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Abstract

It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local
environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information.
Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive
feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to
suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise
propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the
E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise
effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with
high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this
suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability,
or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise
enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback
loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can
enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that
the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only
suppressing or amplifying the noise.
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Introduction

Gene expression is a complex stochastic process involving

numerous components and reaction steps. It also spans several

time and concentration scales, including gene transcription,

translation, and chromosome remodeling. Ozbuda et al. provided

the first direct experimental evidence of the biochemical origin of

phenotypic noise, this concept is currently receiving increased

attention [1]. Phenotypic noise is due to low-copy-number

molecules and fluctuations in the local environment [2]. Recently,

a quantitative model of noise in genetic networks has been

established, and the components that contribute to fluctuations

have been suggested [3]. Noise has been found to play a pivotal

role in phenotypic variation and cellular differentiation [4].

Fluctuations can be considered useful for balancing precision

and diversity in eukaryotic gene expression [5] and for promoting

non-genetic diversity to increase the survival capabilities of

prokaryotic gene expression [6]. More importantly, noise affects

most biological processes, such as cellular development and the

determination of cellular fates [7]. Noise levels are also related to

the frequency of cellular differentiation, and a noise-related motif

can be adjusted based on its dynamic behavior [8].

In a living cell, a gene regulatory network is a complex web in

which a reliable signal must be propagated from one gene to the

next to execute its genetic program. However, the stochastic

fluctuations in gene expression and expression fluctuations

transmitted from one gene to the next may interfere with genetic

programs [9], and there are inherent noises in the cellular signal

transduction networks [10–12]. Therefore, expression of a gene

can be affected by fluctuations upstream. Thus, a gene’s noise can

be propagated from its upstream genes. Thus, it is important to

address the interactions between gene expression and noise in

regulatory networks.

It is well known that, in a gene regulatory network, feedback

loops are considered to be common [13] and have a critical role in

cellular signaling networks [14,15]. A feedback loop can use its

output as an input signal to adapt to external and internal changes

[16]. Hooshangi et al. suggested that the prevalence of feedback

motifs in natural systems can be attributed to other favorable

cellular behaviors and may provide robustness to extrinsic noise

[17]. In addition, Passos et al. showed that a feedback loop is both
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necessary and sufficient for the stability of growth arrest during the

establishment of a senescent phenotype [18]. Moreover, a large

number of positive and negative feedback loops exist in various

gene regulatory networks. A negative feedback loop produces

system stability in genetic and biochemical networks [19] and

induces the oscillatory [20] and linear dose-response relationship

in gene expression [21]. The positive feedback loop in the

mitogen-activated protein kinase (MAPK) cascade of Xenopus

oocytes can produce a switch-like response [22,23] and improves

cellular memory [24]. Positive feedback loops can also suppress

noise propagation [25]. Both negative and positive feedback loops

have important implications for controlling noise in gene

regulatory networks.

Interestingly, interlinked positive and negative feedback loops

are favored by biological systems. Single positive/negative

feedback loops are also important [26,27]. Examples include the

interaction between miR-15a and c-myb in human hematopoietic

cells [28], the regulation between cell cycle E2F1 and miR-223 in

acute myeloid leukemia [29], the p53-targeting of miR-21 in

Glioblastoma cells [30], and the feedback loops involving miR-17-

92, E2F and Myc in cancer networks [31] (see Figure 1). Tian et

al. suggested that a combination of positive and negative feedback

loops can fine-tune dynamic behaviors in gene regulatory networks

[28] and create flexible biological switches [32,33]. Moreover,

Hornung showed that fast negative feedback loops can enhance

the system stability and that positive feedback can buffer noise

propagation within the network via a combination of positive and

negative feedback loops [25]. However, it is still not clear how

interlinked positive and negative feedback loops affect signal

propagation in gene regulatory networks, or how they act in

response to stochastic fluctuations in gene expression.

