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Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our
previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT).
Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of
Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in
Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in
a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a
sex-specific manner.

1. Introduction

The circadian clock is an autoregulatory network that reg-
ulates behavioral and metabolic programing in the context
of a 24 h light-dark (LD) cycle [1]. Body temperature is
one of the representing benchmarks of circadian patterning,
which peaks in animals while awake and troughs while
asleep [2]. Brown adipose tissue (BAT) is a major site for
rodent thermogenesis, due to its involvement in controlling
circadian thermogenic rhythms and influencing adaptability
to environmental temperature challenges [3]. A previous
study has revealed rhythmic expression patterns of over
5,000 genes in murine BAT, including genes associated with
the circadian clock, adipose function, and metabolism [4].
Moreover, glucose uptake in BAT exhibits a diurnal rhythm
[5].

The Inhibitor of DNA binding 2 (Id2) gene encodes a
helix-loop-helix (HLH) transcriptional regulator, which is
rhythmically expressed in many mammalian tissues and
involved in the input pathway, core clock function, and
output pathways of the circadian clock [6–9]. Our previous
studies have shown that Id2−/− mice exhibit lower levels of
locomotor activity, extended nighttime activity patterns of
feeding and locomotor activity, and sex- and age-dependent

enhanced glucose tolerance and insulin sensitivity [10].
Moreover, an energy-rich diet is able to rescue the distur-
bances to metabolic homeostasis and survival in the Id2−/−
mice sex-specifically [11]. Importantly, Id2−/− mice show a
sex-dependent elevated glucose uptake in interscapular BAT
(iBAT) [10]. Id2 also plays a role in white adipose tissue
(WAT) adipogenesis [10–12]. However, the role of Id2 on
temperature homeostasis regulation and its influence on BAT
physiology remain unknown. Therefore, we investigated the
function of Id2 in the regulation of temperature rhythms
under normal and thermoneutral conditions in a sex-specific
manner and also profiled the expression of genes involved in
insulin signaling and adipogenesis in BAT of Id2−/− mice,
sex-specifically.

2. Materials and Methods

2.1. Animals. The generation of Id2−/− mice and genotype
determination were performed as described previously [7, 10,
11]. Mice were maintained on a regular chow diet and sterile
water containing antibiotic ad libitum [7, 10, 11]. All mice
were housed in laboratory cages at normal temperature (21∘C
± 1∘C) and humidity of 50–65% under a 12 : 12 light : dark
(LD) cycle with lights on at Zeitgeber time (ZT) 0 and
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lights off at ZT12. Controls were age- and sex-matched WT
littermate mice. Animal experiments were approved by the
University of Notre Dame Animal Care and Use Committee
(Protocol number 14-02-1559) and performed in accordance
with NIH Guidelines for the Care and Use of Laboratory
Animals.

2.2. Temperature Measurement. Temperature measurements
were carried out on 2-month–1.5-year- (5.5-month median)
oldmale and female Id2−/−mice andWT littermates, housed
individually in a climate-controlled room set to either normal
(21∘C ± 1∘C) or thermoneutral (30∘C ± 1∘C) temperature.
Body temperature sampling was conducted at 3 h intervals
over the 24 h LD cycle. For thermoneutral conditions mea-
surement, all WT and Id2−/− mice used in the studies were
allowed to acclimate to thermoneutral temperature for 1 week
before temperature measurement. Core body temperature
was measured using subcutaneously surgically implanted
telemetric transmitters positioned proximal to the iBAT
(IPTT 300 transponders, Bio Medic Data Systems, Seaford,
DE) following isoflurane anesthetization [3]. After a week of
recuperation, core temperatures were recorded over a 24 h
period.

