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Intracerebral hemorrhage (ICH) is associated with the highest mortality and morbidity despite only constituting approximately
10–15% of all strokes. Complex underlying mechanisms consisting of cytotoxic, excitotoxic, and inflammatory effects of
intraparenchymal blood are responsible for its highly damaging effects. Oxidative stress (OS) also plays an important role in
brain injury after ICH but attracts less attention than other factors. Increasing evidence has demonstrated that the metabolite
axis of hemoglobin-heme-iron is the key contributor to oxidative brain damage after ICH, although other factors, such as
neuroinflammation and prooxidases, are involved. This review will discuss the sources, possible molecular mechanisms, and
potential therapeutic targets of OS in ICH.

1. Introduction

Intracerebral hemorrhage (ICH) remains a significant cause
of morbidity and mortality throughout the world, although
studies of ICH intervention have increased dramatically in
the past decades [1]. Currently, there is no effective surgical
or medical treatment available to improve the functional
outcomes in patients with ICH because of its multiple
injury mechanisms [1, 2]. Numerous preclinical studies show
that secondary brain injury after ICH is caused by the
interaction of cytotoxicity, excitotoxicity, oxidative stress
(OS), and inflammation from the products of red blood cell
lysis and plasma components [3, 4]. However, the precise
pathophysiological mechanisms underlying ICH remain to
be completely elucidated.

OS is a condition in which the overproduction of free
radicals, mainly reactive oxygen species (ROS), exceeds the
antioxidant capacity and subsequently leads to cell injury
via directly oxidizing cellular protein, lipid, and DNA or
participating in cell death signaling pathways [5]. OS has
been implicated in neurodegenerative diseases of the central
nervous system and stroke [6, 7]. There are three major types
of ROS: the superoxide radical (O

2

∙−), the hydroxyl radical
(∙OH), and hydrogen peroxide (H

2
O
2
) [8]. Reactive nitrogen

species (RNS) are another major type of free radicals, which
mainly consist of nitric oxide (NO) and its derivatives. NO is
produced in neurons, endothelial cells, and activated astro-
cytes by nitric oxide synthase (NOS). Under physiological
conditions, NO mediates neurotransmission and regulates
neuronal survival, proliferation, and differentiation. Under
pathological conditions, however, excessive NO can lead
to OS via various mechanisms [9]. Moreover, NO reacts
with O

2

∙− to form the more toxic compound peroxynitrite
(ONOO−), which can cause oxidation and nitration of tyro-
sine residues in proteins [10].

Experimental studies have confirmed that OS plays a
pivotal role in cerebral injury following ICH. The oxidative
products of macromolecules significantly increased, whereas
antioxidant enzymes, such as superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase, correspondingly
decreased as a result of ICH [11, 12]. Free radical scavengers
proved to be effective in neuroprotection in animal ICH
models [13, 14]. Moreover, oxidative markers, leukocyte 8-
hydroxy-2-deoxyguanosine and lipid hydroperoxides, are
detected in association with long-term and short-term clin-
ical outcomes, respectively, after spontaneous ICH [15, 16].
However, no antioxidant has been applied in patients with
ICH because of the unclear mechanism of OS-related injury.

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 3215391, 12 pages
http://dx.doi.org/10.1155/2016/3215391

http://dx.doi.org/10.1155/2016/3215391


2 Oxidative Medicine and Cellular Longevity

The current review attempted to illustrate the knowledge
regarding ICH-related OS and its possible molecular mech-
anism and to discuss the potential targets of intervention for
future research.

2. Primary and Secondary Brain
Injury after ICH

Primary brain injury is caused by immediate physical dis-
ruption to the neurovascular architecture surrounding the
hemorrhagic site due to sheering force and the mass effect
of an ICH. Surgical clot evacuation targeting the primary
injury has failed due to the extra adverse effects of the
surgical procedure [17, 18]. Many clinical trials on minimally
invasive surgery for ICH evacuation have thus been per-
formed with potentially improved functional outcomes [19,
20]. However, there are several drawbacks, such as the long
time required for an adequate blood evacuation, a relatively
high risk of infection and rehemorrhage, and intensive
labor and resource consumption [21]. After the onset of
bleeding, hematoma enlargement further exacerbates brain
damage in 20–40% patients within 24 hours [22]. Hyperten-
sion may be a modified factor affecting hematoma growth
[23].

