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Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the
development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation
induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These
immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells
and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous
system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there
is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive
immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the
immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for
ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D).

1. Introduction

The incidence of obesity and insulin resistance has increased
in recent years. The World Health Organization (WHO)
estimates that approximately 600 million adult people are
obese [1]. Obesity directly impacts the economy and the
quality of life of affected patients [2, 3]. Obesity is a disease
with multifactorial origins and is characterized by excessive
lipid accumulation in white adipose tissue (WAT), is pro-
moted by the imbalance between caloric intake and energy
expenditure [4, 5], and has harmful consequences to the indi-
vidual [6]. Obesity is a risk factor for the development of
other diseases, such as type 2 diabetes (T2D), metabolic syn-
drome, cardiovascular diseases, atherosclerosis, and several
types of cancer [6–10].

WAT is a critical organ that contributes to host metabo-
lism. Several cell types reside inWAT that regulate WAT and

systemic homeostasis, such as adipocytes and preadipocytes,
fibroblasts, macrophages, T lymphocytes, and among several
other immune and nonimmune cells [11–15]. During obe-
sity, immune alterations are observed in response to WAT
expansion, which lead to a low-grade chronic inflammation.
This inflammatory response is induced by changes in the
recruitment of new leukocytes and also by changes in the
function and activation status of adipose tissue resident mac-
rophages (ATMs) and other leukocytes [6, 16, 17]. The
immune changes that occur in WAT are characterized by
the reduction of anti-inflammatory cytokines, such as inter-
leukin 10 (IL-10), and upregulation of proinflammatory
cytokines, such as tumor necrosis factor-α (TNF-α). This
leads to the inhibition of the insulin-signaling pathway,
which results in systemic insulin resistance [17].

Disruption of adipose tissue (AT) homeostasis and the
induction of chronic systemic inflammation caused by
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obesity are complex processes and involve many players [16].
The disturbances within WAT microenvironment occur at
the immune and metabolic levels in obesity and obesity-
related conditions. Among these changes, increased levels
of circulating free fatty acids (FFA) contribute to the develop-
ment of insulin resistance [18]. Elevated levels of FFAs lead
to the generation of new metabolites from FFA reesterifica-
tion, such as diacylglycerol (DAG) [19]. DAG promotes the
activation of several serine/threonine kinases, such as protein
kinase C (PKC), which drastically impairs the phosphoryla-
tion of insulin receptor substrates (IRS) 1/2, thereby disrupt-
ing insulin signaling [18–20].

Another important players in the induction and control
of AT inflammation are the Toll-like receptors (TLR), in
particular, TLR4 [21, 22]. TLR activation leads to defective
cellular function in all metabolically relevant organs, such
as the liver, pancreas, andWAT [20–24]. This defect in cellu-
lar function results in immune cell activation and inflamma-
tion subsequently leading to resistance to key metabolic
hormones such as insulin, leptin, and ghrelin [23–27].

Ghrelin is a peptide-hormone/cytokine widely distrib-
uted throughout the gastric mucosa made up of 28 amino
acids and is mainly secreted by X/A-like enteroendocrine
cells [28–31]. Ghrelin was described in 1999 as an endoge-
nous ligand for the growth hormone secretagogue receptor
(GHS-R) [32], a G-coupled receptor broadly expressed in
the central nervous system (CNS) and in peripheral tissues,
including nerve cells, cardiac cells, adipocytes, and immune
cells [32–34].

Ghrelin has an important role in obesity and metabolic-
related disorders. It is most known for its role in appetite reg-
ulation, acting directly on hypothalamic neurons responsible
that were involved in feeding behavior [35]. Beyond this
“classic” function, ghrelin is also an immunomodulatory
hormone, providing new perspectives for its relevance in
metabolic diseases [36, 37]. In obesogenic conditions, ghrelin
levels are reduced with a concomitant induction of chronic
low-grade inflammation [23, 38]. These data strongly suggest
a role for ghrelin in obesity-related pathological conditions in
establishing and maintaining “metabolic inflammation” and
expand our knowledge of ghrelin beyond its role in the
CNS. In this review, we will discuss the participation of
ghrelin in immunomodulatory events, the impact of this
regulation on metabolic disorders, and the mechanisms
by which ghrelin acts.