2.3. iBAT PCR Array Preparation and Analysis. iBAT tissue
was harvested at ZT16 (Id2mRNA circadian rhythm in iBAT
has a broad peak phase between ZT8 and ZT16) [4]. Id2−/−
and WT male (WT = 8, Id2−/− = 6) and female (WT =
6, Id2−/− = 4) mice from 3–9 months (6.1-month median)
were sacrificed and iBAT tissue was frozen in liquid nitrogen
and stored at −80∘C until analyzed. RNA extraction was
performed as described previously [7, 13]. We also measured
iBAT weight of these and additional mice (3–10-month-old
Id2−/− mice and WT littermates; 6.3-month median; male,
WT = 15, Id2−/− = 7; female, WT = 10, Id2−/− = 9) as
described previously [10, 11]. Total RNA was purified follow-
ing a Trizol extraction and sodium acetate/ethanol treatment.
RNA integrity was assessed using a Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA). RNA was subjected to a
DNASe I treatment, and cDNA was synthesized by RT2 First
Strand Kit (SABiosciences). Relative mRNA expression of
168 genes involved in insulin signaling and adipogenesis
pathways was determined by using the mouse PCR arrays
(PAMM-030ZC-24 and PAMM-049ZC-24, SABiosciences).
Quantitative real-time PCR was performed using an Applied
Biosystems 7500 system with RT2 SYBR green ROX qPCR
master mix reagent (Qiagen). PCR array data were calculated
by the comparative cycle threshold method and analyzed by
Web-based free PCR array data analysis software provided
by SABiosciences. Normalization of expression was to house-
keeping genes provided on each array (Actb, B2m, Gapdh,
Gusb, and Hsp90ab1). Clock controlled genes (CCGs) were
identified from the CIRCA database of Mouse 1.OST Brown
Adipose (Affymetrix) (http://bioinf.itmat.upenn.edu/circa/)
where we defined CCGs as a JTK CYCLE algorithm deter-
mined 𝑞 < 0.1 value and a period length of 20–28 h as
described previously [13–15]. Circadian phase was deter-
mined from the Lomb-Scargle phase values within CIRCA.

2.4. Statistics. Data were analyzed using Sigma Plot 12.0
software to run two-factor ANOVA. Where necessary, data
were ranks transformed to correct for nonnormal distribu-
tions.The linear regression of iBAT temperature-body weight
relationship was generated and analyzed using Prism 5.0
Graphpad software. PCR array data were analyzed using the
Web-based free PCR array data analysis software provided by
SABiosciences (Student’s 𝑡-test).

3. Results

3.1. Loss of Id2 Results in a Reduced Core Body Temperature
in Male and Female Mice. The discovery of a diurnal rhythm
of glucose uptake in mice iBAT and a sex-dependent elevated
glucose uptake in iBAT of Id2−/−mice prompted us to inves-
tigate whether Id2 contributes to thermoregulation [5, 10].
At normal ambient temperature conditions (21∘C), ablation
of Id2 reduced core body temperature across the 24 h day, in
both male and female mice (Figure 1(a)) (males, wild types
(WTs) = 14, Id2−/− = 14, ANOVA, time (T), 𝑝 < 0.001,
genotype (G) 𝑝 < 0.001, interaction (I), n.s.; females, WTs
= 18, Id2−/− = 17, ANOVA, T, 𝑝 < 0.001, G, 𝑝 < 0.05, I,
n.s.). Considering the possibility of any confounding genetic
background contribution and partial stimulation of BAT
activity occurring under normal temperature conditions,
Id2−/−mice core body temperature was alsomeasured under
thermoneutral conditions (30∘C) [3, 16]. Consistently, at
thermoneutrality, Id2−/−mice displayed a reduced core body
temperature (Figure 1(a)) (males, WTs = 19, Id2−/− = 20,
ANOVA, T, 𝑝 < 0.001, G, 𝑝 < 0.01, I, n.s.; females, WTs
= 18, Id2−/− = 17, ANOVA, T, 𝑝 < 0.001, G, 𝑝 < 0.01, I,
n.s.). Under both conditions and in both sexes, no interaction
between time and genotype was discovered, suggesting a gen-
eralized effect of the null mutation on core body temperature
rather than a time-of-day specific contribution of the gene
deletion. Regression analysis of time-of-day representative
core body temperatures (day or night) revealed no significant
relationships between temperature and body mass for either
Id2−/− or WT mice. However, Id2−/− mice of both sexes
showed consistently lower 𝑦-intercept lines compared toWT
mice when examined during either the daytime (ZT5.5) or
nighttime (ZT17.5 or ZT20.5), thus confirming the consis-
tently lower temperature of the Id2 null mice (Figure 1(b);
Supplementary Table 1 in Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2016/6785948). Lastly,
Id2−/− mice exhibited no statistically significant difference
in iBAT weight and iBAT to body weight ratio compared to
WT controls (Figures 2(a) and 2(b)) (two-factor ANOVAs,
iBAT weight, G, n.s., sex (S), 𝑝 < 0.01, I, n.s.; iBAT/body
weight ratio, G, n.s., S, n.s., I, n.s.). The mean and SEM body
mass of WT and Id2−/− mice for both iBAT weight and
body temperature experiments are shown in Supplementary
Table 2: note that both male and female Id2−/−mice had on
average a lower body mass compared to WT counterparts
(two-factor ANOVA, G, 𝑝 < 0.001, S, 𝑝 < 0.001, I, n.s.).