When initial bleeding stops and a stable hematoma is
formed, a cascade of events occurs to induce secondary
brain injury. Thrombin is instantly produced after ICH to
stop bleeding, but it also contributes to early neural and
endothelial injury [24]. Inflammatory cells infiltrate and
damage perihematoma viable brain tissue by excreting a vari-
ety of cytokines and chemokines [25]. Another contributor
to brain injury after ICH is hemoglobin and its metabolite
released via erythrocyte lysis in hematoma [26]. As the major
component of hemoglobin, heme can be degraded into iron,
carbon monoxide, and biliverdin by heme oxygenase (HO).
Iron overload in the brain after hemorrhage subsequently
generates abundant ROS, resulting in neurotoxicity [27].
These overlapped mechanisms interact and result in blood
brain-barrier (BBB) disruption, neuronal loss, and gliosis
with permanent neurological deficits.

3. OS in ICH

ROS are byproducts of cellular metabolism and are mainly
generated by mitochondria in living cells [28]. They are
highly active with a short half-life, making them very difficult
to analyze directly in the laboratory [29]. OS is usually
assessed by indirectly measuring the oxidized products of
macromolecules. 8-Hydroxy-2-deoxyguanosine (8-OHdG)
is a widely used biomarker of in vivo oxidative DNA dam-
age. Both malondialdehyde (MDA) and 4-hydroxy-trans-2-
nonenal (HNE) are lipid peroxides produced by free radical
attack. Dinitrophenyl (DNP) and protein carbonyl can be
measured to quantify protein oxidative damage. The detec-
tion of oxidized hydroethidine (HEt) is specifically used to
assess O

2

∙− production in vivo because HEt can pass through
the BBB and be selectively taken up by neuron and glia cells
and oxidized by O

2

∙− to ethidine (Et), which provides a red
fluorescence signal [30].

In a rodent ICH model, 8-OHdG and DNP increased
along the same time course, with peak production at 3 days
after ICH, suggesting the presence of OS in ICH [12]. Addi-
tionally, the level of MDA increases and is correlated with
apoptosis following ICH, indicating that OS contributes to
ICH-induced brain injury [31]. Moreover, brain white matter
is also damaged as a result of protein oxidation in a porcine
ICH model [32].

Recently, OS was reported to exert a prognostic effect in
ICH patients. A prospective study analyzing blood samples
from 64 ICH patients revealed that elevated level of leukocyte
8-OHdG was associated with lower 30-day Barthel Index
independent of traditional prognostic factors [15]. Another
prognostic study reported that the serum lipid hydroperoxide
(ROOH) concentration was a predictor of poor clinical
outcome in ICH survivors and was positively correlated with
short-term mortality [16]. In contrast, Mantle et al. observed
similar levels of protein carbonyl and antioxidants in ICH
and control cases, suggesting that there may be no increased
oxidative damage in ICH [33]. This unexpected result is
questionable because the tissue (peritumor or aneurysm
tissue) used as a control for the oxidative measurement
may be pathologically compromisedwith potentially elevated
levels of OS and therefore is not a qualified control [34].

4. Free Radical Sources after ICH

4.1. Mitochondria Dysfunction. Physiologically, 1–3% of all
electrons in the electron transport chain in mitochondria
leak, generating superoxide radicals, that can be neutralized
by normal antioxidant systems [28]. During ICH, mitochon-
dria dysfunction occurs, and substantial ROS production
follows [35, 36]. Kim-Han et al. detected an obvious reduction
in the oxygen consumption rates of mitochondria in ICH
patients, indicating that mitochondria dysfunction, and not
ischemia, is responsible for the decreased oxygenmetabolites
after ICH [35]. Direct evidence of ROS from malfunctioning
mitochondria was reported in a recent study, which found
that amitochondrial ROS-specific scavenger can significantly
alleviate the increased ROS following ICH [37]. The mech-
anism of excessive ROS formation by mitochondria after
ICH remains unclear but may be partially attributable to
mitochondrial permeability transition pore (MPTP) because
the inhibition of MPTP can attenuate ROS production [37].

