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Abstract

Background: Intrauterine growth restriction (IUGR) remains a major problem associated with swine production.
Thus, understanding the physiological changes of postnatal IUGR piglets would aid in improving growth
performance. Moreover, liver metabolism plays an important role in the growth and survival of neonatal piglets.

Results: By profiling the transcriptome of liver samples on postnatal Days 1, 7, and 28, our study focused on
characterizing the growth, function, and metabolism in the liver of IUGR neonatal piglets. Our study demonstrates
that the livers of IUGR piglets were associated with a series of complications, including inflammatory stress and
immune dysregulation; cytoskeleton and membrane structure disorganization; dysregulated transcription events;
and abnormal glucocorticoid metabolism. In addition, the abnormal liver function index in the serum [alanine

aminotransferase (ALT), aspartate aminotransferase (AST), and total protein (TP)], coupled with hepatic pathological
and ultrastructural morphological changes are indicative of liver damage and dysfunction in IUGR piglets. Moreover,
these results reveal the sex-biased developmental dynamics between male and female IUGR piglets, and that male
IUGR piglets may be more sensitive to disrupted metabolic homeostasis.

Conclusions: These observations provide a detailed reference for understanding the mechanisms and characterizations of
IUGR liver functions, and suggest that the potential strategies for improving the survival and growth performance of IUGR

offspring should consider the balance between postnatal catch-up growth and adverse metabolic consequences. In
particular, sex-specific intervention strategies should be considered for both female and male IUGR piglets.
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Background

Intrauterine growth restriction (IUGR) is typically de-
fined as mammalian neonates with a low birth weight
due to intrauterine crowding and placental insufficiency,
resulting in impaired fetal or postnatal growth and
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development [1]. Among livestock species, pigs exhibit
the most frequent occurrence of IUGR [2]. Moreover,
IUGR piglets have been shown to be correlated with
high morbidity and mortality, stunted growth, as well as
poor carcass quality [1]. Great efforts have been made to
minimize the negative effects of IUGR, and some investi-
gations have shown that dietary nutrient supplementa-
tion can improve the survival and growth performance
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of IUGR piglets (e.g., mid-chain triglycerides [3], choline
[4], arginine [5], and dimethylglycine sodium salt [6]).
However, the wunderlying mechanisms of nutrient
utilization in IUGR piglets were not well defined, and it
is difficult to take effective measures to maximize the
performance of IUGR piglets.

The liver plays a vital role in nutrient utilization and
metabolism, as well as in endocrine and immune
homeostasis. Epidemiological studies have indicated that
IUGR neonatal livers were accompanied by metabolic
disorders during the postnatal period (e.g., disruption in
mitochondrial oxidative phosphorylation and energy me-
tabolism [7-9]). Additionally, the IUGR neonates have
been shown to be highly prone to developing metabolic
syndrome (e.g., obesity and diabetes) due to the increas-
ing hepatic gluconeogenic capacity and impairing [-cell
function [10, 11]. However, the precise mechanisms as-
sociated with TUGR piglet liver function remain poorly
understood.

High-throughput methods have been widely applied to
understand both the physiological and pathological char-
acteristics in the liver of various species [12—14]. In this
study, we compared the liver transcriptomes between
IUGR and normal neonatal piglets from Day 1 to Day 7,
to the weaning day (Day 28) using whole-genome tran-
scriptional sequencing, to gain insight into the dynamics
of metabolism, growth, and development in IUGR pig-
lets. The results demonstrate that the altered gluco-
corticoid signaling pathway in IUGR newborn piglets
may lead to immune deficiency and inflammation in the
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liver. In addition, for the first time, we have reported
that IUGR affects liver function and metabolism in a
sex-biased manner. Moreover, sexual dimorphism can
be detected as early as postnatal Day 1. This also sug-
gested that a sex-biased intervention strategy for IUGR
should be specific to male or female IUGR piglets.

Results

Differences in the growth performance between the IUGR
and normal body weight (NBW) piglets

In this study, the body weight of all piglets was summa-
rized in Fig. 1a. The initial body weight of the IUGR neo-
nates was significantly lower than that of the NBW on
Day 1 as expected (P < 0.01). However, the body weight of
the IUGR piglets was consistently lower than that of the
NBW on Day 7 and Day 28 (P < 0.01). By calculating the
relative body weight of the IUGR piglets to NBW piglets,
the results showed that the body weight ratios were 45,
44, and 66% on Days 1, 7, and 28, respectively (Fig. 1b). It
was noteworthy that the gaps in body weight between the
IUGR and NBW piglets was reduced on Day 28 compared
with that on Day 1 and Day7, which implies a catch-up
growth compensation in IUGR piglets.

Furthermore, in line with the decreased body weight
difference between the IUGR and NBW piglets, growth
compensation was also supported by the increasing
ADG ratio of the IUGR piglets throughout the postnatal
period (Fig. 1c and d). In addition, no significant sexual-
dimorphic effects on the growth performance of the
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body weight and ADG were observed between the IUGR
and NBW piglets at each time point.

