy is calculated through averaging over the 6 drivers
and all 20 repetitions of the offline experiment. The flickering duration is changed from
0.1 s to 1 s with a step of 0.1 s. Six channels and ten training trials were used. The results
are shown in Figure 6. It can be seen that the detection accuracy stably rises as the
flickering duration is increased from 0.1 s to 1 s. Additionally, ITDMA outperforms
both TRCA by a distinct margin and achieves a similar detection performance to that
of SSCOR. Specifically, when the flickering duration is 0.4 s, the detection accuracies
achieved by ITDMA, TRCA and SSCOR are, respectively, 86.5%, 82.6% and 85.6% (cor-
responding to the information transfer rate being 0.98 bit/s, 0.83 bit/s and 0.94 bit/s);
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when the flickering duration is 1 s, the detection accuracies achieved by ITDMA, TRCA
and SSCOR are, respectively, 92.3%, 90.9% and 91.4% (corresponding to the information
transfer rate being 0.74 bit/s, 0.70 bit/s and 0.72 bit/s). According to these results, an
optimal flickering duration can be determined through balancing between the selection
latency and selection accuracy. However, this is already out of the scope of this paper.
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Figure 6. Detection accuracy comparison versus the trial length.

3.2.2. SSVEP Detection Accuracy Versus the Number of EEG Channels

Second, we investigate how the SSVEP detection accuracy of ITDMA varies with
the number of channels recording EEG. Intuitively, recording EEG from more channels
implies a higher combination gain can be achieved, and thus a better SSVEP detection
performance can be realized. Actually, numerous studies have paid attention to more
efficiently combining multiple EEG channels, and thus so does the ITDMA algorithm
introduced in this paper. Here, the number of channels is changed from 2 to 6. The channels
are sequentially chosen from POz, PO4, PO6, O1, Oz and O2 as introduced above. The
flickering duration is 0.5 s. The results are shown in Figure 7. It can be seen that recording
EEG from more channels generally results in a higher detection accuracy, although a zigzag
relation is presented in Figure 7. Additionally, ITDMA outperforms both TRCA and SSCOR
in most cases, except when the number of channels is 6. More specifically, when the
number of channels is 2, the detection accuracies achieved by ITDMA, TRCA and SSCOR
are, respectively, 81.5%, 78.7% and 80.1% (corresponding to the information transfer rate
being 0.71 bit/s, 0.62 bit/s and 0.67 bit/s); when the number of channels is 6, the detection
accuracies achieved by ITDMA, TRCA and SSCOR are, respectively, 89.1%, 87.8% and 90.0%
(corresponding to the information transfer rate being 0.98 bit/s, 0.93 bit/s and 1.02 bit/s).
However, it should be noticed that recording from more channels is also practically more
cumbersome with regard to hardware requirement and necessary preparations such as
putting on an electrodes cap and injecting gel. Therefore, an optimal number of channels
can also be selected through balancing between the detection performance and convenience,
although it is also out of the scope of this paper.
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Figure 7. Detection accuracy comparison versus the number of channels.

3.2.3. SSVEP Detection Accuracy Versus the Number of Training Trials

Third, we investigated how the SSVEP detection accuracy of ITDMA varies with the
number of training trials. Generally, more training data lead to a more accurate detection
model. Specifically, as shown in Equation (7), a better spatial filter can be calculated and
a template with less noise can be obtained. Here, the number of training trials is changed
from 2 to 19, and the results are shown in Figure 8. The number of channels is 6, and the
flickering duration is 0.5 s. It can be seen that the detection accuracies achieved by ITDMA,
TRCA and SSCOR all generally increase with the number of training trials. Additionally, as
for the comparison among the three algorithms, the results shown in Figure 8 are slightly
different from those in Figures 6 and 7. Specifically, when the number of training trials is less
than 4, the detection accuracy achieved by ITDMA is lower than that achieved by TRCA and
SSCOR. Specifically, when the number of training trials is 2, the detection accuracies achieved
by ITDMA, TRCA and SSCOR are, respectively, 57.6%, 66.1% and 66.1% (corresponding
to the information transfer rate of 0.18 bit/s, 0.32 bit/s and 0.32 bit/s). Comparatively,
when the number of training trials is greater than 4, ITDMA generally achieves the best
detection performance. For example, when the number of training trials is 10, the detection
accuracies achieved by ITDMA, TRCA and SSCOR are, respectively, 88.1%, 85.3% and 87.2%
(corresponding to the information transfer rate being 0.94 bit/s, 0.84 bit/s and 0.91 bit/s).
ITDMA performs better when there are sufficient training data. Furthermore, it should
be noticed that more training data enhance the detection performance, however, the time
consumed by the data collection procedure cannot be overlooked, which may considerably
complicate the preparation and usage of the proposed system. Therefore, an optimal number
of training trials can also be selected through balancing between detection performance and
preparation simplicity, although it is also out of the scope of this paper.
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Figure 8. Detection accuracy comparison versus the number of training trials.