4.2. Hb-Heme-Iron. As the most abundant erythrocyte pro-
tein, hemoglobin (Hb) is released into the extracellular space
via complement-mediated cell lysis in the hours after ICH
and is a potent mediator of OS-induced injury [38, 39].
Both in vitro and in vivo investigations have shown that
ROS is highly produced after exposing Hb to cell culture
or injecting Hb into mouse striatum [39–41]. Katsu et al.
studied the temporal change of ROS in a Hb-injection rat
model and observed remarkable ROS production as early as
1 h, which increased at 24 h [42]. Recently, NO, a form of
RNS, has also been found to be overproduced because of
NOS activation and leads to BBB disruption after infusing
Hb into rat brain [43]. Regarding the prooxidant mechanism
of Hb, it is commonly believed that iron released from its
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degradation is responsible for oxidative damage because an
iron chelator may block Hb-induced neurotoxicity [44]. In
fact, Hb itself can release a large amount of superoxide during
spontaneous, nonenzymatic oxidation to oxyhemoglobin and
methemoglobin [45, 46].

Heme, released from methemoglobin, quickly oxidizes
to form hemin, which also triggers oxidative damage in
brain tissue around the hematoma. An in vitro experiment
demonstrated that hemin exposure leads to cell death, pre-
ceded by a significant, iron-dependent increase in ROS [47].
Nevertheless, another in vitro study showed that hemin could
stimulate lipid peroxidation, irrespective of iron mediation,
because the reaction could not be inhibited by deferoxamine
or transferrin [48]. Hence, the mechanism of hemin-related
oxidative damage partly involves its breakdown to iron by
HO, similar to that of Hb [49]. Indeed, hemin is redox-
active and can react with peroxides to produce cytotoxic
free radicals [48, 50]. Moreover, hemin can intercalate into
the cell plasma membrane, facilitating lipid peroxidation
[51]. Given the effect of hemin in preclinical studies, bipha-
sic functions are observed. Hemin-induced brain injury is
evidenced by increased brain water content at 24 hours
after intracerebral hemin infusion [46]. In contrast, systemic
hemin treatment is neuroprotective after ICH [52]. Although
the mechanisms underlying the protection provided by
systemic hemin administration are poorly understood, it is
clear that most hemin is in circulation rather than in the
brain.

Iron overload is involved in secondary brain injury,
leading to neuronal death, brain edema, and neurodeficits
after ICH [53, 54]. Intracerebral iron overload begins within
24 h, peaks at 7 days, and continues for at least a month after
hemorrhage [55]. Excessive iron in the extracellular space
induces oxidative damage via the Fenton reaction, which
yields ROS, especially toxic hydroxyl radicals [56]. Direct
evidence of iron-mediated oxidative injury has shown that
injecting FeCl

2
into rat brain causes oxidative DNA damage

[11, 12]. The strongest finding supporting the hypothesis of
iron-mediated oxidative brain injury is that iron chelators
decrease iron accumulation, attenuate ROS generation, exert
anti-inflammatory effects, and improve neurological func-
tion [57, 58].

4.3. Inflammatory Cells. Neuroinflammation is recognized as
a vital factor in the pathophysiology of ICH-induced brain
injury and is characterized by microglia activation, leukocyte
infiltration, and cytokine and chemokine production [3, 4,
25]. In addition to the release of inflammatory factors, the
activation of inflammatory cells following ICH, initially to
remove oxidative toxins, also participates in ROS production.

As one type of innate immune cell within the brain,
microglia are rapidly activated within 1 h after ICH, peaking
at 3–7 days and persisting for several weeks [59]. Hb is a
powerful activator of microglia via toll-like receptors [60].
The imbalance of the phenotypic shift between theM1 andM2
phenotypes of microglia contributes to a large release of ROS
in addition to proinflammatory factors [61]. Cell experiments
have shown that microglia can induce ROS production in
vitro [58, 59]. Furthermore, the inhibition of microglia was

reported to decrease the ROS production and brain damage
volume in an ICH animal model [62].

Neutrophils are the earliest leucocytes to enter the brain
after ICH. The role of neutrophils in radical production
during ischemic brain stroke has been confirmed by reduced
radical formation after neutrophil depletion [63]. OS-related
brain injury is part of the pathogenesis mechanism of neu-
trophil infiltration after ICH [64]. The inflammation linked
to OS following ICH indicates that neuroinflammation and
OS are intercalated in ICH-induced secondary brain injury.

5. Prooxidase in ICH

The process of OS is related to the activation of many
prooxidases in many diseases. The prooxidases that are
reported in ischemia stroke include NADPH oxidase (NOX),
cyclooxygenase (COX), xanthine oxidase, and nitric oxide
synthase [NOS] [65]. In ICH, NOX and NOS are most
commonly studied [10, 66–68].