General profiling of DEGs between the IUGR and NBW
piglets

Transcriptome sequencing was performed using a total
of 42 liver samples from the [UGR and NBW piglets on
Days 1, 7, and 28, respectively [Day 1: IUGR #n =8 (4 fe-
males and 4 males) vs NBW n=8 (4 females and 4
males); Day 7: IUGR n=7 (4 females and 3 males) vs
NBW n =7 (4 females and 3 males); Day 28: IUGR n=6
(3 females and 3 males) vs NBW n =6 (3 females and 3
males)]. Approximately 20,000 transcripts were detected
in each sample. Compared with NBW, the liver of IUGR
piglets contained 516 differentially expressed genes
(DEGs) on Day 1 (P<0.05; FC>2 or<0.5). Of these,
292 were up-regulated and 224 were down-regulated.
On Day 7, 173 DEGs were screened out, 105 of which
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were upregulated and 68 were downregulated. Notably,
the number of DEGs decreased along with the postnatal
period, and only 84 DEGs were screened out on Day 28.
At each time point, the mildly altered DEGs (4>FC>2
or 0.5>FC>0.25) accounted for the largest proportion
of DEGs (Fig. 2a and b; Supplementary file: Table S1-
S3). These results suggested that the altered gene ex-
pression profiles in the IUGR piglet livers could be at-
tenuated with postnatal development.

In addition, a Venn diagram was used to screen the
consistently dysregulated DEGs during the postnatal
stage. The results showed that an extremely small num-
ber of DEGs were consistently regulated between each
time point. Only one DEG was consistently dysregulated
throughout the entire postnatal period in the IUGR pig-
lets. There were 24 DEGs that were consistently dysreg-
ulated from Days 1 to 7, 3 DEGs were consistently
dysregulated from Days 7 to 28. There were 484, 145,
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and 73 DEGs specifically dysregulated on Days 1, 7, and
28, respectively. The large proportion of stage-specific
DEGs at each time point suggested that disordered liver
functions or development are highly dynamic in IUGR
piglets. Despite this finding, 12 and 10 DEGs were con-
sistently up- and down-regulated from postnatal Days 1
to 7 (Fig. 2c). These DEGs were involved in multiple
cellular processes, including inflammatory immunity
(SCUBE1 and CD200RI), nutrient transport (SLC38A5,
SLC51B, and MCT?), and cellular proliferation and mi-
gration (CCDC38, ARMC12, and CDH16) (Fig. 2d). Five
of these DEGs (SLC38AS5, SLC51B, DMRTAI, ADADI,
and CD200RI) that were involved in important bio-
logical processes and functions, were further detected
using real-time qPCR to validate the reliability of the
RNA-Seq analysis (Fig. 2e).

Detailed functional profiles of the DEGs between the
IUGR and NBW piglets

The following functional analyses were based on Gene
Ontology (GO) for the dynamically altered DEGs between
the ITUGR and NBW piglets to explore the potential physio-
logical changes in the IUGR liver. GO classification of the
biological processes (BP) showed that the dysregulated DEGs
were most significantly enriched in the hepatic immune re-
sponse on Day 1, including fIymphocyte migration’,
‘leukocyte cell-cell adhesion’, ‘regulation of chemotaxis’, and
‘regulation of leukocyte activation’ (Fig. 3a). These findings
suggest that the liver of IUGR piglets may suffer from
immune-related stress. DEGs were also clustered in items,
such as ‘response to glucocorticoid’ and ‘response to steroid
hormone’, which may imply a disordered steroid hormone
metabolism and response. It is important to note that most
of the DEGs related to immune regulation were down-
regulated, whereas those related to sterol hormone regulation
were up-regulated through GOCircle plot analysis (Fig. 3b).
We further focused on these DEGs, and the GOChord plot
was performed to select the DEGs, which were assigned to at
least three BP terms (Fig. 3c). Among these, GPRI83, STAPI,
HAVCR2, CCR7, TNF, CCL4, WNT5A, and CCL2 were all
involved in the innate and adaptive immune response and
homeostasis, whereas IGFI, IGFBP2, RORA, AGTR2,
NTRK3, and HSPHI were related to cellular growth, differen-
tiation, and developmental regulation (Fig. 3d). To further in-
vestigate the functional relationship among the DEGs on
Day 1, the protein-protein interaction (PPI) was constructed
using the STRING database. The interconnected DEGs were
also clustered in the subnetwork of steroid hormone biosyn-
thesis and regulation, fatty acid metabolism, and immune re-
sponse (Fig. 3e). Next, the node genes of the DEG network
were ranked by the CytoHubba, and the top 10 hub genes
and related functions were presented. These genes contained
TNF, chemokines (CCL4), and their receptors (CCR7 and
CCRS8), which can cause inflammation. It also contained
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genes from the G protein-coupled receptor family (GPR183,
GRM4, GALRI, and AGTR?2), which regulated G protein ac-
tivity in the liver (Fig. 3d). Some of the screened DEGs were
overlapping in the GOChord and CytoHubbar analysis, im-
plying the importance of these genes in determining the
phenotype of IUGR piglets.

