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Shiga toxin-producing Escherichia coli (STEC) strains are responsible for multiple clinical

syndromes, including hemolytic uremic syndrome (HUS). E. coli O157:H7 is the most

prevalent serotype associated with HUS and produces a variety of virulence factors

being Stx2 the responsible of the most HUS severe cases. After intestinal colonization by

STEC, Stx2 is released into the intestinal lumen, translocated to the circulatory system

and then binds to its receptor, globotriaosylceramide (Gb3), in target cells. Thus, Stx2

passage through the colonic epithelial barrier is a key step in order to produce disease,

being its mechanisms still poorly understood. We have previously reported that STEC

interaction with the human colonic mucosa enhanced Stx2 production. In the present

work, we have demonstrated that infection with O157:H71stx2, a mutant unable to

produce Stx2, enhanced either Stx2 cytotoxicity on an intestinal cell line (HCT-8), or

translocation across HCT-8 monolayers. Moreover, we found that translocation was

enhanced by both paracellular and transcellular pathways. Using specific endocytosis

inhibitors, we have further demonstrated that the main mechanisms implicated on Stx2

endocytosis and translocation, either when O157:H71stx2 was present or not, were

Gb3-dependent, but dynamin-independent. On the other hand, dynamin dependent

endocytosis and macropinocytosis became more relevant only when O157:H71stx2

infection was present. Overall, this study highlights the effects of STEC infection on the

intestinal epithelial cell host and the mechanisms underlying Stx2 endocytosis, cytotoxic

activity and translocation, in the aim of finding new tools toward a therapeutic approach.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) strains are responsible for multiple clinical
syndromes including bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome
(HUS) (Karmali et al., 1985). HUS is a systemic disease that can be fatal and is developed
several days after STEC infection in up to 15% of children infected (Tarr et al., 2005).
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HUS is characterized by thrombotic microangiopathy, hemolytic
anemia, thrombocytopenia, and acute renal failure (Gianantonio
et al., 1968; Boyce et al., 2002). STEC are usually carried by
cattle and bacterial ingestion frequently occurs via contaminated
undercooked meat, unpasteurized dairy products, contaminated
fruits, vegetables and water, and through animal to person
or person to person contact (Ferens and Hovde, 2011). E.
coli O157:H7 is the most prevalent serotype associated with
HUS although multiple serotypes of STEC, including O157:NM
strains and non-O157 serotypes such as O26:H11, O103:H2,
O111:NM, O121:H19, and O145:NM have been associated
with hemorrhagic colitis cases (Karmali et al., 2003). Some
STEC strains commonly associated with serious disease possess
a chromosomal pathogenicity island known as the locus of
enterocyte effacement (LEE) (Nataro and Kaper, 1998), though
LEE-negative strains which encode additional virulence, and
colonization factors have also been associated with severe disease
(Newton et al., 2009; Beutin and Martin, 2012; McWilliams and
Torres, 2014). The genes encoded in the LEE are responsible for
intimate adhesion of STEC to colonic epithelial cells (McWilliams
and Torres, 2014), which is followed by injection of bacterial
effector proteins into the host cell through a type III secretion
system (T3SS) (Jerse et al., 1990). These effector proteins produce
attaching and effacing (A/E) lesions on intestinal cells and
interfere with host cells in many ways, inducing a profound
rearrangement of cell cytoskeleton, and a loss of tight junction
and membrane integrity (Knutton et al., 1989; Holmes et al.,
2010; Ugalde-Silva et al., 2016). Additionally, STEC can produce
either Stx1 and/or Stx2 prototypes, for which both have multiple
subtypes (Melton-Celsa, 2014). Stx2 is widely recognized as the
most important virulence factor of E. coli O157:H7 responsible
for HUS (Palermo et al., 2009). This toxin is an AB5 toxin
composed of an A subunit (Stx2A) and five B subunits (Stx2B).
Stx2A possesses a N-glycosidase activity against 28S rRNA of 60S
ribosomes in the cytosol. This activity results in an inhibition
of protein synthesis in eukaryotic cells and activation of a
proinflammatory signaling cascade known as the ribotoxic stress
response, which is also involved in apoptosis induction (Smith
et al., 2003).

