metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(1*H*-1,2,3-benzotriazol-1-yl)acetic acid- κN^3]dichloridozinc(II)

Tian Hang and Qiong Ye*

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yeqiong@seu.edu.cn

Received 29 January 2008; accepted 7 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.100; data-to-parameter ratio = 16.4.

In the title complex, $[ZnCl_2(C_8H_7N_3O_2)_2]$, the Zn^{II} atom is coordinated by two chloride ions and two N atoms in a distorted tetrahedral coordination environment. In the crystal structure, molecules are linked by intermolecular $C-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming a three-dimensional network.

Related literature

For synthesis of the organic ligand, see: Danan *et al.* (1997); Xu & Ye (2007).

Å

Experimental

b = 9.6898 (19)
c = 12.703 (3) A
$\alpha = 87.48 \ (3)^{\circ}$
$\beta = 84.25 \ (3)^{\circ}$

 $\gamma = 83.95 (3)^{\circ}$ $V = 984.7 (4) \text{ Å}^3$ Z = 2Mo K α radiation

Data collection

Rigaku Mercury2 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.720, T_{\rm max} = 0.860$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.099$ S = 1.094512 reflections 275 parameters $\mu = 1.55 \text{ mm}^{-1}$ T = 293 (2) K $0.3 \times 0.2 \times 0.1 \text{ mm}$

10222 measured reflections 4512 independent reflections 4022 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

2 restraints H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1C \cdots O4^{i}$ $02 - H2B \cdots Cl1^{ii}$ $C6 - H6A \cdots O4^{iii}$	0.82	2.20	3.015 (4)	171
	0.93	2.59	3.348 (3)	139
	0.97	2.69	3.586 (4)	153

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y + 1, z; (iii) -x, -y + 1, -z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a Start-up Grant from Southeast University (to QY).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2083).

References

Danan, A., Charon, D., Kirkiacharian, S., Bories, C. & Loiseau, P. M. (1997). Farmaco, 52, 227–229.

Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xu, X.-B. & Ye, Q. (2007). Acta Cryst. E63, 04607.

supplementary materials

Acta Cryst. (2008). E64, m758 [doi:10.1107/S1600536808006399]

Bis[2-(1*H*-1,2,3-benzotriazol-1-yl)acetic acid- κN^3]dichloridozinc(II)

T. Hang and Q. Ye

Comment

Recently, we reported the structure of 2-(1H-benzo[d][1,2,3] triazol-1-yl)acetonitrile (Xu *et al.* (2007)). The reaction of it with ZnCl₂ in ethanol-water solution gives the title complex. The zinc(II) center is coordinated by two nitrogen atoms from the benzotriazole rings and two terminal chloride anions in a distorted tetrahedral arrangement as shown in Fig. 1. The angle between the two benzotriazole rings is 62.98 (7)°.

From Fig. 2, it is easy to see that the structure is consolidated by extensive C—H···O and O—H···O hydrogen bonds. This hydrogen bonding with the π - π stacking between neighboring results to the formation of three-dimensional structure.

Experimental

The ligand, 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetonitrile, was synthesized by the reaction of benzotriazole and bromoacetonitrile according to the procedure described in the literature (Danan *et al.* (1997)).

A mixture of 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetonitrile (32 mg, 0.2 mmol), ZnCl₂(40 mg, 0.3 mmol), ethanol(1 ml) and a few drops of water sealed in a glass tube maintained at 120 °C. Colorless crystals suitable for X-ray analysis were obtained after several days.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, O atoms to which they are bonded, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. A packing diagram of the molecular packing of the title compound, viewed down the *b* axis.

Bis[2-(1*H*-1,2,3-benzotriazol-1-yl)acetic acid- κN^3]dichloridozinc(II)

Crystal data	
[ZnCl ₂ (C ₈ H ₇ N ₃ O ₂) ₂]	Z = 2
$M_r = 490.60$	$F_{000} = 496$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.655 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.0896 (16) Å	Cell parameters from 10272 reflections
b = 9.6898 (19) Å	$\theta = 3.1 - 28.7^{\circ}$
c = 12.703 (3) Å	$\mu = 1.56 \text{ mm}^{-1}$
$\alpha = 87.48 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 84.25 \ (3)^{\circ}$	Block, colorless
$\gamma = 83.95 (3)^{\circ}$	$0.3 \times 0.2 \times 0.1 \text{ mm}$
$V = 984.7 (4) \text{ Å}^3$	