3.3. Energy Consumption

Here, we present the results about the energy consumption in the real-time experiment.
In the real-time experiment, the drivers were required to select the intended driving mode
using the proposed SSVEP-based selection system and then finish the 5 km drive. In contrast
to the prior experiment introduced in Section 2, the misclassification of SSVEP could happen
in the real-time experiment, and the drivers might finish the whole drive in accidentally
chosen driving mode. Six EEG channels were used and the number of training trials was five.
The flickering duration was set to 0.5 s. The other parameters were also set following Table 1.
The results are shown in Table 2. The first row is the intended driving mode, which is specified
by the choice of the damping coefficient λ; the second row presents the energy consumption in
the real-time experiment; for comparison purposes, the third row presents the corresponding
energy consumption in the prior experiment. Similar to the results presented in Figure 4, from
Table 2 it can be seen that in the real-time experiment, selecting a different driving mode also
results in a different energy consumption. Furthermore, a more aggressive driving mode or
a smaller choice of the damping coefficient is chosen, and thus, more energy is consumed.
However, the results also show that the real-time experiment differs from the prior experiment
in terms of energy consumption, even for the same intended driving mode. The reason is
that, in the prior experiment, the driving mode was selected through a traditional interface
where the selection error can be completely prevented; however, in the real-time experiment,
an SSVEP-based BCI was used and the selection error can occur due to imperfect detection.
For example, a driver tries to select the sport mode using the proposed SSVEP-based system.
They focus on the corresponding flicker target for a while, and then the SSVEP response is
elicited and EEG is recorded. However, it could happen that after processing the EEG signals,
the detection algorithm determines that the driving mode intended by the driver is the comfort
mode, which makes a selection mistake. Consequently, the energy-consumption characteristics
are affected, and difference between the proposed driving mode selection system and the
traditional counterpart as shown in Table 2 is produced.
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Table 2. Energy consumption corresponding to the intended driving mode.

The Damping Coefficient λ 0 0.5 1

Energy Consumption in the
Real-Time Experiment (kJ) 3916 3504 3452

Energy Consumption in the Prior
Experiment (kJ) 4105 3618 3206

3.4. Challenges and Limitations

However, the proposed brain-controlled driving mode selection system still has some
challenges and limitations. Firstly, to enable the brain-control functionality, drivers should
put on an electrode cap to collect EEG signals from scalp. On some occasions, gel must
be injected to enhance conduction, which may be considerably inconvenient. Single-
channel EEG recording and processing may be a potential solution to this problem [39].
Additionally, in contrast with laboratory settings, a real driving scenario can cause frequent
body motion which may result in serious EEG noise and degenerate detection. Secondly,
to elicit a strong SSVEP signal, the proposed system requires drivers to focus on SSVEP
targets for a period of time (approximately 1 s), which can distract drivers from road and
cause hazardous situations, especially at high driving speeds. Other paradigms such as
motor imagery can be adopted to alleviate this problem. Thirdly, the control efficiency
has to be further enhanced. New techniques such as implanted electrodes and artificial
intelligence-based signal processing algorithms are desired to develop a BCI with a higher
information transfer rate so that more complex functionalities can be realized, such as
brain-controlled steering. Fourthly, real-time brain-controlled operation during the driving
process is needed to further validate the proposed system. A synchronous SSVEP system
that supports real-time control at any time is considered as the future work.

4. Conclusions

In this paper, we explored applying SSVEP-based BCI to the traditional automobile
industry and a brain-controlled driving mode selection system is proposed. Specifically,
each driving mode is represented by a different SSVEP target, and drivers can select the
intended mode by simply focusing their eyes on the corresponding target. A novel detection
algorithm named ITDMA is proposed for EEG signal processing and SSVEP detection.
Both offline and real-time experiments were carried out to verify the effectiveness of the
proposed system. The results show that a high selection accuracy of up to 92.3% can be
realized, although this depends on the specific choice of flickering duration, the number of
EEG channels, and the number of training signals. Additionally, the energy consumption
was investigated in terms of which the proposed brain-controlled system considerably
differs from the traditional driving mode selection system, and the main reason is shown
to be the existence of a detection error.
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