On the other hand, Stx2B is arranged as pentamers of
identical composition and has high affinity to the cell surface,
glucosylceramide derived glycolipids, globotriaosylceramide
(Gb3) and globotetraosylceramide (Gb4), though it has
been found that only Gb3 may act as a functional receptor
(Zumbrun et al., 2010). These glycolipids are generally located
in cholesterol-rich cell membrane microdomains denominated
lipid rafts (Hanashima et al., 2008; Legros et al., 2018) and are
associated with toxin entry into target cells. Stx2 internalization
has been shown to occur in two ways, one requiring specific
binding of Stx2 to Gb3 receptor (Sandvig et al., 2002) and an
unspecific macropinocytic pathway (Malyukova et al., 2009;
Lukyanenko et al., 2011; In et al., 2013). Gb3 availability and
microdomain location (Betz et al., 2011) and actin organization
(Gaus et al., 2010) have been found to play a central role on Stx
internalization. These factors are relevant on the mechanisms
preceding endocytosis, as they impact clustering of Stx-Gb3
complexes on the cell membrane (Pezeshkian et al., 2017) and its

capacity to ultimately form tubular invaginations prior to toxin
internalization (Römer et al., 2007). The last step required for
toxin internalization is vesicular scission, which has been found
to occur via clathrin and dynamin (Lauvrak, 2004), dynamin
only (Römer et al., 2007), and/or actin and cholesterol (Gaus
et al., 2010) dependent mechanisms.

Several mechanisms for toxin translocation across intestinal
epithelium have been proposed. Non-Gb3 associated
translocation has been found to occur via the paracellular
pathway, stimulated by neutrophil transmigration and actin
rearrangements during STEC infection (Hurley et al., 2001),
but also via the transcellular pathway, implicating an unspecific
macropinocytic mechanism that does not involve the Gb3
receptor (Lukyanenko et al., 2011). There is also evidence
that Stx2 transcellular transcytosis may be due to Gb3-linked
Stx2 endocytosis, as it was described that a percentage of
apical recycling endosomes containing Stx2 are released on the
basolateral side (Müller et al., 2017), although Gb3 presence on
colonic epithelium is still under debate (Schüller et al., 2004;
Zumbrun et al., 2010). Previous studies have described that
these routes can be selectively and efficiently inhibited (Macia
et al., 2006; Huang et al., 2010; Koivusalo et al., 2010; Dutta
and Donaldson, 2012; Shayman, 2013; Kaissarian et al., 2018),
even though their particular relevance to Stx2 endocytosis and
translocation is still unclear.

In vitro studies using human intestinal epithelial cell lines have
demonstrated that epithelial cell infection with STEC may lead
to enhanced Stx2 translocation depending on the strain virulence
profile (Tran et al., 2018). In turn, intestinal epithelial cell-derived
molecules could also modify STEC virulence by increasing
adhesion and upregulating virulent genetic profiles (Bansal et al.,
2013). In our previous work, we investigated the effect of E. coli
O157:H7 expressing Stx2 on human colonic mucosa and showed
that bacterial interaction with colonic epithelium enhanced Stx2
production that, in turn, caused a marked inhibition of water
absorption concomitant with histological damages on the surface
epithelium (Albanese et al., 2015). In this study, we analyze
the effects of E. coli O157:H71stx2 infection on Stx2 cytotoxic
effects, endocytosis and translocation across polarized HCT-8
cells, which express Gb3 and Gb4 receptors (Kouzel et al., 2017).
To this aim, we used specific endocytosis inhibitors, in order
to demonstrate which pathways are stimulated upon infection,
providing an in vitro basis to further develop therapeutic targets.

MATERIALS AND METHODS

Materials
Purified Stx2a was provided from Phoenix Laboratory (Tufts
Medical Center, Boston, MA, USA). Eliglustat (Cerdelga,
Sanofis-Genzyme) used as an inhibitor of glucosylceramide
synthase (Shayman, 2013) was purchased from MedKoo Biosci,
Morrisville, USA. Dynasore, a specific dynamin-mediated
endocytic inhibitor (Macia et al., 2006), Methyl-β-cyclodextrin
(MβCD), a membrane cholesterol extractor (Zidovetzki and
Levitan, 2007), and Amiloride hydrochloride, amacropinocytosis
inhibitor (Koivusalo et al., 2010) were purchased from Sigma
Aldrich, St. Louis, MO, USA. A fluorescein isothiocyanate
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(FITC)-labeled Dextran (average molecular weight of 70 kDa,
Sigma Aldrich, catalog # 46945) was used as a marker of
paracellular permeability (Chattopadhyay et al., 2017). A mouse
monoclonal antibody against the A-subunit of Stx2 (Mab 2E11)
was provided by Roxane Piazza (Butantan Institute, São Paulo,
SP, Brazil) (Rocha et al., 2012) and an Alexa 647-conjugated anti-
mouse secondary antibody (AbCam, catalog #ab150115) were
used for flow cytometry.