2. Ghrelin Structure, Function, and Receptor

The GHS-R has two isoforms, GHS-R1a and GHS-R1b
[39]. Only GHS-R1a triggers a signaling pathway, which
is induced by the binding of ghrelin [39]. The lack of
GHS-R1b isoform activity is attributed to the absence of
a third intracellular loop, which prevents G protein cou-
pling [39, 40]. There is evidence describing the interaction
between ghrelin receptor and other G-coupled receptors,
such as dopamine, serotonin and melanocortin receptors,
and even GHS-R1b [39, 41]. These interactions lead to
conformational changes in GHS-R, which impact GHS-R1a
signaling [39–41].

Secreted ghrelin is found in two distinct forms in the
bloodstream [42]. One is the desacyl (desoctanoyl) form
(desacyl-ghrelin), which is more stable and has higher serum
concentration levels compared to other ghrelin form [43–45].
Desacyl-ghrelin is suggested to be a non-GHS-R1a ligand
form of ghrelin under physiological conditions [31, 43, 45].
Desacyl-ghrelin has cardioprotective effects [46–48]. How-
ever, its functional role and the receptor by which desacyl-
ghrelin binds remain unknown [39, 49]. The other form of
ghrelin is the acylated form (acyl-ghrelin), which undergoes
a posttranslational modification on serine residue 3 [50].
This acylated form corresponds to approximately 20% of
total circulating ghrelin and is responsible for the biologi-
cal effects of ghrelin [51] and indicates that acylation of
ghrelin is an important step for the biological activity of this
peptide [51–53].

The posttranslational structural modification observed in
the acylated form of ghrelin is attributed to an enzyme, dis-
covered in 2008 by Yang and colleagues [54], which is called
ghrelin-O-acyltransferase (GOAT). GOAT is responsible for
the acylation of the preproghrelin before it is transported to
the Golgi apparatus [42]. In the Golgi vesicle, proghrelin is
proteolytically cleaved by the prohormone convertase 1/3
(PC 1/3) [31, 55, 56].

Acyl-ghrelin has a wide range of functions in several tis-
sues. Acyl-ghrelin stimulates growth hormone secretion by
the pituitary gland and activates the hypothalamic orexigenic
axis [57]. Ghrelin serum levels are increased during caloric
restriction [30]. In the hypothalamic orexigenic axis, ghrelin
induces the secretion of neuropeptides, such as AgRP
(agouti-related protein) and NPY (neuropeptide Y) [58],
which leads to increased food consumption and reduced
energy expenditure [53].

In addition to the direct effects of ghrelin on the CNS,
ghrelin regulates gastrointestinal motility [59, 60], energy
homeostasis [61], and the cardiovascular and reproductive
systems [62]. Ghrelin also participates in the regulation of
other adipokines, such as leptin, and modulates a broad
number of immune functions [31, 63].

3. Ghrelin Signaling

GHS-R1a is widely distributed in different tissues [32–34],
and its activation by acyl-ghrelin involves several signaling
pathways [28–30]. The most studied cell type regarding the
mechanisms of actions of acyl-ghrelin is hypothalamic
neurons [64, 65]. In these cells, acyl-ghrelin relies on 5′ aden-
osine monophosphate-activated protein kinase (AMPK)
[66–68]. Acyl-ghrelin AMPK-dependent signaling acts by
two distinct mechanisms in hypothalamic neurons, in which
intracellular calcium influx [69] and cytoplasmic nutrient
sensors, such as AMPK [70] and mammalian target of rapa-
mycin (mTOR), are the main targets triggered by the binding
of acyl-ghrelin to GHS-R1a [71, 72].

AMPK activation leads to an inhibition of acetyl-CoA
carboxylase (ACC) through posttranslational modifications
[66]. The cellular outcome of this inhibition is increased
mitochondrial metabolism due to consecutive activation of
carnitine palmitoyltransferase 1 (CPT1) [73, 74]. Increased
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fatty acid oxidation leads to the generation of reactive oxygen
species (ROS) and consequently stimulates uncoupling pro-
tein 2 (UCP2) [75]. These events induce the expression of
orexigenic neuropeptides and consequently feeding behavior
[75]. AMPK activation through GHS-R1a can also be medi-
ated by calcium calmodulin-dependent protein kinase-
kinase 2 (CAMKK2) in response to elevated intracellular
calcium concentrations [76–78]. There is also evidence for a
dependency on Sirtuin 1 and p53 during AMPK activation
through GHS-R1a signaling [79].