Data collection

Mercury2 CCD (2x2 bin mode) diffractometer	4512 independent reflections
Radiation source: fine-focus sealed tube	4022 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -12 \rightarrow 12$
$T_{\min} = 0.720, \ T_{\max} = 0.860$	$l = -16 \rightarrow 16$
10222 measured reflections	

Refinement

Refinement on F^2	Secondary aton
Least-squares matrix: full	Hydrogen site l sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parame
$wR(F^2) = 0.099$	$w = 1/[\sigma^2 (F_0^2)]$ where $P = (F_0^2)$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.00$
4512 reflections	$\Delta \rho_{\text{max}} = 0.63 \text{ e}$
275 parameters	$\Delta \rho_{\rm min} = -0.54$ e
2 restraints	Extinction corre
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 0.762P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.63$ e Å⁻³ $\Delta\rho_{min} = -0.54$ e Å⁻³ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	-0.24666 (3)	0.21707 (3)	0.28538 (2)	0.03130 (10)
C11	-0.49995 (9)	0.21702 (8)	0.23354 (6)	0.04842 (18)
C12	-0.17619 (9)	0.06835 (7)	0.41738 (5)	0.04511 (17)
01	0.4086 (3)	0.4222 (3)	-0.1108 (2)	0.0764 (8)
H1C	0.4884	0.4518	-0.0874	0.115*
O2	-0.5545 (3)	0.9218 (2)	0.3737 (2)	0.0627 (6)
H2B	-0.5859	0.9846	0.3201	0.061 (11)*
O3	-0.3617 (3)	0.7988 (2)	0.26399 (16)	0.0555 (6)
O4	0.2761 (3)	0.4739 (3)	0.05103 (16)	0.0546 (6)
N1	-0.2805 (3)	0.6045 (2)	0.41091 (17)	0.0327 (4)
N2	-0.0410 (3)	0.2952 (2)	0.09576 (17)	0.0350 (5)
N3	0.0805 (3)	0.2522 (2)	0.02244 (16)	0.0338 (4)
N4	-0.3401 (3)	0.4916 (2)	0.37794 (17)	0.0350 (5)
N5	-0.0605 (3)	0.1913 (2)	0.16490 (16)	0.0334 (4)
N6	-0.2121 (3)	0.4090 (2)	0.33810 (17)	0.0330 (4)
C1	0.2918 (4)	-0.1020 (3)	0.0338 (2)	0.0470 (7)
H1A	0.3714	-0.1660	0.0004	0.048 (9)*
C2	0.1680 (4)	0.6422 (3)	0.3786 (2)	0.0465 (7)
H2A	0.2506	0.6985	0.3893	0.061 (10)*
C3	0.1993 (4)	-0.1432 (3)	0.1290 (2)	0.0504 (7)
H3A	0.2219	-0.2330	0.1565	0.056 (10)*
C4	0.0791 (4)	-0.0547 (3)	0.1816 (2)	0.0434 (6)
H4A	0.0190	-0.0820	0.2439	0.048 (9)*
C5	0.0517 (3)	0.0791 (3)	0.13594 (19)	0.0329 (5)
C6	0.1357 (3)	0.3460 (3)	-0.0639 (2)	0.0380 (6)
H6A	0.0439	0.4144	-0.0789	0.050 (9)*
H6B	0.1698	0.2937	-0.1272	0.051 (9)*
C7	0.0055 (4)	0.6881 (3)	0.4093 (2)	0.0404 (6)
H7A	-0.0256	0.7737	0.4397	0.042 (8)*
C8	0.2157 (3)	0.5130 (3)	0.3319 (2)	0.0456 (7)
H8A	0.3282	0.4876	0.3121	0.054 (9)*
C9	-0.3956 (3)	0.7224 (3)	0.4457 (2)	0.0375 (6)
H9A	-0.3464	0.7727	0.4970	0.056 (10)*

