
Systematic review and meta-analysis of

experimental studies evaluating the organ
protective effects of histone deacetylase
inhibitors
D1X XSYABIRA I. YUSOFFD2X X1,2, D3X XMARIUS ROMAND4X X1, D5X XFLORENCE Y. LAID6X X, D7X XBRYONY EAGLE-HEMMINGD8X X,
D9X XGAVIN J. MURPHY D10X X, D11X XTRACY KUMARD12X X, and D13X XMARCIN WOZNIAKD14X X

LEICESTER, UK
1Equal first authorship.
2Syabira Yusoff, PhD, is a Postdoc

is a molecular biologist with bioinf

From the Department of Cardiovas

ter, Clinical Sciences Wing, Glenfie

Submitted for Publication Septemb

Reprint requests: Syabira Yusoff, D

cine, University of Leicester, Clinic

1931-5244/$ - see front matter

� 2018 The Authors. Published by

(http://creativecommons.org/licens

https://doi.org/10.1016/j.trsl.2018.1
The clinical efficacy of organ protection interventions are limited by the redundancy
of cellular activation mechanisms. Interventions that target epigenetic mechanisms
overcome this by eliciting genome wide changes in transcription and signaling. We
aimed to review preclinical studies evaluating the organ protection effects of histone
deacetylase inhibitors (HDACi) with a view to informing the design of early phase clin-
ical trials. A systematic literature search was performed. Methodological quality was
assessed against prespecified criteria. The primary outcome was mortality, with sec-
ondary outcomes assessing mechanisms. Prespecified analyses evaluated the
effects of likely moderators on heterogeneity. The analysis included 101 experimental
studies in rodents (n = 92) and swine (n = 9), exposed to diverse injuries, including:
ischemia (n = 72), infection (n = 7), and trauma (n = 22). There were a total of 448 com-
parisons due to the evaluation of multiple independent interventions within single
studies. Sodium valproate (VPA) was the most commonly evaluated HDACi (50 stud-
ies, 203 comparisons). All of the studies were judged to have significant methodologi-
cal limitations. HDACi reduced mortality in experimental models of organ injury (risk
ratio = 0.52, 95% confidence interval 0.40�0.68, p < 0.001) without heterogeneity.
HDACi administration resulted in myocardial, brain and kidney protection across
diverse species and injuries that was attributable to increases in prosurvival cell sig-
naling, and reductions in inflammation and programmed cell death. Heterogeneity
in the analyses of secondary outcomes was explained by differences in species,
type of injury, HDACi class (Class I better), drug (trichostatin better), and time of
administration (at least 6 hours prior to injury better). These findings highlight a poten-
tial novel application for HDACi in clinical settings characterized by acute organ
injury. (Translational Research 2019; 205:1�16)
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INTRODUCTION

Decades of research have yielded multiple negative

clinical trials of organ protection interventions.1,2,3

A major challenge in this field is to overcome the

redundancy of the multiple pathways activated in

response to injury using a single intervention.2 Inter-

ventions targeting epigenetic processes offer a possi-

ble solution. Modification of the regulation of gene

expression through alterations in chromatin compo-

nents other than the DNA sequence can regulate the

expression of multiple gene pathways that determine

stress responses, energy utilization, and cell survival.4

Multiple epigenetic mechanisms exist ranging from

DNA methylation which elicits long-term changes in

the genome to processes with greater plasticity such

as histone acetylation and deacetylation. These pro-

cesses are strongly influenced by adverse environ-

mental stimuli and have evolved to modulate a

genome wide response to stress. The ability to modify

epigenetic processes raises the possibility of harness-

ing this genome wide response as an organ protection

intervention. Histone deacetylase inhibitors (HDACi)

increase the acetylation of lysine residues in nucleo-

somal histones. This reduces their affinity for DNA

and leads to transcriptionally active chromatin and

the expression of multiple stress response genes.5 Evi-

dence of efficacy in preclinical models of organ injury

and has led us to hypothesize that HDACi may have

clinical utility as organ protection interventions. The

aim of the current study was to systematically review

the evidence from these experimental studies and to

evaluate differences in the effects of different HDACi

and modes of administration across a range of experi-

mental models with a view to the design of early

phase clinical trials.
METHODS

Search methods, data extraction, assessment, and

presentation were performed as recommended by the

Cochrane Handbook for Systematic Reviews of Inter-

ventions (Version 5.1).6

Information sources. Potentially eligible studies were

identified by searching NCBI, SCOPUS and Ovid data-

base from inception until April 2018 with the following

search terms: [(in vitro OR tissue OR cells OR ex vivo

OR animal OR human) AND (ischemia reperfusion

OR ischemia OR glucose deprivation OR ischemia OR

hypoxia OR shock OR trauma OR infarct) AND (brain

OR heart OR kidney OR liver) AND (valproate OR

HDAC OR epigenetic OR histone acetylation)].