Next, we performed a detailed analysis of the DEGs on
Day 7. The majority of the DEGs were enriched in the
regulation of actin filament depolymerization and
polymerization processes. DEGs in these terms were pri-
marily involved in the assembly of the actin filament net-
work and maintenance of the actin skeleton (ADD2,
KIAA1211, and SPTB). Moreover, the DEGs were also
concentrated in the muscle tissue growth (DKKI, EGRI,
EGR2, FOS, KEL, and SHOX?2), as well as hormone biosyn-
thesis and metabolism processes (ADM and EGRI) (Fig.
3f). These indicate that the dysregulated DEGs may affect
the cytoskeleton reorganization in the IUGR liver tissue
on Day 7. The DEGs on Day 28 were analyzed in the same
manner, which were primarily enriched in the ‘cellular
transition metal ion homeostasis’ process, including
ATP6VI1G1, HAMP, SLC30A4, and TFRC. Of these, both
HAMP and TFRC regulated the maintenance of ion
homeostasis, and SLC30A4 exerted zinc transmembrane
transporter activity. Dysregulation of transition metal ion
homeostasis may be the molecular basis for the abnormal
physiological characteristics of IUGR piglets. At the same
time, these DEGs contained CD209, TLRS8, and UBE2D2,
which were clustered in inflammatory entries (e.g., ‘posi-
tive regulation of T cell proliferation’, ‘innate immune
response-activating signal transduction’, and ‘type I inter-
feron biosynthetic process’). All of these entries may be
suggestive of an abnormal state of immune stress in IUGR
piglets (Fig. 3g).

Finally, a KEGG analysis was performed to determine
the pathways that participate in the disordered functions
exhibited in the livers of the IUGR piglets. The PI3K-AKT
signaling pathway, glycerolipid metabolism, and the HIF-1
signaling pathway were significantly enriched consistently
during the postnatal period. Moreover, the cAMP signal-
ing pathway, cytokine-cytokine receptor interaction,
phagosome, MAPK signaling pathway, and steroid hor-
mone biosynthesis were also enriched (Fig. 3h). These en-
richment pathways fully revealed the pathophysiological
status of the IUGR piglets. Moreover, the number and
significance of the enriched pathways also supported the
concept that disordered state of IUGR appeared to be alle-
viated during postnatal development.

Analysis of serum biochemical parameters and liver
histology between the IUGR and NBW piglets

Given that the DEGs between IUGR and NBW piglets
were related to the abnormal immune response, we next
compared the liver function index between the IUGR
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significantly altered in the IUGR piglets during postnatal development

Fig. 3 Detailed functional profiling of the DEGs whose expression significantly changed (P < 0.05, FC > 2 or < 0.5) between the IUGR and NBW
piglets. a Classification of GO terms based on the functional annotation of BP enriched in the IUGR piglets on Day 1. The ordinate represents the
GO item, the abscissa represents the number of enriched DEGs corresponding to each term, and the color column represents the enrichment
score (defined as -Log10 P-value). b The GOCircle plot of IUGR piglets on Day 1. The outer circle shows a scatter plot for each term of the logFC
of the assigned genes. The red circles indicate the upregulated genes and the blue circles indicate the down-regulated genes by default. ¢ The
GOChord plot of the IUGR piglets on Day 1. The DEGs that were assigned to at least three process terms were selected. d The tables show the
major functions of the DEGs that were selected in the IUGR piglets on Day 1. e The protein-protein interaction network of the DEGs in the IUGR
piglets on Day 1. The red nodes indicate gene upregulation and the green nodes indicate downregulation in IUGR piglets. Fold changes (FC) in
expression are expressed as log2 (FC) values. f GO enrichment analysis of the DEGs of BP enriched in the IUGR piglets on Day 7. g GO
enrichment analysis of the DEGs of BP enriched in the IUGR piglets on Day 28. h Enriched KEGG pathways (Top 15) for the DEGs that were

and NBW piglets to assess the potential impact of im-
mune stress on the liver damage in IUGR piglets. The
liver function indexes in the IUGR piglets changed sig-
nificantly, as the serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) activity in the
IUGR piglets was significantly higher than that in the
NBW piglets at all of the time points. Moreover, the
total protein (TP) content, a biomarker of the inflamma-
tory status in the liver, was found to be significantly
lower in the IUGR piglets than that in the NBW piglets
(Fig. 4a), which predicted the inflammatory status in the
livers of the IUGR piglets.

We subsequently detected the hepatic pathological
sections in IUGR piglets. Compared with the NBW
piglets, the IUGR piglets displayed marked inflamma-
tory lymphocytic infiltration in the hepatic lobules at
different time points. Additionally, apparent vacuolar
and severe structural damage appeared in the IUGR
hepatocytes on Day 28 (Fig. 4b). These results further
confirm the existence of liver injury in [UGR piglets.