The cytoplasmic nutrient sensor mTOR has a key func-
tion in hypothalamic energy homeostasis [80]. Several
reports indicate that the effects of acyl-ghrelin are mediated
by mTOR signaling pathway activation [72, 81, 82]. Activa-
tion of this machinery is responsible for the phosphorylation
of several transcriptional factors, which are key elements in
the orexigenic response, such as forkhead box protein O1
(FOXO-1) and cAMP response element-binding protein
(CREB) [71, 83]. These data indicate that acyl-ghrelin signal-
ing pathway in hypothalamic neurons is dependent on the
signaling machinery of nutrient sensing.

In immune cells, the mechanisms of acyl-ghrelin signal-
ing are poorly explored. Avallone and colleagues [84] show
that ghrelin signaling in macrophages is dependent on
AMPK activation and peroxisome proliferator-activated
receptor gamma (PPARγ) [84]. Both proteins have estab-
lished anti-inflammatory roles [81–86]. Further studies are
required to fully characterize acyl-ghrelin signaling in
immune cells. The dependence of AMPK and PPARγ for
the immunoregulatory features of acyl-ghrelin is consistent
with the current understanding of ghrelin signaling events
in hypothalamic neurons as well as the cellular modifications
that immune cells undergo during the induction of an anti-
inflammatory phenotype [85–87].

3.1. Mechanisms Independent of Nutrient Sensors. There
are two physiological outcomes as resultant of ghrelin
receptor activation that does not depend on the nutrient
sensing machinery: (i) the activation of hypothalamic neu-
rons that evoke feeding behavior [69] and (ii) growth hor-
mone (GH) secretion by pituitary cells [88]. Both outcomes
are a direct result of elevated calcium levels, with distinct
mechanisms of action. In the first case, activation of
GHS-R1a leads to a subsequent elevation of cyclic adeno-
sine monophosphate (cAMP), mediated by the adenilate
cyclase (AC)-protein kinase A (PKA) signaling pathway
[89]. As a result, hypothalamic neurons involved in feed-
ing behavior are activated [69]. In pituitary cells, activated
GHS-R1a induces calcium release from endoplasmic retic-
ulum, which results in the activation of phospholipase C
(PLC)-inositol triphosphate (IP3)-protein kinase C (PKC)
pathway [39, 88].

4. Ghrelin, Obesity, and Inflammation

Tissue-secreted factors may disturb tissue homeostasis,
which affects cellular and tissue metabolism and leads to
systemic alterations [26]. Ghrelin and other factors regulate
several aspects of metabolism and inflammation, which

result in improved or worsened insulin resistance and meta-
bolic syndrome [90–92]. Obesity-mediated metabolic distur-
bances increase levels of several cytokines and chemokines
[91, 93]. This generates a proinflammatory status, which is
a potential risk factor for the development of inflammation-
induced insulin resistance [94]. One of these secreted factors
is the monocyte chemotactic protein-1 (MCP-1), which is
induced by the NFκB pathway to recruit monocytes [95].
Because activation of GHS-R reduces NFκB activation in
endothelial cells [96], ghrelin treatment could limit immune
cell activation through inhibition of NFκB activation and
subsequent MCP-1 secretion. This approach may lead to
the development of new therapeutic approaches to treat T2D.

Metabolic imbalance induced by obesity leads to alter-
ations in ATM population profile [97]. The M1 ATM
macrophage population expresses the cell surface marker
CD11c and secretes proinflammatory cytokines, such as
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
interleukin-6 (IL-6), and monocyte chemotactic protein-1
(MCP-1) [98]. M1 macrophages also express high levels of
iNOS (inducible nitric oxide synthase) [98, 99]. M2 macro-
phages express cell surface markers CD206, CD301, and
CD163, secrete anti-inflammatory cytokines, such as
interleukin-10 (IL-10), and express high levels of arginase-1
[15, 99]. M2 ATMs are often involved in homeostasis
maintenance and tissue repair [15, 100]. The increase in the
number of M1 ATM population in obesity is commonly
accompanied with a reduction in M2 ATM population. This
imbalance, with the predominance of a proinflammatory
profile, inhibits the insulin-signaling pathway [94, 101, 102].
Thus, ATM function has an important role on metabolic
syndrome and T2D development, which is frequently
observed during obesity [99].