To answer these questions, we developed a formula with

plausible experimental parameters that represents the systemic

signal sensitivity and noise amplification in an abstracted model of

E2F/Myc/miR-17-92 networks. Our results show that the role of

feedback loop in sensitivity and noise amplification is related to the

dynamic properties of the system. The noise is always buffered at

high protein concentrations in the monostable and bistable

regions, but this buffering ability is reduced by the existence of

negative feedback. While the signal sensitivity is enhanced in these

regions, the improvements in noise propagation are due to

negative feedback. Additionally, the noise is constantly enhanced

at low protein concentrations in the excitable, bistable and

monostable regions, but this enhancement ability is reduced by the

existence of negative feedback. The signal sensitivity is also

reduced in these regions. Notably, the effect of positive feedback is

opposite to that of negative feedback. Furthermore, we also found

that a fast-reacting protein module or a low noise autocorrelation

time can enhance noise suppression without changing the signal

sensitivity of the system. Our findings show that interlinked

positive and negative feedback loops play a key role in reliable

signal propagation.

Results

Model formulation
In this study, we use the abstract model of miR-17-92 and E2F/

Myc that was presented by Aguda et al. Figure 2 illustrates the

essential abstract structure of the Myc/E2F/miR-17-92 network

[31,34]. The terms p and m are used to describe the protein

module (Myc and E2F) and miRNA cluster module, respectively.

The basic principles of the network can be described in terms of p

and m in the following equations,

dp

dt
~az

k1p2

C1zp2zC2m

� �
{dp ð1Þ

dm

dt
~bzk2p{cm: ð2Þ

Here, k1 represents the protein module’s autocatalytic process,

which is a positive feedback loop, and C2 represents the protein

that is inhibited by the miRNAs. At the same time, protein module

p induces the transcription of miRNAs m, which is denoted by k2.

The protein is eliminated with a rate constant of d. The number of

the proteins stimulated by a growth factor synthesized in the

extracellular medium is a. The constant b in Eq. (2) represents the

transcription of m, and c is the degradation rate of m.

Using the dimensionless variables and parameters,

w~k2p=b,m~cm=b, t~ct, e~c=d,a’~k2=db, k~k1k2=db,C’1~
k2

2=b2C1,C’2~k2
2=bcC2, Eqs. (1) and (2) can be rewritten as

follows by a series of nondimensionalizing processes [31],

Figure 1. Examples of the interlinked positive and negative feedback loops in genetic networks. (A) The interaction between C-myb and
miR-15a in human hematopoietic cells. (B) The regulation between cell cycle E2F1 and mizr-223 in acute myeloid leukemia. (C) MiR-21 targets p53 in
Glioblastoma cells, and (D) the feedback loops involving miR-17-92, E2F and Myc in cancer networks.
doi:10.1371/journal.pone.0051840.g001
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e
dw

dt
~az

kw2

c1zw2zc2m

 !
{w ð3Þ

dm

dt
~1zw{m: ð4Þ

Because that protein is less stable than miRNA, e is less than 1.0. k
varies in the range of 2.0–5.0. The parameters a and c2 are

experimentally controlled and vary from 0–0.4 and 0–2.5,

respectively, and c1 is set as 1.0 [31,34].

The protein and miRNAs in the interlinked Myc/E2F/miR-17-

92 network have been shown to transition from monostability to

excitability to bistability, then to monostability with increasing k
[31,34]. A practical way of producing diverse signal-response

behaviors is to combine k, the positive feedback loop, with c2, the

inhibition of miRNAs [34]. Figure 3 presents an overview of the

tunable dynamics in the k{c2 plane.