5.1. NADPH Oxidase. NOX is a major source of ROS and
is mainly composed of five subunits: a large gp91phox and
a smaller gp22phox subunit in the plasma membrane and
p47phox, p67phox, and p40phox subunits in cytoplasm [65].
Once cytosolic p47phox is phosphorylated upon stimulation,
it binds to the components of the plasma membrane and
activates NOX, which can transfer electrons from NADPH
to oxygen, forming superoxide [66]. Seven NOX isoforms,
NOX1 to NOX5 and Dual Oxidases 1 and 2, have been identi-
fied among which NOX2 (gp91phox) is abundant in the brain
[67–69]. Tang et al. found that the OS resulting from activa-
tion ofNOX2 contributes to the severity of ICHand promotes
brain injury by comparing wild-type and gp91phox knockout
mice [67]. The gp91phox knockout hemorrhagic mice showed
lower levels of oxidative product, ICH volume, brain water
content, neurological deficit, and mortality rate [67].

Another study by Zia and colleagues showed that the
induction of NOX2 could cause OS and worsen brain injury,
whereas the inhibition of NOX2 by apocynin suppresses
ROS production and confers neuroprotection in rabbit pups
with germinal matrix hemorrhage-intraventricular hemor-
rhage (GMH-IVH) [68]. Moreover, OS resulting fromNOX2
activation not only deteriorated ICH-related injury but was
associated with the occurrence of ICH in hypertensive mice
[70]. However, the same NOX2 inhibitor that exerts a protec-
tive property in the GMH-ICH model by preventing p47phox
subunit translocation exhibits no effects on enhanced NOX2
activity, lipid peroxidation, brain edema, or neurological
dysfunction in a rat ICH model [71]. It is possible that
different species (rabbit versus rat), hemorrhagic locations
(GMH-IVH versus basal ganglia hemorrhage), and bleeding
(autologous artery blood versus collagenase) are responsible
for these opposing conclusions.

5.2. Nitric Oxide Synthase. There are three isoforms of NOS
accounting for NO production: neuronal NOS (nNOS),
endothelial NOS (eNOS), and inducible NOS (iNOS). The
first two are constitutively expressed, and their activities are
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calcium dependent, whereas the last one is synthesized by
the induction of proinflammatory cytokines, independent of
calcium regulation [72].

The activation of NOS after ICH has been demonstrated
in many studies. Using the autologous blood model, Zhao
et al. reported the temporal profile of iNOS and nuclear
factor-𝜅B (NF-𝜅B) and found that the maximal detection of
iNOS paralleled the peak concentration of NF-𝜅B at 3 days
after ICH, suggesting that iNOS may be mediated by NF-
𝜅B because the downstream gene products of NF-𝜅B include
iNOS [73]. Other investigators detected NOS overexpression
and suggested the role of the NOS/NO/ONOO− pathway in
BBB disruption using the Hb-injection rat model [10, 43]. In
contrast, administering nNOS inhibitor after ICH was found
to protect BBB integrity and decrease both neuronal death
and neurological deficits [74]. Moreover, iNOS knockout
mice present significantly less brain edema after collagenase-
induced ICH [75]. Therefore, NOS might be a therapeutic
target.

The molecular mechanisms for NOS activation after ICH
are primarily NF-𝜅B dependent [9, 73].Thrombin and proin-
flammatory cytokines, such as TNF-𝛼 and IL-1, can induce
iNOS expression in microglia via the PKC/p38MAFP/NF-𝜅B
pathway [76]. Hemin also activates the NF-𝜅B transcription
factor via an undefinedmechanism [77, 78]. In addition, high
levels of glutamate activateNOS through theNMDA receptor
with subsequent Ca2+ influx by phosphorylating IKB andNF-
𝜅B translocation [74, 79].

6. Antioxidative System in ICH

6.1. Heme Oxygenase. Extracellular heme binds to hemo-
pexin to enter neuronal cells through the hemopexin receptor
or heme carrier protein 1 [80]. Intracellular heme is then
degraded into iron, carbon monoxide, and biliverdin. HO is
the rate-limiting enzyme for this catabolic process with two
active isoenzymes: the inducible HO-1 and the constitutively
active HO-2. HO-1 is barely detected in the brain under
normal conditions but is induced in microglia/macrophages
after ICH, whereas HO-2 is normally expressed in neurons,
accounting for the vast majority of HO activity in the brain
[81].