Bacterial Strains and Growth Conditions
E. coli O157:H7 strain 125/99 wild type (O157:H7) isolated
from a patient with HUS has been previously described (Rivas
et al., 2006). A mutant lacking stx2 gene from the parenteral E.
coli O157:H7 strain 125/99wt (O157:H71stx2) was previously
obtained (Albanese et al., 2015). O157:H71stx2 was grown in
Luria Broth medium for 18 h at 37◦C with shaking at 150
rpm and then diluted 1/10 in DMEM/F12 medium (Sigma
Aldrich, USA) with the addition of HEPES 10mM and grown to
exponential phase (OD600 = 0.3–0.4) at 37◦C with shaking at 150
rpm. O157:H71stx2 density corresponded to ∼4 × 109 colony-
forming units per ml (CFU/ml). O157:H71stx2 supernatant
(SN O157:H7) was collected after centrifugation at 10,000 g for
5min, followed by filtration through a 0.22-µm filter (Millipore,
Billerica, MA, USA).

Cell Cultures
The human intestinal cell line HCT-8 (ATCC CCL-244,
Manassas, VA, USA) was maintained in RPMI-1640 medium
(ATCC) and the monkey kidney cell line Vero (ATCC CCL-
81) was grown in DMEM/F12 (Sigma Aldrich, St. Louis, MO
USA). Both media were supplemented with 10% fetal bovine
serum (FBS, Internegocios S.A., Buenos Aires, Argentina),
100 U/ml penicillin and 100µg/ml streptomycin. Additionally,
1mM L-glutamine, 10mM sodium pyruvate, 10mM HEPES,
10mM glucose were also supplemented in HCT-8 cultures.
Cells were grown at 37◦C in a humidified 5% CO2 incubator.
Cells were subcultured after 80% confluence was reached (7–
10 days) in antibiotic-free medium. During experiments, HCT-8
cells were maintained in growth-arrested conditions (medium
without FBS).

Cytotoxicity and Neutralization Assay on
HCT-8 Cells
Purified Stx2 and O157:H71stx2 induced cytotoxicity were
assayed on HCT-8 cells cultured on fixed support. Briefly, HCT-
8 cells monolayers grown on 96-well plates were treated for
4 h under growth-arrested conditions (Culture media without
FBS) and antibiotic free conditions with 100 ng/ml Stx2 and/or
4 × 108 CFU/ml O157:H71stx2. In selected experiments, cells
were preincubated with Eliglustat (200 nM, 48 h Kaissarian et al.,
2018), Dynasore (80µM, 30min), MβCD (4mM, 30min), or
Amiloride (1mM, 30min) and washed twice with PBS before
treatment. At the end of the incubation time, plates were
washed twice with PBS (145mM NaCl, 10mM NaH2PO4, pH
7.2) and subsequently incubated in growth-arrested media for
72 h. Then, cell viability was assayed by neutral red uptake
(Repetto et al., 2008).

Cytotoxic activity neutralization was calculated using the
following equation.

Cytotoxic Activity Neutralization = 100∗
I − T

100− T
(1)

In this Equation, I and T are % cell viability of HCT-8 cells
pre-treated or not with endocytosis inhibitors respectively.

Neutral Red Uptake Assay
Neutral red uptake assay was performed as previously described,
with minor modifications (Repetto et al., 2008). After treatment,
cells were washed twice with PBS (145mM NaCl, 10mM
NaH2PO4, pH 7.2) and incubated for 2 h with freshly diluted
neutral red in PBS to a final concentration of 50µg/ml.
Cells were then washed with 1% CaCl2 and 4% formaldehyde
twice and were then solubilized in 1% acetic acid and 50%
ethanol. Absorbance at 546 nm was read in an automated plate
spectrophotometer. Results were expressed as percent viability,
with 100% represented by cells incubated under identical
conditions but without treatment. The 50% cytotoxic dose
(CD50) corresponded to the dilution required to kill 50% of
the cells.

Cell Monolayer Culture
HCT-8 were seeded on Milicell culture inserts (PIHP01250,
Millipore, Billerica, MA, USA) of 12mm diameter and 0.4 um
pore size (filter area: 1.13 cm) placed on a 24-well plate and grown
for about 7–10 days as previously described until a continuous
monolayer was achieved. The development of monolayers was
monitored with the electrical resistance (TEER) measured with
a Millicell-ERS electric resistance system (Millipore, Billerica,
MA, USA) until TEER values were stable for 2 consecutive
days and higher than 1,200�.cm2, which is consistent with cell
polarization (Hurley et al., 1999).

Translocation Assays
Briefly, after HCT-8 cell monolayer formation, complete medium
was removed from upper (apical) and lower (basolateral)
chambers and replaced with growth-arrested and antibiotic free
medium. Apical side of the HCT-8 cells were exposed to Stx2
(100 ng/ml) in the absence or presence of O157:H71stx2 (4 ×

108 CFU/ml), its filtered supernatant SN-O157:H71stx2 (1:10
diluted) or EDTA (10mM) as a tight junction disruptor for
4 h at 37◦C in 5% CO2 atmosphere. Following the incubation
period, the media from the lower chamber was filter-sterilized
to determine Stx2 concentration by Vero cell cytotoxic assays.
In selected experiments, cells were preincubated with Eliglustat
(200 nM, 48 h), Dynasore (80µM, 30min), MβCD (4mM,
30min), or Amiloride (1mM, 30min) and washed twice with
PBS before treatments were applied.