In addition, a comparison of the ultrastructural
morphology of the liver between IUGR and NBW piglets
was evaluated using transmission electron microscopy
(TEM). In the present study, ultrastructural pathological
lesions were observed in the hepatocytes of IUGR
piglets. Striking structural alterations were identified in
the IUGR piglets, including vacuolar dilatation of the
cytoplasm, loss of cytoplasmic material and degeneration
of hepatocyte organelles, especially in the mitochondria
and endoplasmic reticulum. These observations indi-
cated that the mitochondria were swollen, round-
shaped, and the mitochondrial cristae were disrupted.
Furthermore, discontinuous endoplasmic reticulum
cisternae were also observed among the hepatocytes in
IUGR piglets at each time point. Whereas a normal
histological appearance with well-organized organelles
was observed in the liver sections of the NBW piglets
(Fig. 4c). These results further support that ultrastruc-
tural cytoskeleton is disrupted in hepatocytes of IUGR
piglets.

Sexual-dimorphic effects on the liver expression patterns
between the IUGR and NBW piglets

Given the sex-biased growth phenotypes that we ob-
served, it was hypothesized that the transcriptomic
changes also exhibited sexual dimorphic patterns in the
IUGR piglet livers. Transcriptional information was ana-
lyzed between the IUGR and NBW groups within the
male and female piglets (Supplementary file: Table S4-
S9). Sex-specific profiling of the DGEs during postnatal
development revealed different dynamics between the
male and female IGUR piglets. In female IUGR piglets,
the number of DGEs decreased as early as Day 7,
whereas the number of DGEs decreased until Day 28 in
the male IUGR piglets (Fig. 5a and b). The different pat-
terns of gene expression raise the possibility that female
IUGR piglets may have a greater potential to compen-
sate for postnatal growth.

Secondly, we filtered sex-specific DEGs at each time
point using a Venn diagram of DEGs from both female and
male IUGR piglets (Fig. 5¢). On Day 1, 909 DGEs were spe-
cifically dysregulated among the female IUGR piglets,
whereas 544 DGEs were specifically regulated in the male
IUGR piglets, and only 72 DGEs were common to both the
male and female IUGR piglets. On Day 7, there were 87
and 636 DGEs specifically dysregulated in both female and
male IUGR piglets, respectively, with only 2 shared DEGs
between the males and females. On Day 28, 127 and 68
DGEs were specifically dysregulated in female and male
IUGR piglets, with only 2 shared DEGs between the males
and females. Given that the great majority of the dysregu-
lated DEGs exhibited sexual dimorphism, we propose that
the mechanisms underlying the IUGR-associated liver dis-
orders may differ between male and female piglets.

Next, to explore the possible differential mechanisms,
DEGs specific to males and females were analyzed. On
Day 1, the GO classification showed that the DEGs in
the female IUGR were most enriched during the process
of cell cycle regulation (Fig. 6a). The GOCircle plot ana-
lysis showed that most DEGs enriched in cell cycle regu-
lation were down-regulated (Fig. 6b). With the same
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Fig. 4 Functional detection of the livers between IUGR and NBW piglets. a The serum level of ALT, AST, and TP in the IUGR piglets compared with
NBW (* P < 0.05; ** P < 0.01). b Light microscopy of the liver tissue between the NBW and IUGR groups on Days 1, 7, and 28 for Hematoxylin eosin

(H&E) staining. Yindicates lymphocyte infiltration, and E==pindicates vacuolization. ¢ Representative transmission electron micrographs of the liver

sections from NBW and IUGR groups on Days 1, 7, and 28. N: nucleus; Nu: nucleolus; M: mitochondria; RER: rough endoplasmic reticulum; Gl: glycogen;

LD: lipid droplets; black arrows: cytoplasmic material loss

setting parameters as described above, the candidate
DEGs were focused through the GOChord plot analysis
and PPI analysis (Fig. 6¢ and d), including serine/threo-
nine kinase subfamily members (CDKI1, AURKB, and
CHEK]I), kinesin family members (KIF2C and KIFI8A),
chromosome replication, repairment-related genes
(RPA2, RPA3, CDT1, CDC6, DSCCI, BRCAI, GEN1, and
FBXO0S5), and cell cycle regulation-related genes (CCNA1I,
CCNB2, NUF2, CENPE, SGOLI, SKAI, and CDDAS).
The detailed functions of these genes are presented in
Fig. 6e. Similarly, the DEGs on Day 7 were also associ-
ated with the regulation of the cell cycle (e.g., ‘synapto-
nemal complex assembly’, ‘meiosis I cell cycle process’,
and ‘meiotic nuclear division’). The candidate genes in-
cluded in these terms were STAG3, Cllorf80, and
SYCP2. In addition, some physiological metabolic pro-
cesses, including the regulation of transcription (EGLN3
and MT3), immune response (GNLY, LYZ, and PGC),
and apoptosis-related processes (EPO, GZMB, IL20RA,
and MMP9) were also significantly enriched (Fig. 6f). On
Day 28, the DEGs specific to female IUGR piglets were
functionally associated with GO terms, including a re-
sponse to a toxic substance (CBL, HP, and FOS), cold-
induced thermogenesis (ADRBI, NPR3, and PEMT), epi-
thelial cell apoptotic process (ANGPT1, CCL2, KRT1IS,
and KRTS), as well as phosphatidylinositol 3-kinase sig-
naling (ANGPT1, IER3, and PRRS) (Fig. 6g).