The antioxidant effects of these enzymes on ICH-induced
secondary brain injury are debatable and have been thor-
oughly reviewed by Chen-Roetling et al. [82]. Their roles
are variable, depending on the different ICH models used
and various cellular types affected [82]. Compared to wild-
type mice, HO-2 knockout was found to attenuate brain
injury, remarkably reducing cell loss, striatal protein, and
lipid oxidation in a blood-injection model, but worsened
the outcome by increasing perihematomal lesion volume,
neuroinflammation, and edema in a collagenase-injection
model [83, 84]. Conversely, HO-1 knockout exerted a ben-
eficial effect on outcome in a collagenase-induced ICH
model [85]. These disparate conclusions are partly explained
by the diverse injury mechanisms between the blood-
and collagenase-injection ICH models and the different
distributions and expression timing of HO-1 and HO-2
[82].

6.2. Superoxide Dismutase. SOD is a key antioxidant enzyme
that can detoxify O

2

∙− to H
2
O
2
, which is further converted

to H
2
O by catalase or GPx. According to the specific cellular

distribution andmetal cofactors, SOD can be categorized into
copper/zinc SOD (SOD1) in the cytosol and manganese SOD
(SOD2) in the mitochondria and extracellular SOD (SOD3)
[86].

Experimental animal studies have shown that free radical
scavenging systems are destroyed after ICH. More specifi-
cally, evidence suggests that the levels of SOD1 and SOD2
decrease as the ROS level increases 1 day after lysed ery-
throcyte infusion in rats [87]. Chen et al. confirmed the
damaged antioxidant system with elevated lipid oxidation
and decreased SOD activity 1 day after ICH in the ventricle
[88]. Clinically, decreased plasma SOD and reduced total
superoxide scavenger activities have been observed in ICH
patients within 1 day after onset [89]. However, SOD1 was
found to increase from 1 day after ICH induced by whole
blood infusion and peak at 7 days in one study [90]. These
contrasting results require further investigation.

Given the protective effect of SOD1, exogenous or
endogenous enhancement of SOD1 has been attempted to
alleviate the oxidative damage in ICH. SOD1 overexpression
in transgenic rats was linked to reduced OS, BBB disruption,
and neuronal apoptosis in a Hb-injection model [42]. A
recent study on cell replacement therapy in ICH found that
neural stem cells (NSCs) overexpressing SOD1 3 days after
ICH could increase neuronal survival, indicating that SOD1
enhancement alone or combined with other treatments may
be effective in ICH [91]. Moreover, SOD1 hyperexpression
is also protective against the spontaneous occurrence of
ICH in hypertensive mice by decreasing superoxide. Fewer
occurrences, smaller size, and a lower number of ICH are
observed in SOD1 transgenic mice than those in SOD1-
deficient mice [92]. However, chemically synthesized SOD
with extended half-life and improved BBB permeability was
reported to have no effect in a collagenase-induced ICH
model when intravenously administered [93]. This failure
may be partially ascribed to the insufficient dosage used
[93].

6.3. Nuclear Factor Erythroid-2 Related Factor 2 (Nrf2). Nrf2
is a basic region-leucine zipper protein that controls the
genomic regulator of the cellular antioxidant defense system,
including the HO and SOD mentioned above [94]. ROS can
activate theKeap1/Nrf2/ARE pathway to counteract oxidative
damage after ICH as an adaptive response [90, 95, 96]. Keap1
is an OS sensor and negatively regulates Nrf2. Once exposed
to ROS, Nrf2 dissociates from Keap1, translocates to the
nucleus, and activates antioxidant response element (ARE)
dependent cytoprotective genes that mediate cell survival
[97]. Nrf2 increases significantly from 22 h and peaks at
8 h, whereas Keap1 shows a corresponding decrease in the
perihematoma region in ICH rats [90]. These opposing
expression changes suggest that Nrf2 is activated by Keap1
suppression after ICH. Moreover, the neuroprotection of
Nrf2 indicates that Nrf2 knockout mice suffer more brain
damage associated with the increased production of ROS
and apoptosis [95, 96] and that Nrf2 activation could reduce
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peroxide formation by augmenting the antioxidative capac-
ity and hematoma clearance after ICH [98]. Hence, Nrf2
activation by pharmaceutical drugs is a promising target to
attenuate OS-induced brain injury following ICH.