supplementary materials

H9B	-0.4979	0.6900	0.4797	0.057 (10)*
C10	0.2827 (4)	0.4195 (3)	-0.0345 (2)	0.0391 (6)
C11	0.1012 (3)	0.4239 (3)	0.3143 (2)	0.0391 (6)
H11A	0.1325	0.3381	0.2844	0.042 (8)*
C12	0.1438 (3)	0.1188 (3)	0.0429 (2)	0.0323 (5)
C13	0.2670 (3)	0.0281 (3)	-0.0107 (2)	0.0415 (6)
H13A	0.3282	0.0552	-0.0727	0.044 (8)*
C14	-0.4354 (3)	0.8186 (3)	0.3517 (2)	0.0360 (5)
C15	-0.0664 (3)	0.4692 (2)	0.34439 (19)	0.0313 (5)
C16	-0.1116 (3)	0.5972 (2)	0.39085 (19)	0.0311 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03324 (16)	0.02833 (16)	0.03146 (16)	-0.00575 (11)	0.00609 (11)	-0.00602 (11)
Cl1	0.0373 (3)	0.0458 (4)	0.0624 (5)	-0.0034 (3)	-0.0060 (3)	-0.0035 (3)
Cl2	0.0551 (4)	0.0419 (4)	0.0363 (3)	-0.0022 (3)	0.0009 (3)	0.0019 (3)
01	0.0671 (16)	0.100 (2)	0.0642 (16)	-0.0331 (15)	0.0161 (12)	-0.0134 (15)
O2	0.0577 (14)	0.0495 (13)	0.0762 (17)	0.0028 (10)	0.0081 (12)	-0.0038 (12)
03	0.0670 (14)	0.0550 (13)	0.0375 (11)	0.0109 (11)	0.0131 (10)	-0.0053 (9)
04	0.0568 (13)	0.0696 (15)	0.0398 (11)	-0.0209 (11)	0.0038 (10)	-0.0117 (10)
N1	0.0334 (10)	0.0284 (10)	0.0360 (11)	-0.0040 (8)	0.0012 (8)	-0.0081 (8)
N2	0.0393 (11)	0.0324 (11)	0.0317 (11)	-0.0044 (9)	0.0075 (9)	-0.0042 (8)
N3	0.0337 (11)	0.0345 (11)	0.0318 (11)	-0.0055 (8)	0.0071 (8)	-0.0037 (8)
N4	0.0323 (11)	0.0330 (11)	0.0400 (12)	-0.0074 (8)	0.0028 (9)	-0.0100 (9)
N5	0.0383 (11)	0.0279 (10)	0.0321 (11)	-0.0036 (8)	0.0067 (9)	-0.0025 (8)
N6	0.0320 (10)	0.0291 (10)	0.0384 (11)	-0.0068 (8)	0.0014 (9)	-0.0074 (8)
C1	0.0420 (15)	0.0468 (16)	0.0484 (16)	0.0110 (12)	0.0016 (12)	-0.0103 (13)
C2	0.0382 (14)	0.0512 (17)	0.0539 (17)	-0.0206 (12)	-0.0079 (13)	0.0027 (13)
C3	0.0575 (18)	0.0400 (16)	0.0492 (17)	0.0097 (13)	0.0000 (14)	0.0012 (13)
C4	0.0512 (16)	0.0376 (14)	0.0386 (14)	-0.0014 (12)	0.0051 (12)	0.0023 (11)
C5	0.0348 (12)	0.0324 (12)	0.0306 (12)	-0.0029 (10)	0.0031 (10)	-0.0053 (10)
C6	0.0429 (14)	0.0397 (14)	0.0303 (12)	-0.0063 (11)	0.0039 (10)	0.0002 (10)
C7	0.0463 (15)	0.0324 (13)	0.0450 (15)	-0.0125 (11)	-0.0068 (12)	-0.0032 (11)
C8	0.0297 (13)	0.0563 (18)	0.0498 (16)	-0.0046 (12)	0.0004 (12)	0.0011 (13)
C9	0.0386 (14)	0.0369 (13)	0.0352 (13)	0.0004 (11)	0.0051 (11)	-0.0115 (11)
C10	0.0445 (14)	0.0359 (13)	0.0364 (14)	-0.0084 (11)	0.0013 (10)	0.0022 (11)
C11	0.0335 (13)	0.0417 (14)	0.0411 (14)	-0.0010 (11)	-0.0007 (11)	-0.0055 (11)
C12	0.0304 (12)	0.0343 (13)	0.0319 (12)	-0.0045 (10)	0.0013 (9)	-0.0044 (10)
C13	0.0337 (13)	0.0514 (16)	0.0367 (14)	0.0003 (11)	0.0069 (11)	-0.0062 (12)
C14	0.0353 (13)	0.0332 (12)	0.0393 (14)	-0.0078 (9)	0.0051 (10)	-0.0086 (10)
C15	0.0325 (12)	0.0299 (12)	0.0318 (12)	-0.0064 (9)	-0.0015 (9)	-0.0019 (9)
C16	0.0326 (12)	0.0301 (12)	0.0310 (12)	-0.0061 (9)	-0.0014 (9)	-0.0015 (9)