3.2. Sex-Specific Differential Gene Expression Associated
with Insulin Signaling and Adipogenesis in iBAT of Id2−/−
Mice. Our previous results showed sex-dependent enhanced
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Figure 1: Sex-specific regulation of body temperature in Id2−/− mice. (a) Body temperature measurements of WT and Id2−/− male (left)
and female (right) mice under normal temperature (upper panel) or thermoneutral temperature (lower panel) over 24 hrs. Values are mean
± SEM. Two-factor ANOVA was performed. ANOVAs revealed significantly lower body temperatures for both male and female Id2−/−mice
compared to WT mice. The genotypic effect was independent of the prevailing ambient temperature. (b) Upper: regression analysis of body
weight to body temperature of WT and Id2−/− mice under normal ambient temperature (left: male at ZT5.5 and ZT20.5; right: female at
ZT5.5 and ZT17.5). Lower: regression analysis of body weight to body temperature ofWT and Id2−/−mice under thermoneutral temperature
conditions (left: male at ZT5.5 and ZT17.5; right: female at ZT5.5 and ZT17.5). Values are individual animal body temperatures and their
respective measures of bodymass. Note that no linear regression was found to be significant (n.s.), indicating that bodymass does not predict
body temperature for any group analyzed, examined under either 21∘C or 30∘C environmental temperatures.
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Figure 2: BrownAdipose tissue weight in Id2−/−mice. (a) Interscapular brown adipose tissue (iBAT)mass (g) fromWT and Id2−/−mice. (b)
Ratio of weight of iBAT tissue to total body mass fromWT and Id2−/−mice. Values are mean ± SEM. Two-factor ANOVAs were performed
followed by Tukey’s post hoc tests, ∗∗𝑝 < 0.01. No significant differences were observed between groups in the iBATmass/bodymass analysis.