Recently, dimethyl fumarate (DMF), a fumaric acid ester
that has been approved by the FDA as a treatment for
patients with relapsing-remitting multiple sclerosis (MS)
[99], demonstrated a beneficial effect by activating Nrf2 in
rodent ICHmodels [100, 101]. In the study by Zhao et al., rats
and mice, including Nrf2 knockouts, were initially subjected
to intracerebral injection of blood and were then treated with
DMF at a clinically relevant dose [100]. The results showed
that treatment with DMF activated Nrf2, induced antioxida-
tive enzymes, reduced brain edema, and ultimately enhanced
neurological function. Additionally, enhanced hematoma
resolutionwas observed in in vitro experiments by evaluating
the phagocytic functions of primary microglia in culture.
Iniaghe and colleagues found that upstream casein kinase 2
promoted Nrf2 translocation to exert a neuroprotective effect
after DMF treatment [101]. These findings are important.
Because DMF is currently approved for clinical use for MS,
clinical translation will be relatively easy once the efficacy of
DMF on ICH is confirmed in a clinical trial.

7. OS and Death Signaling Pathways in ICH

Numerous brain stroke studies have revealed that ROS/RNS
not only directly oxidize cellular macromolecules, such as
lipids, proteins, and nucleic acids, associated with oxidative
damage, but also are involved in the death signaling pathways.
The molecular mechanisms of ROS-mediated cell death in
brain ischemia have been thoroughly studied and reviewed
elsewhere [29, 65]. Briefly, there are threemajorOS-mediated
pathway activations, including the PI3K/Akt, MAPK/P38,
and NK-𝜅B pathways [29]. Cytochrome c-mediated apopto-
sis is another critical pathway that ismitochondria dependent
[102]. These OS-induced death signaling pathways have also
been discussed in subarachnoid hemorrhage [103].

Free radicals can induce apoptosis, and antioxidant ther-
apy can reduce neuronal apoptosis after ICH [104, 105].
Few studies have focused on the precise mechanism of
ROS/RNS-induced apoptosis or necrosis in the setting of
ICH. In vitro Hb oxidative neurotoxicity was attenuated by
inhibitors of protein kinase C (PKC) and protein kinase CK2,
suggesting that the PKC/CK2 pathway might participate in
Hb-induced apoptosis, independent of HO activity [106].
However, the ERK pathway is involved in heme-mediated
neuronal death by affecting HO-1 activity [107, 108]. The
NF-𝜅B pathway has also been detected in mediating Hb-
induced apoptosis [108]. Moreover, the JNK pathway was
reported to be activated following iron infusion, and the
inhibition of JNK activation reduces apoptotic neuronal cell
death and improves functional outcome [109, 110]. Other
studies have shown that caspase cascades are activated by OS
after hemoglobin explosion in primary neuronal cultures [36]
and that ROS-induced apoptosis is related to cytochrome c
release in the ICH model [95].

Although the ROS-mediated apoptotic signal pathway
after ICH remains unclear, recent findings have shown that

MMP-9 is an important mediator linking ROS/RNS with
cell death following ICH [42, 95, 111, 112]. MMP-9 has been
reported to elevate early, with a peak at 2-3 days, and is asso-
ciated with apoptosis in the acute phase of ICH [113, 114].The
MMP inhibitor, GM6001, ameliorated neuronal death when
administered within 72 h in a mouse ICH model [113]. Both
in vitro and in vivo experiments have shown thatHb-induced
ROS contributes to MMP-9 activation [42, 111]. NO derived
from iNOS has also been reported to directly activate MMP-
9 [112]. Moreover, a recent study by Ding et al. demonstrated
that superoxide, NO, and their potent toxicmetabolite perox-
ynitrite (ONOO−) participate in the activation of MMP-9 via
the following two mechanisms [115]. First, ONOO− directly
modifies pro-MMP through S-nitrosylation and then acti-
vates MMP-9. Second, NF-𝜅B is indirectly upregulating and
mediates the transcription of MMP-9 [116]. The strong evi-
dence supportingMMP-9-mediated OS-induced cell death is
based on the fact that scavenging or decomposing ROS/RNS
significantly decreases MMP-9 activity and subsequent neu-
ronal death. SOD1 overexpression or free radical scavenger
U83836E successfully reduced OS, MMP-9 levels, and subse-
quent apoptosis after intrastriatal Hb injection [42, 111]. iNOS
inhibition by osteopontin to preventNOproduction also sup-
pressed MMP-9 activation and rescued neuronal cells in the
perihematoma region in amouse collagenase-inducedmouse
ICH model [112]. Additionally, FeTPPS, a type of ONOO−
decomposition catalyst, decreased the levels of ONOO− and
MMP-9 activity, followed by reduced apoptosis, in a Hb-
injection rat model [115]. Therefore, ROS/RNS and MMP-9
may constitute a crucial cell death pathway in ICH (Figure 1).