Geometric parameters (Å, °)

Zn1—N5	2.041 (2)	C2—C7	1.367 (4)
Zn1—N6	2.059 (2)	C2—C8	1.410 (4)
Zn1—Cl1	2.2142 (9)	C2—H2A	0.9295

Zn1—Cl2	2.2403 (10)	C3—C4	1.369 (4)
O1—C10	1.336 (4)	С3—НЗА	0.9301
O1—H1C	0.8200	C4—C5	1.402 (4)
O2—C14	1.332 (3)	C4—H4A	0.9297
O2—H2B	0.9295	C5—C12	1.394 (3)
O3—C14	1.223 (3)	C6—C10	1.533 (4)
O4—C10	1.222 (3)	С6—Н6А	0.9698
N1—N4	1.340 (3)	С6—Н6В	0.9703
N1—C16	1.360 (3)	C7—C16	1.402 (3)
N1—C9	1.451 (3)	C7—H7A	0.9301
N2—N5	1.318 (3)	C8—C11	1.372 (4)
N2—N3	1.331 (3)	C8—H8A	0.9298
N3—C12	1.363 (3)	C9—C14	1.521 (4)
N3—C6	1.459 (3)	С9—Н9А	0.9703
N4—N6	1.314 (3)	С9—Н9В	0.9702
N5—C5	1.379 (3)	C11—C15	1.400 (4)
N6—C15	1.380 (3)	C11—H11A	0.9294
C1—C13	1.363 (4)	C12—C13	1.401 (4)
C1—C3	1.422 (4)	C13—H13A	0.9300
C1—H1A	0.9292	C15—C16	1.395 (3)
N5—Zn1—N6	101.73 (9)	N3—C6—H6A	109.6
N5—Zn1—Cl1	113.50 (7)	С10—С6—Н6А	109.7
N6—Zn1—Cl1	110.90 (7)	N3—C6—H6B	109.5
N5—Zn1—Cl2	107.14 (7)	С10—С6—Н6В	109.4
N6—Zn1—Cl2	104.41 (7)	H6A—C6—H6B	108.2
Cl1—Zn1—Cl2	117.63 (4)	C2—C7—C16	115.2 (3)
C10—O1—H1C	109.5	С2—С7—Н7А	122.6
C14—O2—H2B	119.5	С16—С7—Н7А	122.3
N4—N1—C16	111.2 (2)	C11—C8—C2	122.0 (3)
N4—N1—C9	119.7 (2)	C11—C8—H8A	119.0
C16—N1—C9	128.3 (2)	С2—С8—Н8А	119.0
N5—N2—N3	107.4 (2)	N1—C9—C14	110.2 (2)
N2—N3—C12	111.6 (2)	N1—C9—H9A	109.7
N2—N3—C6	120.6 (2)	С14—С9—Н9А	109.7
C12—N3—C6	127.7 (2)	N1—C9—H9B	109.6
N6—N4—N1	107.55 (19)	С14—С9—Н9В	109.5
N2—N5—C5	109.6 (2)	Н9А—С9—Н9В	108.2
N2—N5—Zn1	118.20 (16)	O4—C10—O1	125.3 (3)
C5—N5—Zn1	132.12 (17)	O4—C10—C6	120.4 (2)
N4—N6—C15	109.65 (19)	O1—C10—C6	114.2 (2)
N4—N6—Zn1	120.39 (16)	C8—C11—C15	116.2 (3)
C15—N6—Zn1	129.87 (17)	C8—C11—H11A	122.1
C13—C1—C3	122.2 (3)	C15—C11—H11A	121.6
C13—C1—H1A	118.7	N3—C12—C5	104.5 (2)
C3—C1—H1A	119.1	N3—C12—C13	133.1 (2)
C7—C2—C8	122.8 (3)	C5—C12—C13	122.4 (2)
C7—C2—H2A	118.6	C1—C13—C12	115.8 (3)
C8—C2—H2A	118.6	C1—C13—H13A	122.1
C4—C3—C1	122.1 (3)	С12—С13—Н13А	122.1