Stx2 Quantification by Vero Cell
Cytotoxicity Assay
Vero cells grown in 96-well culture plate until confluence
were treated in serum-free medium for 24 h with different
concentrations of purified Stx2 or different dilutions of
experimental samples. At the end of the incubation, cell viability
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was analyzed by neutral red uptake. Stx2 concentrations were
calculated from Stx2 standard curves. When the cytotoxic
effect elicited by filter-sterilized SN from O157:H7 grown to
exponential phase was compared to a purified Stx2 curve used
as standard, the average cytotoxicity of the filtered SN was
equivalent to 100± 6 ng/ml Stx2 (data not shown).

Paracellular Permeability
Paracellular permeability in HCT-8 monolayers was determined
by measuring FITC-Dextran passage from the apical- to
basolateral side of monolayers, taking into account that Dextran
(MW 70 kDa) cannot penetrate the cellular membrane under
physiological conditions being its molecular weight similar to
Stx2 (Hashida et al., 1986; Balda et al., 1996; Matter and
Balda, 2003). FITC-Dextran was measured according to methods
described previously with some modifications (Balda et al.,
1996). FITC-Dextran (1 mg/ml) was added on the upper (apical)
chamber at the beginning of each experiment. Following the
incubation period, 100 µl of media from the upper (apical)
and lower (basolateral) chamber collected separately were placed
in a 96-well plate and the concentration of FITC-Dextran was
measured on a fluorescence multiplate reader (FLUOstar Omega,
excitation, 486 nm; emission, 520 nm). Relative fluorescence
was then calculated as a ratio between lower (basolateral)
chamber fluorescence and total fluorescence. Sample readings
were performed in triplicate.

Adhesion of O157:H71stx2 to HCT-8 Cells
HCT-8 cells were grown on 24-wells plates until a confluent
monolayer was achieved. Monolayers were pretreated with
Eliglustat (200 nM, 48 h), Dynasore (80µM, 30min), MβCD
(4mM, 30min), or Amiloride (1mM, 30min), washed twice with
PBS and then treated for 4 h with 4× 108 CFU/mlO157:H71stx2
in the presence of 100 ng/ml Stx2. To count CFU number, cells
were washed 5 times with PBS to remove non-attached bacteria
and lysed using 0.2% Triton-PBS solution for 30min. Serial
dilutions of these suspensions were spread on LB-agar coated
Petri dishes and incubated at 37◦C for 24 h for optical counting.

Stx2 Flow Cytometry Detection
The presence of intracellular and extracellular Stx2 in HCT-8
cells pre-incubated with endocytic inhibitors was evaluated in
HCT-8 cells by flow cytometry. For that purpose, cells were fixed
after treatment in 0.5% paraformaldehyde, and for intracellular
staining, permeabilized with saponin 0.1% in phosphate-buffered
saline (PBS). Then, cells were incubated in PBS 0.5% FBS with
Mab 2E11 for 2 h, followed by a 1 h incubation with an Alexa 647-
conjugated anti-mouse secondary antibody for 1 h. Cells were
subsequently washed and resuspended in PBS. The staining was
analyzed by flow cytometry on PARTEC PAS III using Cyflogic
software 1.2.1. Results are expressed as percentage of Stx2 positive
events andmedian intensity of fluorescence (MIF) in cells treated
compared to cells not pre-treated with inhibitors.

Statistical Analysis
Cytotoxicity curves were fitted using linear or logarithmic
regression. Statistical significance for all assays was assessed

FIGURE 1 | Stx2 and O157:H71stx2 cytotoxicity on HCT-8 cells. HCT-8 cells

were incubated with either 100 ng/ml Stx2 alone or in the presence of 4 x 108

CFU/ml O157:H71stx2 (O157:H71stx2 + Stx2) for 4 h and compared with 4

× 108 O157:H71stx2 alone. HCT-8 viability was measured by neutral red

uptake after 72 h. Data is shown as means ± SEM from six independent

experiments performed in triplicate. Stx2 vs. O157:H71stx2 or Stx2 vs.

O157:H71stx2 + Stx2. *p < 0.05.

using one-way ANOVA with Tukey’s or Bonferroni’s multiple
comparison test or Student’s t-test. Analysis was performed using
Graphpad Prism v6.01 software. Statistical significance was set
at ∗p < 0.05.