insulin sensitivity and glucose uptake in iBAT of Id2−/−
mice [10]. In the current study we observed a decreased core
body temperature in Id2−/− mice as described above. To
fully evaluate the impact of ablation of Id2 on BAT gene-
regulation, we performed a gene expression analysis using
RT2 Profiler PCR Arrays of BAT derived from Id2−/− mice
and their WT littermates collected at the same time of the
24 h day (specifically ZT16). Deferentially regulated genes
involved in insulin signaling and adipogenesis are shown in
Tables 1 and 2, respectively. Thirty of 168 genes examined
were identified as differentially expressed when analyzed
as a cohort or as individual sex-specific groups. Using the
CIRCA database as a resource [14], six genes were identified
as clock controlled genes (CCGs), of which four oscillate in
proximal phase with the rhythm of Peroxisome proliferator
activated receptor alpha (Ppar𝛼), peaking during the middle
of the day (∼circadian time (CT) 6; CT12 = onset of night
in prior LD cycle). Of importance for insulin signaling,
glucose-6-phosphatase, catalytic (G6pc), was upregulated in
Id2−/− females and the related G6pc family member G6pc2
downregulated in Id2−/− males (𝑝 = 0.079, approaching
significance) compared to WTs. Insulin receptor substrate 1
(Irs1) was upregulated in both male and female Id2−/−mice.
Protein Kinase C, iota (Prkc𝜄), was downregulated in Id2−/−
males. Insulin-like growth factor 2 (Igf2) was downregulated
in female Id2−/− mice, while Fbp1, a rate-limiting enzyme
in gluconeogenesis, and Shc1, a component in the IGF-1-
regulated pathway, were upregulated. For adipogenesis, bone
morphogenetic protein 4 (Bmp4) was elevated 1.7-fold (n.s.)
in male and 1.6-fold in female Id2−/− mice. Consistent
with the insulin signaling array, Irs1 was elevated in Id2−/−
mice. Nuclear receptor coactivator 2 (Ncoa2), PR domain
containing 16 (Prdm16), Ppar𝛼, and twist homolog 1 (twist1)
were downregulated, in grouped analysis of male and female
Id2−/− mice. Fatty acid synthase (Fasn), lipase, hormone
sensitive (Lipe), and Peroxisome proliferative activated recep-
tor, gamma, coactivator 1 beta (Ppargc1𝛽/PGC-1𝛽) were all
downregulated in male Id2−/− mice. Female Id2−/− mice
displayed a downregulation of proliferative activated receptor,

gamma, coactivator 1 alpha (Ppargc1𝛼/PGC-1𝛼). A small
1.2-fold downregulation of Peroxisome proliferator activated
receptor gamma (Ppar𝛾) was detected in Id2−/−males, where
the 𝑝 value was approaching significance (𝑝 = 0.061). Note
that the thermogenic protein, uncoupling protein 1 (ucp1), was
present on both the insulin signaling and adipogenesis arrays,
but its levels of expressionwere not significantly altered in the
Id2−/−mice.

4. Discussion

In the present study, we discovered a reduced core body
temperature in Id2−/− mice, and this effect was not found
to be dependent upon the time-of-day. Moreover, from the
iBAT of Id2−/−mice, genes involved in insulin signaling and
adipogenesis were differentially regulated in a sex-dependent
manner. These results reveal a role of Id2 in the regulation of
thermogenesis and BAT metabolic functions.

Our previous study revealed that Id2−/−mice exhibit less
activity as demonstrated by daily counts of general activity
and the wheel running activity, which could partially explain
the reduced core body temperature, since less physical activ-
ity would generate less heat [10]. Moreover, Id2−/− mice
show a reduced body mass and less gonadal adipose deposits
[6, 10, 11]. As the subcutaneous and intradermal fat functions
as thermal insulation for mice to preserve heat loss, Id2−/−
micewith low fat contentmight tend to lose heatmore readily
than WT mice. Furthermore, the reduced body temperature
associated with lower fat contentmight contribute to the high
death rate observed previously (mice housed under normal
temperature), which was rescued by a high fat diet that
resulted in increased total body fat [11]. Specifically in male
Id2−/−mice iBAT we observed increased glucose uptake and
reduced TG accumulation [10], suggesting alterations in its
metabolic programing. Additionally, both male and female
Id2−/− mice exhibited an increased activated iBAT volume
[10]. Interestingly, our results suggest that the role of Id2
in thermoregulation is opposite to the function of another
member of this HLH family, Id1, whose deficiency results
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in higher thermogenesis and an elevated BAT expression
of thermogenic proteins [17]. Notably, Id1 has a distinct
and opposite function in WAT adipogenesis compared to
Id2, despite both Id1 and Id2 null mice exhibiting reduced
adiposity [10–12, 17]. Lastly, we examined the relationship
between body mass and body temperature in Id2−/− mice
by regression analysis and revealed a limited relationship
between the two variables [18]. No significant relationship
was observed between body mass and body temperature at
any time of the day or in the two sexes. However, as can
be seen with the 𝑦-intercept of the regression lines, both
Id2−/− male and female mice expressed a consistently lower
temperature compared to WT controls, irrespective of body
mass, and this feature was observed during both the day and
night phases of the LD cycle. These results suggest a role for
Id2 in the regulation of core body temperature.