Unlike the female IUGR group, the GO classification of DEGs
in male IUGR piglets on Day 1 were enriched in factors relevant
to carboxylic acid and organic anion transport, monosacchar-
ide metabolic processes, ribonucleotide biosynthetic

processes, ribose phosphate biosynthetic processes,
and hexose metabolism (Fig. 7a). Using a GOCircle
plot analysis, we found that most DEGs associated
with transport-related processes were up-regulated,
whereas the DEGs in metabolism-related processes
were down-regulated (Fig. 7b). We further obtained
the following candidate genes through a GOChord
plot analysis, including transporters (SLC26A2,
SLC35B4, and ABCC2) and regulatory factors involved
in both glucose and lipid metabolism (RORA, RORC,
PDK4, PPARA, ACSL1, ACSL3, and HK2) (Fig. 7c). In
addition, CytoHubba revealed that most of the top 10
hub genes were cytokines (CCL4, CCR5, CCR7, CCRS,
CCR2, and GPRI183) (Fig. 7d and e), which were in-
volved in inflammatory regulation, indicating an im-
mune response disorder in male IUGR piglets. Next,
we analyzed the GO cluster on Day 7, DEGs of the
male IUGRs were enriched regarding immune cell dif-
ferentiation (SOCSI, NFKBIZ, and LAG3) and
hematopoiesis (GATA1, MYB, TALI, TRIMSS, HLX,
DLL1, and MAFB) (Fig. 7f). In the end, the GO items
in the male IUGR on Day 28 included thyroid hor-
mone metabolic processes (DIO2, PAX8, EGRI, and
AFP) and lipoprotein transport (APOA4, MFSD2A,
LIPG, SLC25A33, and SLC44AS5). (Fig. 7g).

Serum lipid metabolites between the IUGR and NBW
piglets

To explore the metabolic status of IUGR livers, we next
tested the serum lipid profiles, highlighting the cholesterol
(CHOL) and triglycerides (TG) that were commonly used
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as the clinical indexes to reflect the physiological or patho-
logical state of the liver. As the results showed in Fig. 8,
the level of CHOL and TG were both significantly in-
creased in the IUGR piglets compared with the NBW
groups for both the female and male groups. Interestingly,

the TG level of male IUGR piglets was consistently higher
than that of the female IUGR piglets from Days 1 to 7,
and the CHOL level of male IUGR piglets was also signifi-
cantly higher than that of female IUGR piglets on Day 1,
which also exhibited sexual dimorphic patterns.
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Fig. 8 Serum lipid metabolites between IUGR and NBW piglets. The serum level of CHOL and TG in IUGR piglets compared with NBW (*P < 0.05;
** P <0.01). NF, female NBW; NM, male NBW: IF, female IUGR; IM, male IUGR
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Discussion

Body weight and ADG are typically used as important
indicators for piglet growth performance. The present
study revealed that growth compensation occurred in
newborn IUGR piglets, which is consistent with the pre-
vious findings that IUGR individuals have a potential
compensatory mechanism for relatively rapid weight
gain [4, 15]. Although catch-up growth was considered
to be a positive benefit for growth improvement [16], in-
creasing evidence indicates that there are important
metabolic disorders in IUGR neonates. In addition, post-
natal catch-up growth in IUGR neonates appears to be
associated with increased fat mass rather than lean mass,
and may progress to insulin resistance and altered glu-
cose homeostasis [17], both of which are thought to con-
tribute to a higher risk for overweight/obesity and other
related short- and long-term health complications (e.g.,
poor physical growth, metabolic syndrome, cardiovascu-
lar disease, neurodevelopmental impairment, and endo-
crine abnormalities) [18, 19]. To the best of our
knowledge, this study is the first comprehensive profiling
of the liver transcriptome using postnatal [UGR piglets
as a model, providing a reference for balancing growth
compensation and preventing complications.

Dysregulation in immune function

We found that several constantly dysregulated DEGs in
IUGR piglets were involved in the immune response, in-
cluding ‘lymphocyte migration’, ‘leukocyte cell-cell adhe-
sion’, ‘regulation of chemotaxis’, and ‘regulation of
leukocyte activation’ on Day 1, as well as ‘positive regu-
lation of T cell proliferation’, ‘innate immune response-
activating signal transduction’, and ‘type I interferon bio-
synthetic process’ on Day 28. The liver has been identi-
fied as a key, frontline immune tissue, and an anti-
inflammatory or immunotolerant status has been found
to represent the baseline immune environment of the
liver. Moreover, the balance between immunity and tol-
erance is essential to ensure appropriate liver function
[20]. The recruitment and activation of leukocytes and
lymphocytes suggests the presence of both hepatic injury
and inflammation. In addition, enriched DGEs contain