Search quality. To assess the search quality, all the

searches were done in duplicate by S.Y. with default
settings from 1960 up to April 2018. Twenty five per-

cent of the titles were randomly selected and cross ref-

erenced between searched lists.

Study selection. Two reviewers (S.Y., M.R.) indepen-

dently selected eligible studies according to the prespe-

cified inclusion and exclusion criteria. All

disagreements were resolved by discussion. Following

exclusion of titles that were clearly outside the scope

of the review, abstracts of the remaining studies were

assessed and excluded if they met any of the following

criteria: (1) study was a review paper, (2) study was

related to cancer/epilepsy/disease, (3) study was under-

taken solely on epigenetic/genetic modification, (4)

study was performed with non-HDAC treatment, or (5)

study was a nonintervention. The full articles for the

remaining papers were retrieved and subjected to full

text assessment. The inclusion criteria were: (1) Study

was conducted in animals, humans and cells, (2)

Experimental model of acute organ injury such as

ischemia reperfusion, hypoxia, shock, trauma or infarc-

tion, or (3) Study was performed in brain, heart, kidney

or liver. Studies were further excluded if: (1) they did

not assess one of our predefined outcomes listed in the

section below, or (2) did not evaluate our prespecified

target organs of interest (e.g., eyes), (3) outcomes

reported in less than 3 studies (Fig 1).

Types of outcomes measures. The primary outcome

was mortality (dichotomous). Secondary outcomes

included a total of 45 variables assessing organ injury

(continuous) that were identified in scoping searches

and grouped into 8 prespecified outcome categories;

Category 1: Heart injury (8 variables) included car-

diac output, heart infarct size, heart diastolic pressure

(dp), heart dP/dT, heart end diastolic pressure (EDP),

heart rate, mean arterial pressure (MAP), and rate pres-

sure product (RPP). Category 2: Brain injury (6 vari-

ables) included Infarct size, lesion volume, neuroscore,

time on rotarod, glial fibrillary acidic protein (GFAP),

and brain-derived neurotrophic factor (BDNF). Cate-

gory 3: Kidney injury (2 variables) included serum

creatinine (Cr) and blood urea nitrogen (BUN). Cate-

gory 4: Inflammation (5 variables) included interleu-

kin-10 (IL-10), interleukin-8 (IL-8), interleukin-6

(IL-6), tumor necrosis factor alpha (TNFa), and cyclo-

oxygenase-2 (COX-2). Category 5: Cell survival

signaling (12 variables) including nuclear factor kappa

B (NF-kB), thiobarbituric acid reactive substances

(TBARS), alpha smooth muscles actin (a-sma), beta

catenin (b-catenin), heat shock protein 70 (HSP70),

inducible nitric oxide synthase (iNOS), matrix mellato-

proteinases (MMP-2), myeloperoxidase (MPO), phos-

phorylated extracellular receptor kinase (pERK),

glycogen synthase Kinase 3 b (GSK3b). Category 6:

Measures of homeostasis (3 variables) included

https://doi.org/10.1016/j.trsl.2018.11.002


Fig 1. PRISMA flow diagram and methodological quality assessment. (a) PRISMA flow diagram for the sys-

tematic review detailing the database searches, numbers of abstract screened, full text assessment with its inclu-

sion and exclusion criteria, and the full text article included for quantitative synthesis. (b) Risk of bias summary:

Review author’s judgment in 101 included studies based on ARRIVE (Animal Research: Reporting of In Vivo

Experiments) checklist.
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glucose, hemoglobin, and lactate levels. Category 7:

Markers of programmed cell death (PCD) (7 varia-

bles) included apoptosis, terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL), apopto-

tic activator (BAX), B-cell lymphoma 2 (Bcl-2) and

caspase-3 (Cas-3), and p53. Category 8: Liver injury

(2 variables) included alanine aminotransferase (ALT)

and AST.

Data extraction. Data extraction was performed by 2

independent authors (S.Y., B.E.) using a standardized

proforma as follows: author, journal, year of publica-

tion, animal species, strain, gender, weight, drug

administration time, type of injury, type of HDACi,

class of HDACi, and concentrations of HDACi. For

HDACi classes, these were categorized into: Class I,

Class II, Class I/II, and Class III. For type of HDACi;

valproic acid (VPA), trichostatin A (TSA), sodium

butyrate (SB), and other HDACi-related drugs were

extracted. The experimental organ injury was classified

as ischemia, trauma, and infection. For each compari-

son, the number of animals in each group, as well as

the mean and standard deviation (SD) or standard error

(SEM) for continuous outcomes and the number of

events for dichotomous outcomes were extracted.