In obesogenic conditions, ghrelin levels are decreased
[23] and levels of proinflammatory cytokines and adipokines,
such as leptin, and liver-derived proteins, such as retinol
binding 4 (RBP4), are increased [5, 103, 104]. Leptin is a pro-
inflammatory adipokine, which inhibits ghrelin secretion
[105] and worsens adipose tissue inflammation [5]. These
data support the hypothesis that counter regulatory functions
between leptin and ghrelin are an essential step for the
maintenance of homeostasis CNS (food intake and energy
expenditure regulation) and in immune responses [36].

5. Immunoregulatory Functions of Ghrelin

The wide distribution of functional ghrelin receptors
(GHS-R) and their expression in various immune cell popu-
lations have attracted the attention of the scientific commu-
nity. Changes in ghrelin levels can directly affect immune
responses and tissue homeostasis [36, 37]. Leukocytes, such
as adipose tissue macrophages (ATMs), express GHS-R
[106] and detect changes in energy status [107, 108]. Thus,
ghrelin actions on ATMs may play a role in the maintenance
of the tissue homeostasis, suggesting a link between the
immune system and systemic metabolism in response to
different physiological and pathological conditions such
as obesity and insulin resistance [109, 110].
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Several studies support an immunoregulatory role for
ghrelin [36, 37, 107, 111, 112]. Ghrelin acts on a diverse port-
folio of leukocytes and directly alters immune cell function
(Figure 1) [36, 37, 111, 112]. Dixit and colleagues [111]
showed that ghrelin treatment in vitro inhibited the secretion
of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in
human monocytes, T cells, and peripheral blood mononu-
clear cells (PBMCs) [111]. Likewise, ghrelin treatment in
human umbilical vein endothelial cells (HUVEC) reduced
the secretion of IL-8 and MCP-1 and the activation of NFκB
in response to TNF-α stimuli [96]. Also, rats submitted to
endotoxic shock with lipopolysaccharide (LPS) and treated
with ghrelin had higher rates of survival compared to controls
[113]. This protective effect was mediated by ghrelin-specific

GHS-R receptor binding and resulted in reduced serum levels
of TNF-α, IL-6, IL-8, and MCP-1 [96, 111]. Moreover, data
suggests that mitogen-activated protein kinase phosphatase-
1 (MKP-1) mediates the protective effect of ghrelin against
endotoxic shock [114]. MKP-1 levels are reduced in inflam-
matory conditions, such as norepinephrine-induced sepsis,
and lead to secretion of TNF-α [114]. Jacob and colleagues
[114] reported that ghrelin treatment in septic rats increased
gene and protein expression of MKP-1 [114]. This restora-
tion of MKP-1 expression may partially explain the reduc-
tion in proinflammatory cytokines in response to ghrelin
treatment. These data indicate that ghrelin can limit inflam-
mation and plays an important role in metabolic and nonme-
tabolic inflammatory conditions.
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Monocytes
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M2 macrophage
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Figure 1: The immune roles of ghrelin. Ghrelin is secreted by X/A-like enteroendocrine cells. In the innate immune system, ghrelin acts
on macrophages and induces an anti-inflammatory state (M2 profile) and inhibits proinflammatory macrophages (M1 profile). In the
adaptive immune system, ghrelin exhibits an anti-inflammatory role. Ghrelin inhibits Th1 cells and increases the polarization of Th2
and regulatory T cells. These actions contribute to the reduced levels of proinflammatory cytokines and increased levels of anti-
inflammatory cytokines.
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In vivo, ghrelin has an anti-inflammatory and antinoci-
ceptive role [13, 34, 37, 111, 115–118]. Intraperitoneal
administration of ghrelin in rats submitted to pain resulted
in increased levels of serum IL-10 and TGF-β and reduced
pain score [118]. The anti-inflammatory action of ghrelin
was also observed in a colitis model. Ghrelin treatment
reduced the expression of TNF-α, INF-γ, IL-1α, IL-1β,
IL-6, IL-12, IL-15, IL-17, and IL-18 and increased IL-10
levels in colonic mucosa, which improved colitis score
and survival rate in mice [37].

The anti-inflammatory roles of ghrelin can be
extended to other inflammatory conditions, such as rheu-
matoid arthritis. Administration of the ghrelin agonist
growth hormone-releasing peptide-2 (GHRP-2) reduced
serum IL-6 levels and improved inflammation in arthritic
rats [119]. Similar observations were obtained when peri-
toneal macrophages were treated with GHRP-2 in vitro
[119]. Together, this data indicates that GHS-R can be
used as a novel target for the treatment of acute and chronic
inflammatory diseases.