both pro- and anti-inflammatory cytokines (e.g., TNF,
CCL2, and CCL4), which are mediated and regulated by
the immune system in the liver. Various pathological re-
ceptors involved in modulating the immune response
(e.g., TLR8, GPRI83, CD209, CCR7, and CCRS8) were
also identified, which suggests that the liver of IUGR
piglets may suffer from dysregulated immune function.
In addition, the plasma aminotransferases (ALT and
AST) have been widely used to detect liver function due
to their high sensitivity. These enzymes were normally
predominantly contained within the cytoplasm and
mitochondria of hepatocytes; however, when the liver
becomes injured or damaged under pathological condi-
tions, the liver cells release these enzymes into the
blood, raising the levels of AST and ALT enzymes in the
blood, signaling liver disease [21]. Therefore, a higher
serum activity of ALT and AST could be an indicator of
liver inflammation in IUGR piglets. Moreover, the total
protein is another important indicator of the metabolic
capacity of the liver [22], which was significantly lower
in the IUGR piglets. This finding indicates the presence
of liver damage and dysfunction in IUGR piglets. The
level of damage and inflammatory stress was also sup-
ported by the degree of lymphocytic infiltration and
vacuolization in the hepatic lobules of IUGR piglets.

Disorganized cytoskeleton and membrane structure

We also found that IUGR piglet livers were associated
with cytoskeletal disorganization. The cytoskeleton
maintains the cellular shape, organizes and tethers the
organelles, and plays an important role in molecule
transport, locomotion, and cell signaling [23]. Moreover,
actin filaments have been found to be fundamental for
cellular motility and morphogenic processes, including
migration, ion channel activity, secretion, apoptosis, and
cell survival [24]. It has been confirmed that an altered
cytoskeletal organization was correlated with the
changes in the cell shape and consequently mediated
cellular transformation in human liver cells [25, 26]. In
our study, the presence of DEGs (e.g., ADD2, KIAA1211,
and SPTB) involved in providing architectural and func-
tional support of cell morphology, combined with
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ultrastructural cytoskeleton deformation in the hepato-
cytes of IUGR piglets (e.g., loss of cytoplasmic material,
swollen mitochondria, dilatation, and discontinuity in
the endoplasmic reticulum), suggest that the dynamic
process of polymerization or depolymerization of actin
filaments was highly disorganized in the IUGR piglets.

Transcriptional dysregulation

In our study, DEGs related to transcriptional factors (e.g.,
EGRI, EGR2, SHOX2, and FOS) were clustered in the
IUGR piglets. Numerous studies have established that
transcription factors play a pivotal role in liver develop-
ment and cellular functionality, which provides solid evi-
dence for the coherence and synergy of various
transcription factors on liver-specific gene expression [27].
Transcription factors form a network with coactivators,
corepressors, enzymes, DNA, and RNA to either repress
or activate liver-specific gene expression [28]. Thus, these
findings suggest that transcriptional dysregulation can
lead to altered intermolecular interactions with the conse-
quence of liver dysfunction in IUGR piglets.

Glucocorticoids participate in IUGR liver metabolism
DEGs related to glucocorticoid and steroid hormone
regulation were also observed in IUGR piglet livers. A
number of reports have indicated that children with
IUGR may have a higher ratio of cortisol to cortisone,
which may permanently influence adrenal function due
to reprogramming of the hypothalamic-pituitary-adrenal
axis caused by intrauterine malnutrition or chronic
stress [29]. The primary role of glucocorticoids in the
liver is to regulate hepatic energy homeostasis and con-
trol hepatic influx and the efflux of lipids [30, 31]. More-
over, both liver steatosis and fibrosis have been shown
to be promoted by substantial glucocorticoid exposure
and receptor antagonism [32]. In addition, glucocorti-
coids were found to be potent modulators of the IGF
system, as they were able to reduce the local expression
of IGF1 [33]. We found that several DEGs are related to
glucocorticoid functions (e.g., IGF1, IGFBP2, AGTR2,
and NTRK3). The observation of downregulated IGFI
was consistent with the previous report of a deficient
IGF1 signaling pathway in IUGR rats [34].

Sexual dimorphism in response to IUGR

Our study found a sex-biased developmental dynamic
between male and female IUGR piglets. DEGs in the fe-
male IUGR livers are mainly associated with cell cycle
progression, which may explain the more evident growth
compensation of the female IUGR piglets. In contrast,
the male IUGR piglet livers were characterized by hep-
atic transporter dysregulation (e.g., organic anion and
monocarboxylate transporter). Transporters have been
identified and characterized as important determinants
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for nutrition absorption, distribution, metabolism, and
excretion in organ development and cellular function
[35, 36]. Organic anion transporters are abundantly
expressed in the liver and promote the uptake of various
endogenous substrates, including bile acids and various
exogenous drugs [37]. Monocarboxylate transporters
have been widely studied due to their importance in the
transporting L-lactate, pyruvate, and fatty acids across
the plasma membrane [38]. Interestingly, the expression
of hepatic transporters varies in a sex-dependent manner
between female and male IUGR piglets during develop-
ment. Similar notions were also supported by the fact
that the expression of organic anion transporters also
exhibited sexual dimorphic patterns in both male and fe-
male rats [39].