RESULTS

Effects of O157:H71stx2 Infection on Stx2
Cytotoxicity
To examine if Stx2 cytotoxicity could be modulated by
O157:H71stx2 infection, cell viability was measured on HCT-8
cells incubated with either 100 ng/ml Stx2 alone or in presence
of 4 × 108 CFU/ml O157:H71stx2 (O157:H71stx2+Stx2) and
compared with HCT-8 cells incubated with O157:H71stx2
alone. As shown in Figure 1, the cytotoxic effect caused by
O157:H71stx2+ Stx2 was significantly greater compared to Stx2
alone, while O157:H71stx2 did not show any cytotoxic effect.
These results suggest that an increase in Stx2 cytotoxicity is
elicited by O157:H71stx2 infection.

Effect of Endocytic-Pathway Inhibitors on
Stx2 Uptake and Cytotoxic Effects
The finding that O157:H71stx2 infection significantly increased
Stx2 cytotoxicity in HCT-8 cells led the studies to determine
which pathways are involved in Stx2 uptake and cytotoxicity and,
in turn, which ones were stimulated by O157:H71stx2 infection.
HCT-8 cells were pre-treated with Eliglustat (200 nM, 48 h),
an inhibitor of glucosylceramide (GL1) synthase (Shayman,
2013), MβCD (4mM, 30min), a membrane cholesterol extractor
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FIGURE 2 | Stx2 uptake by HCT-8 cells. (A) Cells pre-treated or not with endocytosis inhibitors were exposed to 100 ng/ml Stx2 and then analyzed by flow cytometry.

Histograms represent the log fluorescence of Stx2 for each treatment. A Representative experiment is shown. Amiloride and Dynasore curves are not shown due to

superimposition with Stx2 curve. (B) Bar graph representing the Median Intensity of Fluorescence (% MIF) for each inhibitor treatment relative to cells only treated with

Stx2. (C) Stx2 positive events (%) for each inhibitor treatment relative to cells only treated with Stx2. Bars represent the mean ± SEM of three independent

experiments. *p < 0.05.

FIGURE 3 | Effect of endocytosis inhibitors on Stx2 cytotoxicity in HCT-8 cells.

Cells were pre-incubated with Eliglustat (200 nM, 48 h), MβCD (4mM, 30min),

Dynasore (80µM, 30min), or Amiloride (1mM, 30min) and washed twice with

PBS before treatment for 4 h of 100 ng/ml Stx2 with or without

O157:H71stx2. Data is shown as means ± SEM from six independent

experiments performed in triplicate. Significant differences were found

between the groups, labeled a, b, c, and d.

(Zidovetzki and Levitan, 2007), Dynasore (80µM, 30min), a
specific dynamin-mediated endocytic inhibitor (Macia et al.,
2006) or Amiloride (1mM, 30min), a specific dynamin-mediated
endocytic inhibitor (Macia et al., 2006). Cells were then incubated
with 100 ng/ml Stx2 during 4 h. Finally, toxin uptake was
measured by flow cytometry. As it can be seen on Figure 2, both
% MIF and % Stx2 positive events were significantly lower when
cells were pre-incubated with Eliglustat or MβCD, compared
to Dynasore or Amiloride, indicating that Stx2 uptake may be
sensitive to glucosylceramide synthase inhibition (presumably
due to Gb3 synthesis inhibition) and/or cholesterol dependent
but not significantly dynamin or macropinocytosis dependent.

In agreement with the reduced level of Stx2 uptake observed
following inhibitor treatments, Stx2 cytotoxicity was also
decreased by the inhibitors Eliglustat andMβCD (Figure 3), with
Eliglustat having a more pronounced effect.

Notably, the neutralizing effect on cytotoxicity by Eliglustat
was maximal when O157:H71stx2 were not present and
appeared lower when O157:H71stx2 were present, though no
statistically significant differences were found. On the other
hand, Amiloride and Dynasore showed a significantly lower
protective capability than Eliglustat and MβCD, but both showed
a significantly higher neutralizing capability when cells were
treated with O157:H71stx2+Stx2 compared to Stx2 alone
(Figure 3). None of these inhibitors showed cytotoxic activity
per se when they were tested alone (data not shown). This data is
consistent with a necessary interaction between Stx2 and the Gb3
receptor, presented in the apical surface of HCT-8 cells, to cause
cytotoxicity, although these effects appear to be less dependent
on the lipid environment compared to the net Stx2 uptake
measured by flow cytometry. However, dynamin-dependent and
Gb3-independent macropinocytic endocytosis pathways became
relevant only when O157:H71stx2 were present, suggesting that
these mechanisms are sensitive to O157:H71stx2 infection.

None of the inhibitors used for pre-incubation showed
a significant effect on O157:H71stx2 adhesion to HCT-8
cells (Figure S1).