Three types of dynamics exist: monostability, bistability, and

excitability. Note that we denote the low protein steady state as the

off state and the high protein steady state as the on state. In

monostability, a system remains in a stable state (on/off), when it is

perturbed. A bistable system exhibits an unstable state and two

stable states [35]. During excitability, there is a rest state, an

excited state, and a recovery state. The system resides in the rest

state if it is unperturbed. However, the system can leave the rest

state in response to a sufficiently strong input stimulus, undergoing

firing and refractory states before it returns to a rest state [36]. As

shown in Figure 4B, the region from saddle node S1=S3 to Hopf

bifurcation node H1=H2 represents excitability (3:38vkv3:51),

the region from H1=H2 to saddle node bifurcation S2=S4

represents the bistability (3:51vkv4:04), and the other regions

are monostability. When k~3:45 (excitability), there is only one

stable state. With a pulse from k~3:45 to 4:3 (monostability-on

state), the system exhibits excitability by first coming into a stable

state, then jumping into a higher stable state for k~4:3, and

finally dropping into the previous stable state post-pulse. However,

when the system appears bistable (k~3:9), as in the case of a pulse

from k~3:9 to 4:3, it undergoes a trajectory from the lower stable

state to the higher state for k~4:3, and then to a higher stable

state for k~3:9.

In this work, considering that the contribution of extrinsic noise

is dominant [2], we assume that the protein input signal fluctuates

around its mean value SaT, a(t)~SaTzj(t). j(t) denotes the

extrinsic noise fluctuation. Since colored noise is more realistic,

especially in biological systems [37], the autocorrelation time of

j(t) is non-negligible and is related to the cell cycle [9,38,39].

Thus, the noise involved in this interlinked loop is described by

Sj(t)T~0 ð5Þ

Sj(t)j(tzt’)T~SaT2g2
0e{t’=t0 , ð6Þ

where t0 is the autocorrelation time of the noise and SaT2g2
0t0 is

the noise intensity. In other words, t0 describes the noise

bandwidth and SaT2g2
0t0 represents the spectral height of the

colored noise [40].

Signal sensitivity and noise amplification
To study the propagation of an input signal with noise, we

define the steady-state sensitivity susceptibility S as a measure of

the change in the output signal due to a change in the input signal

[41–43],

Sw~
SaTdSwT
SwTdSaT

~
d lnSwT
d lnSaT

ð7Þ

Sm~
SaTdSmT
SmTdSaT

~
d lnSmT
d lnSaT

: ð8Þ

Here, Sw and Sm represent the relative change in protein and

miRNAs in response to changes in the input signal, respectively.

Figure 2. An illustration of the reducing process in cancer
networks involving miR-17-92, E2F, and Myc. (A) Model of the
interaction between E2F, Myc and miR-17-92. (B) The final reduced
abstract model. Variables p and m represent the protein module (Myc
and E2Fs) and the miR-17-92 gene cluster, respectively.
doi:10.1371/journal.pone.0051840.g002

Figure 3. The bifurcation diagram spanned by the positive
feedback (k) and the miRNAs inhibition (c2). The red circles and
black squares on borderlines represent saddle-nodes and Hopf
bifurcations, respectively. The diagram includes three features: mono-
stability, bistability, and excitability. The green and plum dashed lines
denote the cases in which c2~1:0 and k~4:5, respectively. The
parameter values are a~0:15, c1~1:0, and e~0:05.
doi:10.1371/journal.pone.0051840.g003
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The symbol S:::T means that the parameters are measured at the

stable state.

To obtain the noise propagation from the input signal to the

output signal, we measure the noise amplification A, which is

defined as the ratio between the output noise and the input noise

[25],

Aw~
gw

ga

~
std(w)=SwT
std(a)=SaT

ð9Þ

Am~
gm

ga

~
std(m)=SmT
std(a)=SaT

, ð10Þ

where Aw and Am denote the noise amplification of protein and

miRNAs due to fluctuations in the input signal, respectively. The

variables std and g represent the standard deviation and the

relative standard deviation, respectively. Clearly, for Aww1

(Amw1), the noise of w (m) is propagated and amplified, whereas

the noise of w (m) is repressed when Awv1 (Amv1).