Neutrophils play a fundamental role in immune response
against pathogens and are regulated by ghrelin treatment. In
vivo studies show that ghrelin treatment reduced neutrophil
count in peritoneal lavage [63]. This was not attributed to
enhanced apoptosis [120]. Neutrophils treated with ghrelin
had increased phagocytic capacity and enhanced bactericidal
capacity [120]. On the other hand, ghrelin treatment reduced
neutrophil recruitment in the airways of subjects with
chronic respiratory infections, which displayed reduced IL-
8 and TNF-α levels in the sputum and improved overall
inflammatory status [121].

Orlova and colleagues showed that ghrelin may affect
dendritic cell- (DC-) mediated antigen presentation capac-
ity. DCs treated with ghrelin had reduced capacity to
induce the secretion of IL-17 and INF-γ and enhanced
capacity to induce secretion of IL-10 and TGF-β from
cocultured T cells [122]. Ghrelin also modulates thymic
DCs. Ghrelin administration in the thymus induced the
proliferation of DCs in aged mice [123], which contributes
to a more effective maturation and response of effector
and regulatory (Treg) T cell differentiation [124]. Ghrelin
also regulates immune cell migration and proliferation.
Ghrelin treatment reduced immune cell recruitment after
LPS stimulation and induced the proliferation of Treg cells
[34, 125]. Together, these data indicate that ghrelin has
important effects in modulating T cells, especially regula-
tory T cells.

The role of adaptive immunity in the CNS is a growing
topic of study. One of the most established models of the role
of lymphocytes in CNS homeostasis is experimental autoim-
mune encephalomyelitis (EAE), an animal model of multiple
sclerosis [126]. This condition has a marked proinflamma-
tory feature, mediated by T CD4+ cells (Th1 and/or Th17
response) [125]. Ghrelin exerts therapeutic effects in EAE
through the impairment of encephalitogenic Th1 and Th17
cells, and short-term ghrelin treatment reduces the clinical
score of the disease [125]. This was associated with fewer
infiltrated cells in the CNS and subsequent reduction in
CNS inflammation. These effects were further improved by

the induction of regulatory T cells in mice [125]. Souza-
Moreira and colleagues [125] showed that ghrelin treatment
suppressed M1 phenotype in microglia and reduced T cell
infiltration, which was consistent with findings previously
described by Theil and colleagues [125, 127]. The immu-
nomodulatory roles of ghrelin in CNS are a result of
decreased expression of proinflammatory cytokines, such as
TNF-α, IL-1β, and IL-6, which indicate a noteworthy anti-
inflammatory property.

6. Contrasting Roles of Ghrelin in the
Immune System

There is evidence supporting the immunoregulatory role
of acyl-ghrelin [107] and its beneficial effects to treat
chronic inflammatory syndromes, especially acyl-ghrelin
immunoprotective properties during endotoxic shock
[36]. However, in sepsis, ghrelin may contribute to the
higher mortality seen in septic mice [63]. This higher
mortality was attributed to reduced neutrophil and natural
killer cell activity, which led to increased bacterial burden
[63]. Nevertheless, other authors demonstrated beneficial
effects of acyl-ghrelin in the same experimental model
and attributed these effects to lower inflammation in the
hippocampus, observed by the reduction of TNF-α and
IL-6 levels in septic brains [112].

Desacyl-ghrelin is a non-GHS-R1a ligand and was pre-
viously described as the nonactive form of ghrelin
(although some authors report that desacyl-ghrelin binds to
GHS-R1a when supraphysiological concentrations are
induced) [34, 39, 44, 128]. Recent reports suggest that
desacyl-ghrelin alters macrophage polarization in vitro [129].
Desacyl-ghrelin treatment decreased expression of TNF-α
and CD11c and increased expression of CD206 in the
mouse macrophage cell line (RAW264.7) [129]. Similar
results were observed by the treatment of RAW cells with
acyl-ghrelin [130]. This suggests that ghrelin treatment
reduced M1 proinflammatory macrophage and increased
M2 macrophage polarization [129]. These results are com-
patible with the observation that in humans, monocytes
are the main targets for the anti-inflammatory actions of
acyl-ghrelin [111]. However, the effects of acyl-ghrelin or
desacyl-ghrelin treatment in bone marrow-derived macro-
phages or ATMs remain to be established.