In addition, increasing evidence has demonstrated that
male IUGR individuals are more sensitive to the [IUGR-
associated physiological and pathological changes than
females [40, 41]. Thus, it is proposed that male offspring
have a survival disadvantage compared to their female
littermates [42]. For example, male offspring have a
higher risk of developing cardiovascular and metabolic
diseases later in life [43]. Here, the same phenomenon
was observed in our study, with a higher level of choles-
terol and triglycerides associated with the male IUGR
piglets. Based on the observations of the sexual-
dimorphic effects on the serum lipid metabolites be-
tween the IUGR and NBW piglets, male IUGR piglets
appear to be more sensitive to a disruption of metabolic
homeostasis.

Conclusion

In summary, our study demonstrates that the livers of
IUGR piglets were associated with a series of complica-
tions, including inflammatory stress and immune function
dysregulation; disorganized cytoskeleton and membrane
structure; transcriptional dysregulation; and abnormal
glucocorticoid metabolism. These observations provide a
detailed reference for understanding the mechanisms and
characterization of the IUGR liver functions. Thus, a
promising intervention strategy should consider the bal-
ance between postnatal catch-up growth and adverse
metabolic consequences in IUGR piglets. In particular,
our results showcase the sex-biased developmental dy-
namics between male and female [UGR piglets, suggesting
that potential interventions should be specific for male or
female IUGR piglets.

Materials and methods
Data and sample collection
All the animals were obtained from the experiment pig
farm of Institute of Animal Science, Chinese Academy
of Agricultural Sciences (CAAS). The experimental pro-
tocols in this study were approved by the Science
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Research Department of the Institute of Animal Science,
Chinese Academy of Agricultural Sciences (CAAS)
(Beijing, China). The study design is presented in Fig. 9.
The study involved approximately 50 healthy sows
(Large White) from the first or second parity farrowed
from the same batch, and piglets (Duroc sires x Large
White dams) were spontaneously delivered at term.
Newborn piglets were classified according to their birth
weight as IUGR and NBW, respectively. The IUGR pig-
lets were strictly selected based on the following well-
accepted criteria: the average body weight in the litter
being less than two standard deviations, whereas NBW
were identified as being within one standard deviation of
the mean body weight [4, 44—46]. Piglets were randomly
assigned and sacrificed on Day 1 (D1), Day 7 (D7), and
Day 28 (D28) in both the IUGR and NBW groups, with
eight replicates (50% males and 50% females) at each of
the time points in each group. The gender of the siblings
was the same for each time point and from each litter in
both the IUGR and NBW piglets. Due to the high early
mortality rate in I[UGR piglets, one piglet from the Day 7
and two piglets from the Day 28 of the IUGR group died
of disease prior to the experimental endpoint. Therefore,
we excluded the NBW sibling piglets in each group, and
collected samples from 42 piglets [Day 1: IUGR n =8 (4
females and 4 males) vs NBW n=8 (4 females and 4
males); Day 7: IUGR n=7 (4 females and 3 males) vs
NBW n =7 (4 females and 3 males); Day 28: [UGR n=6
(3 females and 3 males) vs NBW n =6 (3 females and 3
males)]. Cross-fostering was performed, except for the
piglets selected for the experiments that remained with
their original sow. All of the piglets were managed in ac-
cordance with the routine farm procedures. At an age of
three days, the piglets were subjected to tail-docking. At
the same time, piglets received an oral coccidiostat drugs
and an intramuscular injection of iron dextran glucohep-
tonate. The birth weight and the body weight (BW) was
measured at the time of sacrifice, and the average daily

n=8 n=7 n=6
+ + :
(@e+as)  @2138)  (BF38)
f”) ( 4 )
«f ' 5 K/
NBW (g\d/ﬁﬂ ar 140
L 1 J
IUGR
Day1 Day7 Day28
Fig. 9 Overview of the experimental design. Based on their birth
weight, the piglets were classified into either the IUGR or NBW
group. There was an equal ratio of males to females. Liver tissues
were collected on Days 1, 7, and 28, respectively
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gain (ADG) of the periods of Day 1-7 and Day 1-28 of
age was calculated [(final weight - initial weight)/number
of days].

Blood samples of piglets at each of the time points
were collected by an anterior vena cava puncture and
centrifuged at 2000xg for 10 min at 4 °C. The collected
serum was stored at — 80 °C for further analysis.

Based on the procedures described by previous studies
[47, 48], the euthanasia of piglets was preceded by an in-
duction of local anesthesia with an abdominal subcuta-
neous injection of 2% lidocaine hydrochloride (4.5 mg/
kg, Shandong Hualu Pharmaceutical Co., Ltd., Shan-
dong, China). Following a 10 min delay, the piglets were
euthanized by an intraperitoneal injection of an overdose
of sodium pentobarbital (100 mg/kg, Sigma, St. Louis,
MO, USA), followed by jugular exsanguination.