The detailed deduction process to calculate the signal sensitivity

and noise amplification formulas (Eq. (3–4)) is presented in Text

S1.

Interlinked positive and negative feedback loop
As stated above, the system has a transition from monostability

to excitability, then switches to bistability before it finally reaches

monostability with an increased intensity of negative feedback c2.

Switching behaviors from the bistability are commonly reported.

These behaviors are important in the biological processes, such as

circadian clocks [44,45], the eukaryotic cell cycle [46,47], the p53-

Mdm2 network [48], and so on. Therefore, in this work, we

mainly focus on the gene network’s bistable behaviors that involve

interlinked positive and negative feedback loops. Note that in

bistability, the system’s stable state is determined by its initial state.

As mentioned above, the higher and the lower steady states are

normally referred to as the on-state and the off-state, respectively.

Thus, in the following section, we study the bistability region in

two different cases, one in which the initial steady state is in the on-

state and the other when it is in the off-state.

For an initial stable steady state in the on-state, Figure 5A

presents a bulk diagram of the noise amplification Aw as a function

of the positive feedback loop k and the negative feedback loop c2.

The diagram can be divided into two parts based on the Hopf

bifurcation line, which is marked with a black square in Figure 3.

The upper, warmer-colored pattern in Figure 5A corresponds to

the monostability and excitability regions, and the lower, cooler-

colored pattern corresponds to the on-state in the bistability and

monostability regions (also see Figure 3). In the upper region, Aw is

larger than 1:0, and it increases as k increases, but decreases as c2

increases.In the lower region, Aw is less than 1:0 and it decreases as

k increases, but Aw is amplified as c2 increases.

Figure 5B illustrates the noise amplification Aw for k~4:5.

Clearly, a maximal Aw exists at c2~1:54 in Figure 5B. This value

corresponds to the Hopf bifurcation H2 in the steady-state

bifurcation diagrams of the protein concentration ws (see Figure 3

and 4A). In the region where c2 is less than its value at the

maximal point, Aw is always less than 1:0, even though it increases

with increasing c2. Note that this parameter region corresponds to

the on-state of the systems (the lower area in Figure 5A).

Therefore, the noise is buffered in the on-state, but the repression

ability is reduced when approaching the Hopf bifurcation value.

Similarly, when c2 is larger than its value at the maximal point (the

upper region of Figure 5A), the system is in the off-state. The noise

is amplified when it comes into the excitability region (because Aw

always is larger 1:0), and and this amplifying ability is enhanced as

the value approaches the Hopf bifurcation.

Figure 5C plots the k dependence of Aw in an example with

miRNA inhibition of c2~1:0. When the system is initially in the

off-state, the noise is clearly amplified (Aww1) in the monostability

and excitability regions. This amplification ability is improved by

Figure 4. The steady-state bifurcation diagrams of the protein concentration w (black line) and miRNA concentration m (red line) for
(A) k~4:5 and (B) c2~1:0 with increasing c2 and k, respectively. S1=S2=S3=S4 denote saddle points and H1=H2 represent a Hopf bifurcations.
Clearly, the system has completed the transitions (A) from monostability to bistability to excitability, and has finally transitioned to monostability with
increasing c2 or (B) from monostability to excitability to bistability, and has finally transitioned to monostability with increasing k. The parameter
values are a~0:15, c1~1:0, c2~1:0, and e~0:05.
doi:10.1371/journal.pone.0051840.g004
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increasing k until it reaches its maximum value at k~3:51.

However, after crossing this maximum point (the Hopf bifurcation

point H2 in Figure 4B), the system transitions into an on-state, Aw

quickly reduces to less than 1:0 and k begins to repress the noise.

Figures 5D–F present the signal sensitivity Sw in terms of k and

c2. The dependence properties of Sw are compared to those of Aw.