Knockdown of GHS-R in mice reduced expression of
TNF-α, IL-1β, IL-6, and MCP-1 in WAT of mice fed with a
high-fructose corn syrup, which was associated with
improved insulin sensitivity and obesity in aged mice. Also,
ablation of the GHS-R promoted a shift towards a M2 profile
in ATMs [106]. GHS-R ablation also limited the proinflam-
matory phenotype of peritoneal macrophages and ATMs,
which was observed by decreased expression of proinflam-
matory cytokines [99].

Although a variety of studies indicates that ghrelin has
an anti-inflammatory role, the controversial actions of this
peptide support the need to better understand the mecha-
nisms by which ghrelin acts on immune cells in response
to different immunological challenges.
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7. Ghrelin at the Neuroimmune Interface

7.1. Neuroprotective Effects of Ghrelin. In extrahypothalamic
areas, acyl-ghrelin has a strong anti-inflammatory role
[131–134]. Microglial cells express GHS-R, and acyl-ghrelin
administration downregulates proinflammatory cytokine
expression through impairment of microglial cell expansion
[131–133]. The neuroprotective effects of acyl-ghrelin were
extensively studied by many research groups [135–137]. In
Parkinson’s disease, there is a progressive neuronal degener-
ation of dopaminergic neurons localized in the substantia
nigra and a concomitant increase in microglial activation.
GHS-R1a is widely expressed in dopaminergic neurons in
the substantia nigra [136, 137]. It is proposed that the neuro-
protective effects of acyl-ghrelin in a Parkinson’s disease
context are partially due to the induction of tyrosine
hydroxylase expression in dopaminergic neurons, a pivotal
enzyme in dopamine biosynthesis [135]. The administration
of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine),
a mitochondrial toxin, is a well-established model for
Parkinson’s disease studies, since there is a selective effect
on dopaminergic neurons [138]. Mice treated with intraper-
itoneal acyl-ghrelin have lower levels of neuronal death and
reduced dopamine loss [132, 133, 135]. Consistent with this
phenotype, ghrelin treatment reduces proinflammatory
markers, such as TNF-α and IL-1β [133]. It is proposed that
the neuroprotective effects of ghrelin are also mediated
through UCP2 activity [75, 135], since striatal neurons are
dependent on UCP2 for optimal function [139–142].

Learning and memory retention also are influenced
by acyl-ghrelin [143]. Intracerebroventricular [144] and
intrahippocampal [145] acyl-ghrelin injections improve
memory retention in rodents, which suggests a role for
ghrelin in the molecular process of memory acquisition
and/or consolidation. These results are reinforced by data
published by Diano and colleagues [146], where spine
density in the hippocampus is reduced in ghrelin knockout
mice [146]. Data from Carlini and colleagues [144, 147]
suggest that these beneficial effects are partially due to
serotonergic inputs from dorsal raphe nucleus to the hip-
pocampal circuits [147].

Several studies indicate that the brain is not a postmitotic
structure in adult life [148–151]. Adult neurogenesis may be
a potential therapeutic target for many neurodegenerative
conditions [152–154]. The most explored structure in this
context is the hippocampus [155]. There is evidence that
acyl-ghrelin induces neurogenesis in brain structures related
with cognition, such as the dendate gyrus of the hippocam-
pus [156]. The classical target of ghrelin resides in the neuro-
nal populations of the hypothalamus, and there are no
reports to date describing the induction of neurogenesis by
ghrelin. Therefore, neuroprotective effects of ghrelin in
cognition-related structures may contribute to both the regu-
lation of neurogenic events and the maintenance of mature
resident cells [157–159].

The neuroprotective effects of ghrelin are also related to
ischemic lesions, both in vivo and in vitro [160–162]. In these
situations, there is insufficient blood flow into the brain.
Treatment with acyl-ghrelin reduces ischemic lesions in mice

by mechanisms both dependent and independent of GHS-
R1a [160–162]. Here, neuroprotection is determined as
reduced infarct tissue and cell death [161, 163].

7.2. Ghrelin, Stress, and Neuroinflammation. In view with the
increased incidence of psychological disturbances and obe-
sity, many groups have investigated the dynamic contribu-
tion of obesity to the development of affective disorders and
how affective disorders affect obesity. Hormones that regu-
late energy homeostasis, such as ghrelin, may play a role in
mediating psychological disturbances [164].