Effect of O157:H7 Infection on Stx2
Translocation
To determine whether Stx2 translocation across the intestinal
barrier was affected by the presence of O157:H71stx2, HCT-
8 monolayers were incubated with 100 ng/ml of Stx2 alone or
in the presence of: 4 x 108 CFU/ml O157:H71stx2, 10mM
EDTA, or O157:H71stx2 supernatant from O157:H71stx2 (SN
O157:H71stx2), added on the upper (apical) chamber. After
4 h of incubation, Stx2 passage was quantified on the lower
(basolateral) chamber by Vero cell cytotoxicity assay (Figure 4A).

Since Stx has been shown to be able to cross polarized
epithelial cells through both transcellular and paracellular
pathways (Hurley et al., 2001; Malyukova et al., 2009;
Lukyanenko et al., 2011; Tran et al., 2018), FITC-Dextran
passage from apical to basolateral side was simultaneously
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FIGURE 4 | Stx2 translocation across HCT-8 monolayers. (A) Stx2 concentration in the lower (basolateral) chamber was determined by Vero cell cytotoxicity assays.

(B) Relative FITC-Dextran passage (%) to the lower (basolateral) chamber was measured. Significant differences were found between the groups, labeled a, b,

c, and d.

measured (Figure 4B). Maximum Stx2 translocation across the
HCT-8 monolayers was found in the presence of O157:H71stx2
compared to the other experimental conditions (Figure 4A).
Instead, maximum FITC-Dextran passage was found in the
presence of EDTA, a potent tight junction disruptor agent,
followed by O157:H71stx2 treatment (Figure 4B). Taken
together, these results have demonstrated that O157:H71stx2
stimulates not only paracellular, but also transcellular
Stx2 translocation.

On the other hand, monolayers exposed to SN O157:H71stx2
also resulted in a significant increase of Stx2 and FITC-
Dextran passage (Figures 4A,B, respectively) indicating
that O157:H71stx2 SN affected at least the paracellular
permeability but to a lesser extent than that observed with
O157:H71stx2 (Figure 4Bb vs. c), compared to treatment with
Stx2 alone (Figure 4Bd).

To confirm the effects of O157:H71stx2 and its filtered
SN on epithelial barrier function leading to Stx2 paracellular
translocation, we analyzed the integrity of the tight junctional
barrier by TEER measurements before and after each treatment
(Figure 5). The integrity of tight junctions clearly declined in
monolayers treated with O157:H71stx2 and SN O157:H71stx2
in the presence of Stx2, proportionally to the increase of FITC-
Dextran passage. As it was expected, minimum TEER value was
observed after incubation with 10mM EDTA. However, the Stx2
passage was higher in the presence of O157:H71stx2 than with
EDTA, supporting the hypothesis that O157:H71stx2 stimulates
Stx2 translocation across transcellular and paracellular pathways.

Effects of Endocytosis Inhibitors on Stx2
Passage Across the Transcellular Pathway
To assess which endocytic mechanisms previously described
are involved in Stx2 transcytosis in presence of O157:H71stx2,
HCT-8 cells monolayers were pre-incubated with Eliglustat,
Dynasore, MβCD, or Amiloride as previously described,

FIGURE 5 | Stx2 translocation was not entirely correlated to tight junction

barrier disruption. The correlation between Stx2 translocation and the

disruptive effects on tight junctional barrier measured as TEER and

FITC-Dextran passage was analyzed in HCT-8 cell monolayers after 4 h

incubation with O157:H71stx2, SN O157:H71stx2 and EDTA. Stx2

concentration was determined in the lower (basolateral) chamber by Vero cell

cytotoxicity assays and it was relativized to initial Stx2 concentration

(100 ng/ml). Relative FITC-Dextran passage was calculated as a ratio between

lower (basolateral) chamber fluorescence and total fluorescence relative to cell

free control. TEER was measured at the end of treatments and expressed as a

percentage of the corresponding TEER immediately before the start of

treatments.

followed by incubation with O157:H71stx2+Stx2. Stx2
translocation, measured as indicated above, was significantly
inhibited by all treatments, with a maximum inhibition
observed after MβCD treatment, followed by Eliglustat, and
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lastly, Dynasore and Amiloride (Figure 6A). In addition,
none of these inhibitors significantly disrupted the epithelial
barrier function measured as FITC-Dextran translocation
(Figure 6B). These results suggest that cholesterol disruption
was more efficient than glucosylceramide synthesis inhibition
at decreasing endocytosis-dependent translocation, suggesting a
wider implication of cholesterol in the transcytosis process. In
addition, Stx2 translocation via dynamin and macropinocytic
pathways was also significantly decreased, showing that both
mechanisms also may play a role on Stx2 transcytosis during
O157:H71stx2 infection.