Similar to Figures 5A, the bulk diagram of Sw is also divided into

two regions by the Hopf bifurcation points from Figure 3. In the

upper region (the off-state), Sw increases with increasing c2 or

decreasing k, whereas it decreases with decreasing c2 or increasing

k, in the lower region (the on-state).

For the case in which the initial stable steady is the off-state, we

plot the bulk diagrams of Aw and Sw as the function with k and c2

in Figure 6. It is clear that the k and c2 dependence of Aw/Sw is

the same as the case described in Figure 5. The only difference

between Figures 5 and 6 is that the boundary line in Figures 6A

and 6D represent the saddle nodes (marked with red circles in

Figure 3) rather than the Hopf bifurcation points in Figures 5A

and 5D. The maximal Aw and Sw values are located on the lower

saddle-node boundary of the bistability region in Figure 3. The

upper regions of Figures 6A and 6D correspondto the off-states,

including monostability, excitability, and bistability. However

lower regions only represent the on-state in monostability.

Clearly, because the deviation between the steady states of the

miRNA and protein modules is constant [31,34], the noise

amplification Am and the signal sensitivity Sm of the miRNA should

have the same evolutionary tendencies. In fact, we observe similar

k/c2-dependent behaviors in Am and Sm, but Am is always less than

1:0 based on the dynamic properties of the system (see Figures 1

and 2 in Text S2).

These results indicate that the role of interlinked positive and

negative feedback loops is not a simple noise suppressor or a noise

amplifier. The effects of positive and negative feedback loops are

dependent on the dynamic properties and initial state of the

system. In the case of an initial on-state, noise propagation is

always suppressed, but the the miRNA’s negative feedback loop

enhances the signal sensitivity and noise amplification. When there

is an initial off-state, the negative feedback loop begins to reduce

the noise amplification and signal sensitivity. The positive feedback

loop is always contrary to the negative feedback loop in all cases. It

is clear that the role of interlinked feedback loops appears to be a

noise buffer, based on both of its components. Moreover, the

boundary line between the two different roles is determined by the

bistability properties of the system (see Figures 5, 6).

Autocorrelation time of the input noise and time scale of
the reactions

It is well known from previous experiments that the extrinsic

noise is usually colored noise with a long autocorrelation time

[38,49,50]. When the noise autocorrelation time t0 is lower than

the relaxation time of the system, the noise should not be

neglected. t0 is also crucial to system behavior. Hornung et al.

reported that noise amplification is buffered by decreasing noise

autocorrelation times in linear networks [25].

In terms of cellular regulation, gene transcription networks can

be considered a slow reaction when the time scale of the network is

minutes, and reactions with a sub-second timescale are considered

fast reactions [51]. In systems with a single-loop switch, a fast-loop

switch can induce rapid responses. miRNA has been found to

diversify the response behaviors of a system based on its input

stimulus [34,52]. The research on budding yeast polarization

shows that slow positive feedback loop is in favor of the stability of

the polarized on-state [53]. In the Ca2z signaling, the long-term

Ca2z signals are robust in response to weak stimuli and noise [54].

As presented above, the properties of noise amplification and

signal sensitivity in a system with interlinked feedback are

dependent on its dynamic status and its initial state. However,

we observed that the autocorrelation time t0 and the time scale of

the protein reaction e did not have an effect on the signal

sensitivity S (see Figures 1–4 in Text S3).