Serum levels of acyl- and desacyl-ghrelin, preproghrelin,
and GH are increased in rodents submitted to acute and
chronic stress models [164–168]. The hypothesis that
increased ghrelin levels could be due to a stress response is
supported by the involvement of ghrelin in neuroprotection,
memory, and motivation [143]. GHS-R knockout mice have
depressive behavior, which is marked by social isolation
[165]. Cummings and colleagues showed that the increased
ghrelin levels lead to decreased depressive behavior in
rodents submitted to forced swimming test [165]. Psycholog-
ical stress appears to induce inflammatory responses and is
associated with compartmental alterations characterized by
depressive symptoms [169]. Elevated levels of proinflamma-
tory cytokines are found in patients with depression [170].
IL-1β and TNF-α increase serotonin uptake and metabolism,
which contribute to depressive behavior. These data suggest a
link between inflammatory responses and compartmental
diseases [170]. GHS-R expression in the basolateral complex
of the amygdala, an important region for emotional process-
ing in rodents and humans, strongly supports the involve-
ment of ghrelin in the modulation of emotional status and
memory [171, 172]. Thus, ghrelin treatment could be an
effective approach against emotional disorders due to ghrelin
anti-inflammatory properties [143, 170].

Alterations in endogenous ghrelin levels and action
could lead to the development of psychiatric disturbances
associated to stress [172, 173]; a better understanding of
how ghrelin regulates emotional behavioral disturbances is
needed. These studies may contribute to the development
of new targets for the treatment of diseases associated with
stress and inflammation.

7.3. Ghrelin and Mediobasal Hypothalamus. The hypothala-
mus is a CNS structure primarily involved in global meta-
bolic regulation [35]. There are multiple hypothalamic
nuclei involved with metabolic regulation, such as the arcuate
nucleus (Arc), lateral hypothalamic area (LHA), and para-
ventricular nucleus (PVN) [35]. The current model stipulates
that Arc neuronal populations work in a binary-like system.
The anorexigenic response is mediated by proopiomelano-
cortin (POMC) neurons, and the orexigenic response is
mediated by agouti-related protein (AgRP) expressing neu-
rons [35]. The signals induced by key metabolic hormones
and nutrients are perpetuated by other neuronal populations
in different hypothalamic nuclei that are synaptically con-
nected to AgRP/POMC neurons [35]. Ghrelin exerts its
orexigenic actions through AgRP neurons exclusively, since
POMC neurons do not express GSH-R [174].
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It is known that consumption of high-fat diet (HFD)
leads to activation of proinflammatory processes in the hypo-
thalamus with marked deregulation of feeding behavior and
defective energy expenditure responses [175–177]. This
inflammatory process is activated in the early stages of
HFD feeding, with increased cytokine expression within 24
hours after HFD intake [176]. The key cell type that coordi-
nates inflammatory responses in CNS is the microglia
[178]. Several reports in the past decade described the impor-
tance of microglial cells in the initiation and perpetuation of
hypothalamic inflammation and consequently its repercus-
sions [175–177]. Following an obesogenic stimulus, micro-
glial cells are activated in a TLR4-dependent manner and
rapidly expand, creating a proinflammatory environment.
These actions are restricted to the hypothalamus in the early
stages of “metabolic inflammation” [175]. A recent report
demonstrated that inhibition of microglial expansion in the
Arc partially restored the metabolic impairments due to an
obesogenic environment [177]. Thus, microglial activation
is one of the most important targets for the development of
focusing on the CNS under obese conditions.

The activation of TLR4-dependent responses in resident
Arc microglial cells leads to a defective ghrelin orexigenic
effect in animals fed with a chow diet [179]. This data indi-
cates that microglia can directly modulate energy homeosta-
sis by affecting neighboring cell functions and might explain
the counterintuitive phenomenon of ghrelin resistance in
obesity and metabolic diseases. However, ghrelin resistance
is a complex subject of study and cannot be reduced to iso-
lated effects on microglial or neuronal cells in the hypothala-
mus [180]. For instance, it is not known whether ghrelin
resistance is due to (i) reduced ghrelin receptor expression/
translocation in the target cells, (ii) defective ghrelin trans-
port through blood-brain barrier as observed with leptin

[181], or (iii) disrupted cellular homeostasis on ghrelin
responsive cells, which is a similar process that leptin respon-
sive cells undergo in obesogenic conditions [181, 182]. It is
also possible that the physiological outcome is a combination
of all of these factors. Another point to be clarified is whether
neurons and glial cells are both resistant to the ghrelin signal
and if there is temporal concordance in the establishment of
ghrelin resistance in different cell types.