Liver samples were collected from the left lateral lobe
and washed in phosphate-buffered saline immediately. A
portion of the liver segment was fixed in 4% paraformal-
dehyde at 4 °C for histological analysis, the other part of
the liver tissue was frozen in liquid nitrogen and stored
at — 80 °C until the RNA was extracted for further ana-
lysis. The right lateral lobe of the liver was prepared for
transmission electron microscopy (TEM).

RNA-Seq and biological analysis

The RNA-seq process was performed as previously de-
scribed in accordance with the following steps [49]:
RNA samples were isolated using TRIzol reagent (Invi-
trogen, Carlsbad, CA, USA), library construction was
performed using a TruSeq RNA Sample Prep kit (Illu-
mina, San Diego, CA, USA), and sequencing of the li-
brary was constructed with the Illumina HiSeq 2500
platform (Illumina). The sequencing data used in this
study are available at the Sequence Read Archive, Bio-
Project: PRJNA597972 (https://www.ncbinlm.nih.gov/
bioproject/PRINA597972).

The bioinformatics analysis of RNA-Seq involved reads
quality control, alignment of the filtered sequence reads to
the Sscrofal0.2 reference genome from the Ensembl an-
notation system  (ftp://ftp.ensembl.org/pub/release-89/
fasta/sus_scrofa/dna/), and differential expression analysis
was performed by DESeq [50]. The genes with an adjusted
P-value (P<0.05) and fold-change (FC, two-fold) were
assigned as a threshold to filter the differentially expressed
genes (DEGs) for further biological analysis. The database
used for the annotation, visualization, and integrated was
DAVID v6.8 (http://david.abcc.ncifcrf.gov) and pathway
analysis was performing using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.genome.jp/
kegg). Protein-protein interaction networks were con-
structed using the STRING database (v.10.5; https://
string-db.org/). STRING networks were downloaded and
hub nodes were identified using Cytoscape (v.3.7.1)
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based on the number of connections between nodes.
GOplot Analyses were performed using R software
version 3.6.1 [51].

RNA isolation and quantitative by real-time qPCR

Total RNA extraction from the piglet livers was per-
formed using TRIzol according to the manufacturer’s in-
structions. RNA was then used for reverse transcription
using a commercially available first strand cDNA synthesis
kit (iScript cDNA Synthesis Kit; Bio-Rad Laboratories,
USA). Real-time qPCR was performed using the Bio-Rad
CFX96 RealTime PCR System using SsoFast EvaGreen
Supermix (Bio-Rad Laboratories, Hercules, CA, USA), as
previously described [52]. The real-time qPCR reaction
was repeated three times independently and the primers
(SLC38A5, SLC51B, DMRTAI, ADADI, and CD200RI)
are listed in Supplementary Table S10.

Liver histologic evaluation

The procedure for liver hematoxylin eosin (H&E) stain-
ing was performed in accordance with a previous report
[53]. Liver tissue specimens from the left lobe were fixed
and stained with H&E. After H&E staining, a morpho-
logic evaluation was performed using a light microscope
(Nikon ECLIPSE 80i; Nikon Corporation). A double-
blind assessment was performed by two independent ob-
servers to ensure the accuracy of the liver histological
evaluation, and each section was observed in at least
three different fields of view.

Liver morphological evaluation

Liver samples were prepared for transmission electron
microscopy (TEM) according to the previously described
procedure in [54]. The liver tissue was trimmed to less
than 1 mm?® using a razor blade and fixed in 2.5% glutar-
aldehyde for 4 h, post-fixed in 1% osmium tetroxide for
2 h, dehydrated, and embedded in an epoxy resin. The
tissue was sliced into ultrathin sections of 60-80 nm
using an ultramicrotome (Leica EM UC7), stained with
2% uranyl acetate and lead citrate for double contrasting,
and observed under a transmission electron microscope
(Hitachi HT-7700).

Assessment of the serum metabolite contents

The concentration of the total protein (TP), triglyceride
(TG), cholesterol (CHOL), as well as the serum enzyme
activity of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) was detected with a Hitachi
automatic biochemical analyzer (7600-120, Hitachi Ltd.,
Tokyo, Japan).

Statistical analysis
Statistical analysis was performed using the general lin-
ear mixed model (GLMM) procedure in SAS version 9.4

Page 14 of 16

(Statistical Analysis System Institute Inc., USA). All vari-
ables were assessed with a least square analysis (LSA)
comparison between the IUGR and NBW experimental
groups. Group (LBW/NBW) and gender (female/male)
were included in the model as the fixed effects, and in-
teractions between the group and gender were exam-
ined. All of the results were expressed as least squares
means (Ismeans) + standard error (SE), and a P value
was presented to indicate a statistical significance be-
tween the IUGR and NBW groups. Statistical signifi-
cance was considered to be significant (P <0.05) and
extremely significant (P < 0.01).
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Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-07094-9.
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Table S3. DEGs between the IUGR and NBW piglets on day 28 (Fold
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