In this studywe alsomeasured iBATmass and iBAT/body
mass ratio. While there was a tendency for higher iBAT/body
mass in both Id2−/− male and female mice, this was not
determined to be a significant difference. Note that the
average body mass of Id2−/− mice used for both the iBAT
weight and body temperature experiments was found to be
significantly lower, consistent with our previous studies [7,
10]. Important is the fact that a lower body mass, found for
some of the Id2−/− mice and for males in particular, does
not correlate with a lower body temperature, and body mass
in this situation is therefore an independent factor when
predicting core body temperature.

It is important to note that while the objective of exam-
ining body temperature using the implanted thermometers
was to record “core” body temperature, the position of the
implants may not give an exact measure of true core body
temperature. However, in a comparable study of mouse
body temperatures, temperature measurements were similar
whether derived from similarly subcutaneously implanted
thermometers in the interscapular region of WT and Rev-
erb𝛼 mutant mice or as determined using dataloggers that
were implanted within the abdomen [3].

Id2 is rhythmically expressed in BAT [4, 15] amongst
other tissues [6, 7]. ID2 protein has also been observed to be
rhythmic in its abundance over the 24 hr diurnal/circadian
cycle within the liver and heart [6] (Ward, Fernando, Hou,
and Duffield, unpublished data). A role for ID2 has been
established as a mediator of circadian clock output and
control of expression patterns of clock controlled genes
(CCGs) within the liver [6]. CCGs encompass ∼10% tran-
scriptome in individual tissues [19]. It is for this reason
that we examined whether any of the genes identified as
differentially expressed in iBAT were in fact known CCGs.
Using the CIRCA database [14, 15], 5 of the 17 differentially
genes associated with adipogenesis were found to be CCGs
(e.g., Ppar𝛼 and PGC-1𝛼), and so a possible role for ID2 is in
mediating circadian regulatory effects on these genes within
BAT.However, further investigationwould be required to test
this hypothesis. The observation that few of the differentially
regulated genes involved in insulin signaling are CCGs (1 out
of 13 genes) suggests that the contribution of ID2 to insulin
signaling intrinsic to BAT is independent of the role of ID2 in
mediating circadian clock output [6].