8. Therapeutic Targets and Clinical Trial

Given the abovementioned multiple sources of ROS gen-
eration and injured oxidant scavenger systems during OS-
induced damage in ICH, several potentially therapeutic
targets are discussed.

8.1. Blocking the Sources of ROS Production. Because intra-
parenchymal blood is the origin of many prooxidant toxins,
including Hb, heme, and iron, it is reasonable to suppose that
blood evacuationmay reduce oxidative damage if the surgery
results in no or minimal additional new injury. Hence, min-
imally invasive surgery (MIS) for clot evacuation may repre-
sent a therapeutic strategy for the prevention of secondary
oxidative damage. Animal studies have demonstrated that
MIS alone or combined with other therapy can improve
neurofunction with decreased oxidative injury and reduced
apoptosis [117, 118]. More recently, clinical trials with small
sample sizes investigating newly applied mechanical devices
have reported promising outcomes [119, 120]. A multicen-
ter, randomized, controlled study by our center comparing
MIS with routine craniotomy is ongoing and involves 2448
ICH patients [121]. The clinical results will provide valuable
information regarding the effect of MIS on the prognosis of
patients with ICH.

Strategies targeting chelating individual prooxidants have
been investigated. Haptoglobin is a blood protein primarily
synthesized by hepatocytes that is also produced locally by
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Figure 1: The OS-induced death pathway mediated by MMP-9. Hb released into extracellular space via complement-mediated cell lysis
after ICH is a potent oxidant which can produce a plenty of free radicals such as superoxide (O

2

∙−), NO, and their conjunctive metabolite,
peroxynitrite (ONOO−). These ROS/RNS activate MMP-9 possibly through NF-𝜅B activation and finally lead to neuronal death. ICH:
intracerebral hemorrhage; MMP-9: matrix metalloproteinases-9.

oligodendrocytes in the brain. Haptoglobin binds extracel-
lular Hb, preventing Hb-mediated oxidative damage [122].
Animals that are hypohaptoglobinemic exhibit more brain
damage after ICH, whereas those overexpressing haptoglobin
are relatively protected. Therefore, haptoglobin is a potential
therapeutic target for the prevention of brain injury following
ICH [123]. Sulforaphane, a Nrf2 activator, has been shown
to elevate haptoglobin and reduce brain injury in an ICH
animal model [96]. Hemopexin is another blood protein
known to bind heme with high affinity [124]. Hemopexin-
deficientmice show increased protein oxidation, tissue heme,
and augmented ICH damage [125]. This protein may also be
a target to alleviate brain injury after ICH. Additional work
must be performed to further establish its efficacy.

Deferoxamine mesylate (DFO), an iron chelator, is a
promising agent for ICH treatment that has been confirmed
to be effective in many preclinical studies [126–128]. The
preliminary results in clinical trials are also encouraging.The
phase I clinical trial has determined the tolerability, safety,
and maximum tolerated dose of DFO in patients with ICH
[129]. The phase II trial (High Dose Deferoxamine [HI-DEF]
in Intracerebral Hemorrhage) is now underway, with the
initial results indicating that DFO can reduce perihematoma
edema, a major predictor of clinical outcome [130].

Other possible interventional targets include prooxidant
enzymes, which are activated during ICH. Theoretically,
inhibiting or deactivating these enzymes would be bene-
ficial. However, controversy remains regarding the use of
prooxidase inhibitors. For example, the beneficial effect of
apocynin given 2 h after ICH is not achieved by its acting as an
intracellular inhibitor of NADPH oxidase [71]. Tetrahydro-
biopterin, which has been reported to limit the superoxide
generation from NOS and chemically reduce superoxide,
fails to reduce neurological deficits 24 h after ICH in mice
[131]. One possible reason for this inefficacy is that many
prooxidases consist of several isoforms, and their functions
usually differ or can even be opposing [72, 132]. Completely,
and not selectively, suppressing their activation would negate
the benefits gained from some protective isoenzymes. It
would be useful to identify the agent specifically acting on
the detrimental isoform for a certain prooxidase.