Where the outcomes were reported graphically but not

as numerical data in the text, the software WebPlot

Digitizer- Version 4.1 (https://automeris.io/WebPlotDi

gitizer)7 was used to extract the values from the graphs.

If a published paper involved multiple groups (e.g.,

using different inhibitors or different concentration),

data from each group was individually extracted.

Where there were multiple comparisons from the same

paper, the data were treated in pair-wise manner and

included in the analysis separately. This included mul-

tiple independent comparisons reported in the same

paper, or multiple treatment comparisons against

the same control group. For outcomes measured over

time from the same group of animals, we used the first

measured time point for analysis. For studies measur-

ing the same outcome in blood and organ tissue from

the same animals, we analyzed the measurements taken

from blood. Data consistency was cross checked

between two independent extraction files and if any

inconsistency occurred, the data were cross checked

and agreement reached by consensus.

Assessment of methodological quality. Methodologi-

cal quality was assessed by two reviewers (S.Y., M.R.)

against the ARRIVE checklist.8 A random sample of

papers were cross checked and disagreements were

resolved by consensus. Methodological quality was

expressed using graphics adapted from the Cochrane

Handbook of Systematic Reviews Collaboration.9

Papers were judged to be at low risk of bias if this was

evident in all the ARRIVE checklist items.
Data synthesis. Treatment effects were expressed

as the risk ratio (RR) for dichotomous outcomes, and

as standardized mean difference (SMD) for continuous

outcomes, for HDACi values versus Controls. Multi-

variate meta-analytic models were used to account for

nonindependence in observed effects. To account for

repeated use of the same control group in multiple-

armed studies, we estimated the variance-covariance

matrix of the effect sizes based on Glesser 2009,10 and

fitted a multivariate random-effects model. In addition,

the model included a multilevel structure that takes

into account multiple independent comparisons nested

within the same papers. All analyses were conducted

using the R-package “metaphor”. The results were pre-

sented using table and forest plots. For the primary

analysis, we grouped mouse and rats as rodent.

Assessment of heterogeneity and reporting biases. He-

terogeneity was assessed by using the Q-statistics and its

p value, which tests whether the variability in the effect

sizes is larger than one would expect based on sampling

variability alone. We investigated heterogeneity by per-

forming subgroup analyses. We conducted moderator

tests followed by subgroup analyses if moderators were

identified. Prespecified subgroups included: animal type

(rats, mice), inhibitor class (Class I, II, III, I/II), inhibitor

(VPA, TSA, SB, other), type of injury (ischemia, sepsis,

trauma or other), and first drug administration time

(0�6 hours, 6�24 hours, >24 hours for both pre- and

postinhibitor administration). If there were 10 or more

papers in the meta-analysis publication bias were investi-

gated by using funnel plots and Egger’s test.
RESULTS

Searches. A total of 4695 records were retrieved

through electronic searches from: PubMed (n = 1206),

SCOPUS (n = 3015), OviD (n = 472), and cross refer-

ence sources (n = 2). After the exclusion of duplicates

(n = 1035), titles clearly outside the scope of the review

were excluded (n = 2877). Following the review of

titles and abstracts, 599 studies were excluded because

they were reviewed manuscripts (n = 95), associated

with viruses, cancer and epilepsy (n = 68), focused on

genetic/epigenetic modification (n = 99), were per-

formed with non-HDACi treatment (n = 209), or were

noninterventional studies (n = 128). A total of 184

manuscripts underwent detailed review; 50 did not

report our prespecified outcome measures, 8 studied

nontarget organs (e.g., eye), 16 study did not evaluate

prespecified metabolic stress, and 9 study reporting

outcomes for less than 3 comparisons. In total 101

manuscripts were included in the quantitative and qual-

itative analysis. (Fig 1a).

https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
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Included studies. The characteristics of included stud-

ies are summarized in Table I, and Supplemental Table

S1. The 101 manuscripts identified in searches reported a

total of 448 comparisons due to the evaluation of multiple

independent interventions within single studies. The

experimental models included rodents (n = 92, 414 com-

parisons) and swine (n = 9, 34 comparisons).

The most common experimental injury was ischemia

(n = 72, 325 comparisons), followed by trauma (n = 22,

85 comparisons), and sepsis (n = 7, 38 comparisons).