supplementary materials

D—H··· A	D–	–Н Н…А	D····A D—H···
Hydrogen-bond geometry (Å, °)			
N4—N1—C9—C14	-87.0 (3)	C2—C7—C16—C15	-0.1 (4)
C7—C2—C8—C11	-0.1 (5)	C2-C7-C16-N1	179.1 (3)
C8—C2—C7—C16	-0.1 (4)	C11—C15—C16—C7	0.6 (4)
C12—N3—C6—C10	-84.5 (3)	N6-C15-C16-C7	-179.6 (2)
N2—N3—C6—C10	92.5 (3)	C11—C15—C16—N1	-178.8 (2)
C3—C4—C5—C12	-0.7 (4)	N6-C15-C16-N1	1.0 (3)
C3—C4—C5—N5	177.8 (3)	C9—N1—C16—C7	9.7 (5)
Zn1—N5—C5—C4	-2.2 (4)	N4—N1—C16—C7	179.4 (3)
N2—N5—C5—C4	-178.9(3)	C9—N1—C16—C15	-1709(2)
Zn1—N5—C5—C12	176.47 (18)	N4—N1—C16—C15	-1.3(3)
N2—N5—C5—C12	-0.2(3)	C8-C11-C15-C16	-0.8(4)
C1—C3—C4—C5	0.3 (5)	C8—C11—C15—N6	179.5 (3)
C13—C1—C3—C4	0.3 (5)	Zn1—N6—C15—C11	2.8 (4)
Cl2—Zn1—N6—C15	76.0 (2)	N4—N6—C15—C11	179.4 (3)
Cl1—Zn1—N6—C15	-156.3 (2)	Zn1—N6—C15—C16	-176.95 (17)
N5—Zn1—N6—C15	-35.3 (2)	N4—N6—C15—C16	-0.4 (3)
Cl2—Zn1—N6—N4	-100.26 (19)	N1-C9-C14-O2	172.8 (2)
Cl1—Zn1—N6—N4	27.4 (2)	N1—C9—C14—O3	-6.9 (4)
N5—Zn1—N6—N4	148.39 (19)	C5-C12-C13-C1	-0.1 (4)
N1—N4—N6—Zn1	176.54 (15)	N3—C12—C13—C1	-177.6 (3)
N1—N4—N6—C15	-0.4 (3)	C3—C1—C13—C12	-0.4 (4)
Cl2—Zn1—N5—C5	27.1 (2)	C4—C5—C12—C13	0.7 (4)
Cl1—Zn1—N5—C5	-104.5 (2)	N5-C5-C12-C13	-178.2 (2)
N6—Zn1—N5—C5	136.3 (2)	C4—C5—C12—N3	178.8 (2)
Cl2—Zn1—N5—N2	-156.44 (17)	N5-C5-C12-N3	0.0 (3)
Cl1—Zn1—N5—N2	72.01 (19)	C6—N3—C12—C13	-4.6 (5)
N6—Zn1—N5—N2	-47.2 (2)	N2—N3—C12—C13	178.1 (3)
N3—N2—N5—Zn1	-176.82 (16)	C6—N3—C12—C5	177.6 (2)
N3—N2—N5—C5	0.4 (3)	N2—N3—C12—C5	0.3 (3)
C9—N1—N4—N6	171.8 (2)	C2—C8—C11—C15	0.6 (4)
C16—N1—N4—N6	1.1 (3)	N3-C6-C10-01	134.4 (3)
N5—N2—N3—C6	-177.9 (2)	N3-C6-C10-O4	-48.2 (4)
N5—N2—N3—C12	-0.4 (3)	C16—N1—C9—C14	81.9 (3)
N3—C6—C10	110.5 (2)	C15—C16—C7	122.7 (2)
C12—C5—C4	121.4 (2)	N1-C16-C7	132.6 (2)
N5—C5—C4	131.7 (2)	N1-C16-C15	104.7 (2)
N5—C5—C12	106.9 (2)	C16-C15-C11	121.1 (2)
C5—C4—H4A	122.1	N6-C15-C11	132.0 (2)
C3—C4—H4A	121.8	N6-C15-C16	106.8 (2)
C3—C4—C5	116.1 (3)	O2—C14—C9	114.6 (2)
С1—С3—НЗА	118.8	O3—C14—C9	120.8 (2)
С4—С3—Н3А	119.1	O3—C14—O2	124.5 (3)

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
O1—H1C···O4 ⁱ	0.82	2.20	3.015 (4)	171
O2—H2B···Cl1 ⁱⁱ	0.93	2.59	3.348 (3)	139

C6—H6A···O4 ⁱⁱⁱ	0.97	2.69	3.586 (4)	153
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (ii) <i>x</i> , <i>y</i> +1, <i>z</i> ; (iii) - <i>x</i> , - <i>y</i> +1, - <i>z</i> .				

Fig. 1