DISCUSSION

We have previously reported that Stx2-mediated physiological
and morphological alterations to human colonic mucosa was
enhanced by exposure to O157:H7 bacteria (Albanese et al.,
2015). In the present study, we demonstrate that infection of
human colonic epithelial (HCT-8) monolayers by O157:H71stx2
also impacts Stx2 endocytosis, cytotoxic action, and translocation
across intestinal epithelial monolayers.

In this report, HCT-8 cells infected with O157:H71stx2
supplemented with Stx2 exhibited a significantly higher
cytotoxic activity compared to the same concentration of Stx2
alone, indicating that O157:H71stx2 infection led to host
cell modifications that enhanced Stx2 cytotoxicity (Figure 1).
Regarding Stx2 effects on uninfected cells, we have seen that
inhibition of glucosylceramide synthesis by Eliglustat led to a
maximum decrease in Stx2 entry into cells and cytotoxic effects
on HCT-8 cells (Figures 2, 3). This inhibitor has been used
at optimal concentration and incubation time according to
previous works with endothelial cells (Kaissarian et al., 2018)
and to previous experience with another glucosylceramide
synthase inhibitor (Miglustat, Acetilon Pharm) (Girard et al.,
2015) that also reduces Gb3 synthesis. It is worth noting that
Eliglustat inhibits the synthesis of multiple glucosylceramides
besides Gb3, some of which have been implied in membrane
traffic and endocytic pathway modulation (Sillence et al.,
2002). In this direction, it is possible that the absence of
these glucosylceramides may account for some of the effects
observed, but we speculate that their relative relevance on
Stx2 uptake and cytotoxic activity should be minor compared
to Gb3 absence. Our results indicate that, although Eliglustat
prevented Stx2 cytotoxic effects (Figure 3), it did not completely
inhibit net Stx2 internalization (Figure 2). We propose that
this observed Stx2 uptake may be due to Gb3-independent
endocytic mechanisms (Chan and Ng, 2016), although it may
not have been enough to exert Stx2 cytotoxic effects. Similarly,
removal of cholesterol by using MβCD reduced Stx2 uptake
and cytotoxicity, although it appeared to do so to a lesser extent
than that observed with Eliglustat. Cholesterol is known to
be a major component of the microenvironment in which
Gb3 is embedded, and it has previously been implicated on
Gb3 avidity for Stx2 (Gallegos et al., 2012) and Stx2-induced
tubule scission (Gaus et al., 2010). It was also suggested that

cholesterol may play a role on macropinocytosis and membrane
ruffling (Grimmer et al., 2002). Although significant differences
were not found, Eliglustat appeared to be less effective on
decreasing Stx2 cytotoxicity when O157:H71stx2 was present,
compared to the bacterial-free condition (Figure 3). Even
though the methods used may have not been sensitive enough
to provide significant differences in this scenario, we speculate
that this result is relevant as it may account for the significant
stimulation observed of alternative mechanisms, such as
macropinocytosis and dynamin-dependent pathways, upon
O157:H71stx2 infection. On the other hand, dynamin’s role
on Stx2 induced tubule scission after Gb3 binding is highly
controversial, as a putative spontaneous, actin-dependent
mechanism has also been described (Gaus et al., 2010). In this
study, we found that dynamin-dependent Stx2 endocytosis
had no relevance on Stx2 uptake (Figure 2) or cytotoxic
effects when O157:H71stx2 was absent but did significantly
contribute to Stx2 cytotoxicity upon O157:H71stx2 infection
(Figure 3). We speculate that these differences may be explained
as it was observed that O157:H71stx2 infection could exert
a positive action on dynamin recruitment around vesicles,
which is required for actin pedestal formation (Unsworth et al.,
2007). Alternatively, we hypothesize that actin rearrangement
induced by O157:H71stx2 may have affected actin-dependent
vesicle scission mechanisms (Gaus et al., 2010), which may
in turn increase dynamin dependent scission, although the
exact underlying causes remain a subject for future studies.
Macropinocytosis involvement in Stx2 internalization during
STEC infection and the molecular mechanisms implicated
has been previously described (Malyukova et al., 2009;
Lukyanenko et al., 2011; In et al., 2013). In this study, we
found that macropinocytosis significantly contributed to
Stx2 internalization only when O157:H71stx2 were present,
indicating that bacterial infection exerts a positive effect on cell’s
macropinocytosis regulation (Figure 3).