In order to explain how Id2 deficiency has an impact
on BAT insulin signaling and adipogenesis, we propose a
network model (Figure 3). The nuclear receptor PPARs are
fundamentally important for energy homeostasis and Id2
plays a role in interfacing with the molecular pathways
upstream or downstream of these transcriptional factors.
Expression of twomembers of the PPAR subfamily of ligand-
activated nuclear receptors, PPAR𝛼 and PPAR𝛾, was down-
regulated in our study. PPAR𝛼 is highly expressed in BAT
and considered a marker of BAT; it also plays an important
role in the overall regulation of lipid metabolism; and its
target genes are involved in mitochondrial and peroxisomal
𝛽-oxidation of fatty acids (FAs) [20–22]. Moreover, PPAR𝛼
regulates the expression of uncoupling protein 1 (ucp1),
which confers on BAT its thermogenic capacity [23]. PGC-1𝛼
(downregulated in our study) is a transcriptional coactivator
involved in the control of energy metabolism and critical
for BAT thermogenesis and enhancing overall mitochondrial
oxidative activity [24]. PPAR𝛼 can induce PGC-1𝛼 gene
expression and contributes to the thermogenic activation
of brown fat [25]. PRDM16 exhibits a brown fat selective
expression pattern and regulates the thermogenic gene pro-
gram in brown and beige adipocytes [26]. The observation
of reduced Prdm16 expression in Id2−/− mice is consistent
with the role of PRDM16 as a transcriptional regulator
of PGC-1𝛼 [27]. Likewise, studies have demonstrated the
linkage between Id2 and PPAR𝛼 [28]. PPAR𝛾 is essential
for adipocyte differentiation, and PPAR𝛾 alone generates a
fat phenotype that is common to both WAT and BAT. The
CCAAT enhancer binding protein beta (C/EBP𝛽) and PGC-
1𝛼 are critical for controlling PPAR𝛾 expression in BAT and
for determining BAT-specific programs [29, 30]. The PPAR𝛾
thermogenic effect in BAT is mediated by PGC-1𝛼 [24].
It has been observed that overexpression of Id2 associates
with PPAR𝛾 expression, ID2 acts upstream of PPAR𝛾, and
C/EBP𝛽 induces Id2 expression during the adipogenesis
process [12, 31]. Cofactors such as NCoA2 (downregulated in
our study) can interact directly with PPAR𝛾 to initiate its own
transactivation [32]. Moreover, LIPE (downregulated in our
study) could modulate adipose metabolism by reducing the
availability of ligands for PPAR𝛾, since gene knockout of LIPE
in mice attenuates activation of PPAR𝛾 [33]. LIPE is also able
to hydrolyze stored TGs in adipose tissue and tomobilize free
FA from adipose tissue [34]. Furthermore, PPAR𝛾 is a direct
target of the transcription factor sterol response element
binding protein 1 (SREBP1), whose transcriptional activity
is modulated by ID2 and which regulates downstream lipid
metabolism genes such as lipe and Fasn [35, 36]. Additionally,
Irs1 (upregulated in our study) plays essential roles in the
differentiation of brown adipocytes and expression of PPAR𝛾
[37, 38]. Previous studies have revealed IRS1-regulated Id2
gene expression [39], although in the current study it is
unclear whether this is a direct effect or a feedback response.
As for the mechanism by which IRS1 is elevated in Id2−/−
iBAT, it is unclear and warrants further investigation. BMP4
(upregulated in our study) is able to induce the white to
brown transition of adipose cells, which could indirectly
regulate PPAR𝛾 activation [40, 41]. The elevated BMP4
expression in the context of reduced PPARs is surprising
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pathway indicating its major downstream targets and factors susceptible to interfering with signaling. Function of ID2 is not necessarily
limited to the nucleus [8]. ↑ or ↓, up- or downregulation of gene expression, respectively, as determined by PCR array analysis in the current
study.

since BMP4 upregulation is associated with increased BAT
adipogenesis and theWATbrowning effect [42]. Interestingly,
the Id2 gene promoter has BMP-response elements and has
been shown to be a target of BMP signaling [43]. PPAR𝛿 plays
an integral role in transcriptional network regulation of fat-
burning genes and brown fat metabolism. PGC-1𝛼/PPAR𝛿
could regulate brown fat metabolism through Twist-1 tuning
[44]. Twist-1 (downregulation in our study) encodes a basic
HLH transcription factor, and overexpression of Twist-1 is
associated with Id2 expression [45].

Note that the gene encoding the thermogenic protein,
UCP1, was present on the PCR arrays, but no difference in
its expression was observed between genotypes of either sex.
Interestingly, in the Id1 null mouse, ucp1 gene expression is
elevated in iBAT, and this is associated with an increased
core body temperature phenotype [17]. Thus, it is surprising
that in the Id2−/− mouse that exhibits a reduced body
temperature phenotypewe do not observe a reduction in ucp1
gene expression. Of course, this does not exclude, however
unlikely, the possibility of an alteredUCP1 protein abundance
through a posttranscriptional/posttranslational process.