The noise amplification A is influenced by t0 and e, especially in

the region of lower parameter values. Figures 7A and 7D illustrate

Figure 5. The effects of the positive feedback (k) and miRNA inhibition (c2) with initial steady on-state. (A) The noise amplification and
(D) the sensitivity of the protein module as a function of k and c2 when the initial stable steady state is on-state in a bistable region. Aw and Sw for
k~4:5 (B, E) and c2~1:0 (C, F), respectively. Note that Aw and Sw reach their maximum values at c2~1:54 (B, E) and k~3:51 (C, F), respectively. The
parameters values are a~0:15, c1~1:0, e~0:05, and t0~0:5.
doi:10.1371/journal.pone.0051840.g005
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Aw and Am as the function of t0 and e, respectively, in the case of

an initial steady on-state in the bistable region (similar behaviors

were observed in other cases; see Figures 5–7 in Text S3). Both

noise amplifications (Aw/Am) increase quickly and then tend

towards their saturation values with increasing t0. The noise

saturation values decrease with increasing e. However, when

ev0:25, Aw sharply increases at first, then decreases with

increasing t0. This behavior indicates that a maximal noise

amplification value possibly exists with a smaller e (faster reaction)

and a smaller t0 (shorter noise autocorrelation time). In addition,

in the same parameter region, Aw declines faster than Am with

increasing e.

For example, in Figure 7B, Aw first increases to a maximum,

then it reduces to a stationary value for smaller e as t0 increases.

When t0 is slightly larger, Aw increases directly to its saturation

value, similar to Am in Figure 7E. In the case of a fixed t0

(Figures 7C and 7F), both Aw and Am reduce with increasing e.

The smaller t0, the more Aw and Am quickly decrease. Moreover,

Am decreases more slowly than Aw because miRNA is more stable

than protein.

Therefore, decreasing the autocorrelation time of the noise and

increasing the time scales of the reaction can reduce noise

amplification without compromising signal sensitivity. Increasing

the timescale of the extrinsic fluctuations can enhance a noise

effect in the feedforward loops [39]. Slow feedback loops are

critical for some cellular processes. For example, in the Xenopus

oocyte’s maturation period, interkinesis occurred with Cdc2

partially deactivated [55]. The slow positive feedback loop

between Cdc2 and the MAPK cascade can maintain an on-state

rather than transition to an off-state [52]. If the bistable system

stay at off-state, like the transcriptional factor E2F, as the level of

E2F is off-state without proper serum [56], however, a rapid

feedback loop can induce E2F to remain in the on-state to control

the cell cycle [57]. While, overexpression E2F-1 can promote

neoplastic transformation [58]. Therefore, complex circuits can be

properly constructed in terms of fitness.

Discussion

It has been reported that interlinked positive and negative

feedback loops can act as tunable modules for superior adaptabil-

ity and robustness [32]. In previous studies, it was reported that a

single positive feedback loops can buffer the noise [25], while a

single negative feedback loop can optimize noise repression levels

within a defined range [59]. A role for coupled positive and

negative feedback motifs has been reported in cellular signaling

pathways, such as the PDGF signaling pathway [60], muscle cell

fate specification [61,62], Ca2z signaling [63], and so on. In

addition, mathematical equations have been created [64,65] to

observe the specific regulatory functions of coupled feedback loops

in cellular circuits. Positive feedback loops have been shown to

turn on in response to a stimulus and robustly remain in the on-

state, whereas negative feedback loops can suppress a sustained

response. These observations are in accordance with previous

experimental results [60–62]. In Ref. [66], it was shown that the

higher concentration of the positice feedback can induce the off-

cells switch to the on-state in a stochastic way. It was also

theoretically investigated that the negative feedback reduces the

variance of the noise in the higher protein level [67]. Thus,

interlinked positive and negative feedback loops can properly

modulate signal responses and effectively handle noise, enabling

them to make reliable decisions in signaling pathways.