As O157:H7 is generally believed to be non-invasive,
Stx2 must translocate across the epithelial barrier of the
intestine in order to reach target organs and cause HUS
(Boyce et al., 2002). In this study, we demonstrate that Stx2
passage across polarized HCT-8 monolayers is enhanced by
O157:H71stx2 infection. This increase is not exclusively due
to soluble metabolites, as SN O157:H71stx2 exerted a much
lesser, although statistically significant, effect on transcytosis
(Figure 4A). Previous studies have shown that Stx2 may
translocate the intestinal barrier by a paracellular in addition
to a transcellular/endocytic pathway (Hurley et al., 2001;
Müller et al., 2017). We used EDTA, a chelating agent
extensively described as a tight junction disruptor (Ward
et al., 2000), to estimate the maximum passage allowed
by the paracellular route. We confirmed by TEER and
FITC-Dextran measurements that paracellular passage and
permeability were maximum when EDTA was added, followed
by O157:H71stx2 treatment (Figures 4B, 5). However, Stx2
translocation in presence of O157:H71stx2 was significantly
higher than with EDTA treatment (Figure 5), suggesting that
both paracellular and transcellular translocation routes can be
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FIGURE 6 | Stx2 translocation in presence of endocytosis inhibitors. Cells were pre-incubated with Eliglustat (200 nM, 48 h), MBCD (4mM, 30min), Dynasore (80µM,

30min), or Amiloride (1mM, 30min), and washed twice with PBS followed by treatment with O157:H71stx2 + 100 ng/ml Stx2 for 4 h. Control cells were not

pre-treated with inhibitors. (A) Estimated Stx2 concentration in the lower (basolateral) chamber. (B) Relative FITC-Dextran passage (%) to the lower (basolateral)

chamber. Significant differences were found between groups with different letters, labeled a, b, and c.

upregulated by O157:H71stx2. Again, SN O157:H71stx2 was
able to exert a significant effect over tight junction integrity
compared to Stx2 alone, but much less than that exerted by
O157:H71stx2 infection. Previous reports showed that Stx2
translocation across a polarized colonic epithelial T84 cell
line is enhanced by O157:H7 infection and may only occur
via a transcellular pathway because TEER remains constant
during infection with several STEC O157:H7 strains (Tran
et al., 2014, 2018). In the same fashion, we found that the
transcellular pathway is stimulated by O157:H71stx2 infection,
but we also observed that the paracellular pathway, measured
as TEER and FITC-Dextran permeability, was significantly
affected after infection with O157:H71stx2 (Figure 5). The
apparent discrepancy could be due to differences in STEC strains,
as the one used in this study belongs to the hypervirulent
clade 8, which was found to overexpress several virulence
proteins (Amigo et al., 2015, 2016). Differences in intestinal
cell lines used may also explain these discrepancies, as they
show differences in key characteristics such as monolayers
TEER values (Hurley et al., 2016), which we speculate may
account for differences in sensitivity of tight junction to
O157:H7 infection.

Overall, our data suggests that O157:H71stx2 infection
greatly stimulated Stx2 passage through both paracellular and
transcellular pathways, and that this stimulation is mainly due to
O157:H71stx2 co-incubation with epithelial cells, and to a lesser
extent, to soluble metabolites released by O157:H71stx2 to the
culture supernatant.

We also tested if the same endocytic pathways involved
in cytotoxicity could account for the increased transcytosis.
Surprisingly, we found that cholesterol depletion by MβCD
appears to be more effective decreasing Stx2 transcytosis than
glucosylceramide synthesis inhibition by Eliglustat (Figure 6),
though the opposite was observed when cytotoxic effects

were analyzed (Figure 3). Being the exact mechanisms
that determine vesicle trafficking and its destiny still
unknown, we can hypothesize that membrane cholesterol
may be more strongly implied on the basolateral trafficking
leading to translocation, rather than on the retrograde
transport leading to cytotoxicity. On the other hand,
Amiloride and Dynasore led to a moderate transcytosis
decrease (Figure 6) in the same fashion as that observed
in cytotoxic neutralization (Figure 3), suggesting that
O157:H71stx2 could also stimulate macropinocytosis and
dynamin-dependent translocation. As these endocytosis
inhibitors showed similar effects on both cytotoxicity and
transcytosis, we can hypothesize that, to a degree, the
mechanisms leading to both outcomes may have the same
endocytic origin (Malyukova et al., 2009; Müller et al.,
2017).

To summarize, our results showed that E. coli
O157:H71stx2 infection increases Stx2 cytotoxic effect by
stimulation of several endocytic pathways. Furthermore, we
demonstrated that O157:H71stx2 infection enhances Stx2
translocation across HCT-8 monolayers in both paracellular
and transcellular pathways. We showed that dynamin-
independent and Gb3-dependent mechanisms are mostly
implicated in Stx2 endocytosis and translocation, though
dynamin dependent endocytosis and macropinocytosis
became more relevant when O157:H71stx2 infection
was present.

This study provides insight on how O157:H7 infection
may promote Stx2 associated disease by affecting Stx2
intestinal toxicity, uptake, and/or translocation into the
systemic circulation resulting in intoxication of distal
target organs. These studies may open the door to the
development of novel therapeutic approaches for treating
EHEC associated disease.
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