Hypoxia, while not a focus of the current study, is known
to reduce body temperature in mammals and contribute
to the thermogenic activity of BAT [46]. It is noteworthy
that in a recent study of human glioblastoma cells/tissue, an
important role was established for ID2 in modulating the
cellular effects of hypoxia and its activation of the HIF2𝛼
pathway [47]. The Id2 gene is also a target for HIF1𝛼 and
HIF2𝛼 [47, 48], making it part of a positive feedback loop
mechanism, at least in models of brain tumor. It is plausible

that the hypoxic effects on BAT function might also include
a contribution from ID2, and this would be an important
pathway to examine in future experiments in this context.

It is a somewhat contradictory finding that elements
of the thermogenic pathway are reduced (e.g., PGC1-𝛼) or
unaltered (ucp1) in Id2−/− mice but that Id2−/− male iBAT
exhibits increased glucose uptake (PET-FDG) coupled with
reduced iBAT triglyceride levels and a systemwide enhanced
insulin sensitivity [10, 11] and that core body temperature is
consistently reduced in both Id2−/− male and female mice.
Id2−/− mice also exhibit an altered 24 hr locomotor activity
and feeding profile and an overall reduction in nocturnal
locomotor activity [10], the latter of which suggests a reduc-
tion in energy expenditure/increased energy conservation.
Clearly the BAT adipogenic program is altered in both male
and female Id2−/− mice, as is WAT adipogenesis [10–12],
and it is likely that a change in BAT function contributes
to the reduced temperature phenotype. Due to the nature
of whole body knockout of ID2, it is possible that the
temperature phenotype and iBAT gene changes observed
are secondary to whole body metabolic changes. Clearly
additional experiments are required to elucidate the relative
contributions of these and other potential components in
generating the altered core body temperature phenotype.

Our previous study showed enhanced glucose uptake in
iBAT of Id2−/− mice [10], and the present study reveals
a reduced core body temperature in Id2−/− mice. This
discrepancy could partially be explained by the differential
regulation of Irs1, Lipe, PPARs, and PGC-1s. It has been
reported that degradation of IRS1 leads to impaired glucose
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uptake in adipose tissue [49].Therefore, upregulation of IRS1
might explain the increased glucose uptake we observed
before [10], whereas downregulation of LIPE, PPARs, and
PGC-1s might contribute to reduced FA oxidation, impaired
adipogenesis, and a lower body temperature. Inactivation
of PPARs is associated with insulin resistance [50, 51], yet
paradoxically Id2−/−mice show enhanced insulin sensitivity
with downregulated PPARs [10, 11]. It has been suggested
that mice that lack one allele of the PPAR𝛾 gene are
more sensitive to insulin, which could partially explain the
enhanced insulin sensitivity we observe in Id2 null mice
[10, 51]. Furthermore, the differential regulation of genes
specifically in female mutant mice, such as Fbp1, a rate-
limiting enzyme in gluconeogenesis, Shc1, a component in
the IGF-1-regulated pathway, and Igf2, suggests a sex-specific
physiological program for ID2 in BAT.

5. Conclusion

Inhibitor of DNA binding 2 is rhythmically expressed in BAT
[4, 15], and the observation that few of the differentially reg-
ulated genes involved in insulin signaling are CCGs suggests
that the contribution of ID2 to insulin signaling intrinsic to
BAT is independent of the role of ID2 in mediating circadian
clock output [6]. Overall, ID2 seems to be an important
coordinator of energy homeostasis including insulin sig-
naling, adipogenic programing, and thermoregulation. In
conclusion, our finding that ID2 contributes to the regulation
of body temperature and energy homeostasis presents the
possibility that ID2 could be a potential therapeutic target
for metabolic disease. Further, these data emphasize the
influence of Id2 on BAT molecular signaling and physiology
in a sex-specific manner.

Additional Points

Supplementary Table 1 summarizes the regression analysis of
time-of-day representative core body temperatures (day and
night). Supplementary Table 2 shows the mean ± SEM body
mass of wild type and Id2−/−mice.
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