As mentioned above, the various effects of heme oxy-
genases (HO-1 and HO-2) relevant to different ICH models
indicate that they are challenging targets in the treatment of
ICH [84, 133]. HO inhibitors may attenuate the neurotoxicity
of the iron release from heme/hemin decomposition, but

the toxicity of heme can enhance oxidative damage. A
combination approach using two or more agents to increase
HO activity while detoxifying iron with chelators has been
proposed [82].

8.2. Scavenging Excessive ROS/RNS. Because of the impaired
defense system after ICH, an alternative treatment is to
neutralize the overproduced ROS and restore the normal
function of endogenous antioxidant enzymes and scavengers.
There is substantial support for the use of free radical
scavengers in the management of brain injury secondary to
ICH.Many free radical scavenging drugs have been evaluated
in clinical trials to improve the outcome of ICH.

NXY-059 (disufenton sodium) is a free radical-trapping
agent that significantly reduced disability and hemorrhagic
transformation in acute ischemic stroke patients in the
SAINT-I clinical trial [134]. Accordingly, the efficacy of NXY-
059 treatment was also explored in ICH patients in the Cere-
bral Hematoma and NXY Treatment trial (CHANT) [135].
However, the result was disappointing, with no treatment
effect observed on functional outcome, despite tolerability
and safety. Edaravone is another free radical scavenger that
has been marketed for clinical use in acute ischemia stroke
treatment since 2001, with preclinical success in ICH [136–
138]. Although goodneurological function has been observed
in preclinical studies, the clinical effect of edaravone in ICH
remains unclear because of a lack ofmulticenter, randomized,
double-blind clinical trials [139].

PPAR𝛾 agonists have been reported to play antioxidative
roles by upregulating catalase and SOD directly or activat-
ing the Nrf2 pathway, and the Safety of Pioglitazone for
Hematoma Resolution in ICH (SHRINC) clinical trial has
been launched [140–142]. The SHRINC study will provide
important information regarding the safety and clinical
outcome of PPAR𝛾 agonists in ICH.

9. Conclusion

OS has been established as an important pathogenesis of
brain injury in ICH. Upon bleeding into the parenchyma,
elevated glutamate, infiltrating inflammatory cells, and the
metabolic products of erythrocyte lysis are the sources of
active free radical generation. Free radical overproduction is
accompanied by prooxidase activation and antioxidase inhi-
bition, causing OS in ICH. The direct biomolecule oxygena-
tion and indirect cell death signaling pathway activations by
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Figure 2: The sources of oxidative stress and the cell death pathways induced by oxidative stress following intracerebral hemorrhage.
Oxidative stress after ICH is a consequence of prooxidant overproduction as well as deactivation of antioxidases such as SOD. The Hb-
heme-iron metabolic axis due to erythrocyte lysis represents the major sources of ROS. Neuroinflammation evoked by ICH involves the
activation of microglia and the infiltration of leukocyte which is another important contributor to the production of ROS. Activation of
prooxidases including NOS and NOX during ICH also releases plenty of free radicals. Other factors which can generate ROS include
mitochondria dysfunction. Oxidative stress causes cell death by direct oxidation of lipid, protein, and DNA or via induction of neuronal
death mediated by PKC/CK2, ERK, NF-𝜅B, JNK signaling pathways as well as cytochrome c release, and MMP-9 activation. PKC: protein
kinase C; ERK: extracellular signal-regulated kinase; NF-𝜅B: nuclear factor kappa B; JNK: c-Jun N-terminal kinase; ROS: reactive oxygen
species; RNS: reactive nitrogen species; NOS: nitric oxide synthase; NOX: nicotinamide adenine dinucleotide phosphate oxidase; MMP-9:
matrix metalloproteinases-9.

ROS/RNS are responsible for the OS-induced brain damage
after ICH (Figure 2).

Future research should focus on developing new antioxi-
dant compounds that can both block the sources of oxidative
stress in ICH and neutralize the existing overproduction of
free radicals. More importantly, efforts should be made to
identify the molecular mechanism underlying the effect of
OS on cell death in ICH. Additionally, because ICH-induced
brain damage is ascribed to a complex pathogenic mecha-
nism, focusing on one specific pathway, such as single antiox-
idant treatment, is not sufficient to achieve significant clinical
improvement. Therefore, one drug with multifaceted func-
tion or combined surgical and pharmaceutical treatment or
two or more drug interventions with distinctive mechanisms
may be promising future treatments. For these reasons, the
ultimate results of the clinical trials of DFO and pioglitazone
in ICH are high anticipated because both drugs havemultiple
beneficial effects and reduce oxidative damage [140, 143].
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