The response of interlinked positive and negative feedback loops

to stochastic fluctuations has not been thoroughly examined in a

bistable system with various dynamic properties. Feedback loops

play a critical role in noise propagation. The E2F/Myc/miR-17-92

network has various dynamic properties (e.g., monostability,

bistability, excitability; see Figure 3) that are fine-tuned by positive

and negative feedback loops. Thus, the tunable effect of interlinked

feedback loops on signal sensitivity and noise propagation is

Figure 6. The effects of the positive feedback (k) and miRNA inhibition (c2) with an initial steady off-state. (A) The noise amplification
and (D) the sensitivity of the protein module as a function of k and c2 when the initial steady state is an off-state in the bistable region. The parameter
values are a~0:15, c1~1:0, e~0:05, t0~0:5. Aw and Sw for k~4:5 (B, E) and c2~1:0 (C, F), respectively. Note that Aw and Sw reach their maximum
values at c2~1:22 (B, E) and k~4:04 (C, F), respectively.
doi:10.1371/journal.pone.0051840.g006
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expected to be much different than that of single positive/negative

feedback loops. The present work shows that interlinked positive

and negative feedback loops dynamically tune noise propagation

signals rather than monotonically suppressing or amplifying these

signals, as would be expected in single feedback loops.

In this paper, we used frequency domain analysis [25,67,68] to

obtain expressions of systemic noise amplification and signal

sensitivity and to show that the roles of the positive and negative

feedback loops are dependent on dynamic behaviors. This

deduced recipe is consistent with the stochastic simulation result

from Gillespie algorithm with an acceptable deviation (See Text

S4). Noise amplification and signal sensitivity behaviors change in

various regions depending on the levels of positive and negative

feedback.

The positive/negative feedback in an interlinked feedback loop

does not simply suppress or enhance noise. For example, Figures 5

and 6 show that the miRNA negative feedback loop reduces noise

buffering to improve the signal sensitivity. This buffering is

achieved by slightly compromising on noise robustness when the

noise amplification (A) is less than 1. When Aw1, the negative

feedback loop appears to suppress noise. In addition to these

synergetic, tunable behaviors between the positive and negative

feedback loops, it is interesting to note that the noise autocorre-

lation time t0 and the response time constant of the protein

module e have no effect on the signal sensitivity (Figures 1–4 in

Text S3). Thus, the noise amplification can be tuned to a fixed

signal sensitivity based on the effects of t0 and e on A (see Figure 7

and Figures 5–7 in Text S3).

In addition, due to the underlying biochemical reactions, gene

regulatory networks involve time delays. Thus, the E2F/Myc/

miR-17-92 network should also consider the effects of time delays.

It is well known that long time delays can generate oscillations in a

negative feedback loop, and that the oscillations amplitude can be

increased by the addition of positive feedback loop [32,69,70].

Therefore, we assume that there will not be any qualitative

changes in our results by including time delays in our systemic

signal sensitivity and noise amplification.

Materials and Methods

Bifurcation analyses of the ordinary differential equations are

performed with OSCILL 8.28 [71]. The integral is calculated in

Mathematica 7.01.0 for Linux. The ordinary differential equations

were numerically solved using the fourth-order Runge-Kutta

scheme [72] in Fortran 95 codes.
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Text S1 The deduction processes for the signal sensi-
tivity S and the noise amplification A.

(PDF)

Text S2 Effects of the positive feedback loop k and
miRNA inhibition c2 on noise amplification and the
sensitivity of the miRNA module when the initial steady
is in the on-state or the off-state in a bistable region.

(PDF)

Text S3 Effects of the noise autocorrelation time t0 and
the time scale of the protein reaction e on signal
sensitivity and noise amplification for the system with
an initial steady in the on-state or the off-state in a
bistable region and an on/off state in a monostable
region.
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deduced results Equation (42) in Text S1.
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Figure 7. The role of the noise autocorrelation time t0 and the time scale of the protein reaction e on noise amplification. The noise
amplification in (A) the protein module and (D) miRNAs as a function of e and t0 . The noise amplification evolutes with t0 in input signal for various e
(B, E), and e for different t0 (C, F) for protein and miRNA modules, respectively. The parameter values are a~0:15, c1~1:0, c2~1:3, k~4:5.
doi:10.1371/journal.pone.0051840.g007
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