7.4. Obesity and Immunity in the Central Nervous System.
The participation of Th1 or Th17 cells on hypothalamic
impairment in metabolic diseases has yet to be clarified. It
is known that T cells can penetrate the blood-brain barrier
and act locally on the brain [183]. Thus far, there is no char-
acterization of the participation of these cell types in the
induction of metabolic inflammation on the hypothalamus.
It is possible that ghrelin exerts an indirect immunomodula-
tory effect on adaptive immunity. As briefly discussed, Arc
microglial activation can lead to an increase in local TNF
[176]. This signaling has multiple effects and is one modula-
tor of adaptive immunity in the periphery, which triggers
adipose tissue lipolysis and raises triglyceride levels in the
blood [184]. This in turn elevates the number of B cells and
T cells with a Th1-type profile [184]. Thus, in obesity and
obesity-related conditions, the immunomodulatory mecha-
nisms of ghrelin have multiple points of actions and might
not be restricted to the neural tissue (Figure 2).

Long-term studies indicate that bariatric surgery pro-
motes a significant and sustained weight loss and recov-
ery of metabolic parameters [185]. Several works have
reported alterations in ghrelin levels during the postopera-
tive period in patients submitted to different surgical strate-
gies, which could be a result of altered body weight and
feeding behavior [165, 186–206].

Ghrelin

Stomach

CNS
IL -6 expression in a 

Parkison’s disease model

food intake
(NPY/AgRP neurons)

(a)
Microglia

IL-10, IL
PPAR�훾

M1 
phenotype

M2 
phenotype

TNF-�훼, IFN-�훾
IL-1�훽, IL-6

Neurotoxic 
response

Neuroprotection
response

(b)

GHS-R

(c) Lymphocytes

Attenuation of Th1/Th17 response
infiltrated cells

-4

Figure 2: Ghrelin at the neuroimmune interface. Ghrelin has several functions in the CNS. (a) The classical orexigenic effect of ghrelin is
mediated through activation of AgRP/NPY neurons in the mediobasal hypothalamus; it can also exert neuroprotective effects by
diminishing IL-6 expression in striatal neurons in a Parkinson’s disease model. (b) In microglia, ghrelin suppresses the proinflammatory
phenotype and activates an anti-inflammatory program, which reinforces the neuroprotective role of ghrelin. (c) Infiltrated lymphoid cells
are also decreased upon ghrelin treatment, with a marked reduction in Th1/Th17 responses.
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Faraj and colleagues [199] reported that ghrelin levels
are dynamically modulated with weight loss [199] and
patients with no changes in body weight do not have altered
ghrelin levels. However, the role of ghrelin in postbariatric
surgery is controversial [165, 186–206]. Besides, another
relevant aspect that should be considered is the different
methodological approaches used for the measurement of
ghrelin, which could contribute to the discrepancy in ghrelin
levels reported [207, 208].

Although the exact mechanisms by which bariatric
surgery leads to reduced body weight are not completely
understood, alterations in nutrient influx accompanied by
increased ghrelin levels could lead to reduced proinflam-
matory marker expression, which will result in improved
metabolic inflammation and the subsequent glucose
homeostasis [199, 209–212].

8. Concluding Remarks

Ghrelin is not only a gastric peptide with CNS actions but
it is also an important hormone/cytokine with important
pleiotropic functions. The wide distribution of GHS-R1a
in different cell types, including immune cells, indicates
that ghrelin acts as a potent immunomodulator with power-
ful anti-inflammatory roles. The anti-inflammatory effects of
ghrelin are observed in immune cells of both myeloid and
lymphoid lineages. In macrophages/microglia, these anti-
inflammatory properties are translated into increased secre-
tion of anti-inflammatory cytokines, elevated M2/M1 ratio,
and reduced proinflammatory cytokine expression. In lym-
phoid cells, ghrelin signaling leads to increased Th2 and Treg
cell function. Therefore, ghrelin is a secreted hormone/cyto-
kine with important anti-inflammatory roles in metabolically
relevant organs, such as WAT and the hypothalamus.
Ghrelin is a promising therapeutic strategy for the treatment
of chronic inflammatory conditions, such as obesity. The
therapeutic function of ghrelin is currently limited by its
potent orexigenic properties. The paradoxical outcomes of
ghrelin used to treat metabolic diseases are the induction of
appetite and the anti-inflammatory roles. Thus, more studies
are required to elucidate the molecular mechanisms of
ghrelin actions as well as its application as a GHS-R agonist
to treat obesity and insulin resistance in individuals.
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