More than one type of HDACi was evaluated in some

studies. The classes of inhibitors used were: Class I (17

studies, 55 comparisons), Class II (7 studies, 28 com-

parisons), Class I/II (80 studies, 348 comparisons), and

Class III (4 studies, 17 comparisons) including 21 dif-

ferent inhibitors. The most commonly used inhibitors

were: Valproic acid (VPA) in 50 studies, 203 compari-

sons, trichostatin A (TSA) in 19 studies with 82 com-

parisons, sodium butyrate (SB) in 9 studies with 33

comparisons, suberoylanilide hydroxamic acid

(SAHA, Vironostat) in 10 studies with 29 comparisons

and tubastatin A (TubA) in 6 studies with 27 compari-

sons.

All study characteristics and findings are listed in

Supplemental Tables S1 and summarized in Tables I

and 2.

The primary outcome of experimental mortality was

reported in 16 rodent studies and 3 swine studies.

Brain injury was assessed in rodents and swine

through the following variables: BDNF, brain infarct,

GFAP, lesion volume, neurological score and rotarod

and were reported in total 4, 19, 4, 7, 15, and 7 studies,

respectively.

Heart injury was evaluated in rodents and swine

through cardiac output, heart dP, heart dP/dT ratio,

heart EDP, size of heart infarct, heart rate, MAP, and

RPP. These variables were reported in 3, 6, 10, 8, 7,

15, 14, and 7 studies, respectively.

Kidney injury in rodents was assessed through the

BUN and creatinine in 14 analyses studies, while liver

injury was assessed by measuring the ALT and AST

levels in a total of 11 studies. Inflammation markers

selected in rodent studies were: COX-2, IL-10, IL-1b,
IL-6, and TNF-a, and reported in 24 studies. Measures

of homeostasis included glucose, hemoglobin, and lac-

tate levels and were reported in19 studies. Cell survival

signaling was evaluated by measuring: a-SMA, AKT,

b-catenin, GSH, HSP70, iNOS, MMP-2, MPO, NFkB,

P-ERK, pAkt, and TBARS reported in 40 rodent

studies.

Markers of programmed cell death (PCD) assess-

ment comprised of: apoptosis, BAX, BCL-2, BrDU,

Caspase-3, p53, and TUNEL. These were reported in

32 rodent studies.
Assessment of methodological quality. The grouped

assessment of methodological quality as measured

against the ARRIVE checklist is reported in Fig 1b.

Assessment of methodological quality for individual

studies is reported in Supplemental Table S2. No study

was free from important methodological limitations:

87/101 study did not specify the animal allocation, 82/

101 studies did not describe the reasons animals

included in the study were excluded from the analyses,

67/101 studies does not provide baseline data of the

studies, 71/101 papers did not report the adverse events

attributable to the intervention, and 87/101 did not

specify any modifications made due to adverse events.

Finally, 89/101 studies did not include the sample size

calculation in their experimental design.11-111 In sum-

mary, no study identified in the review was free from

potential bias.1

Primary outcome. Pooled effect estimates for mortal-

ity favored the use of HDACi in both rodents, RR 0.53

(95% confidence interval [CI] 0.4�0.7, p < 0.0001,

Q = 24.40, p = 0.059) and swine RR 0.48 (95% CI

0.25�0.91, p = 0.024) (Q = 2.16, p = 0.340), (Fig. 2a).

The pooled risk ratio for mortality from all studies was

RR = 0.52, (95% CI 0.40�0.68 p < 0.001) without het-

erogeneity (Q = 27.85, p = 0.064).

Secondary outcomes. Brain injury: The pooled

effect estimate favored HDACi treatment over controls

for the outcomes brain infarct size (SMD ¡1.70, 95%

CI ¡2.22 to ¡1.18, p < 0.0001, 19 studies), brain

lesion volume (SMD ¡1.13, 95% CI ¡1.81 to ¡0.45,

p = 0.001, 7 studies), time on rotarod (SMD 1.15, 95%

CI 0.25�2.06, p = 0.013, 7 studies), BDNF levels

(SMD 2.38, 95% CI 0.88�3.88, p = 0.002, 4 studies),

and glial fibrillary acidic protein (GFAP) (SMD ¡1.93,

95% CI ¡2.81 to ¡1.05, p < 0.0001, 4 comparisons)

when compared with untreated animals.

Heterogeneity was significant for all outcomes

except GFAP (Q = 2.39, p = 0.653). In the swine stud-

ies, HDACi resulted in significantly lower brain lesion

volumes (SMD ¡1.52, 95% CI ¡2.39 to ¡0.66,

p = 0.001) without heterogeneity (Q= 5.04, p = 0.169)

(Table II).

Heart injury: The pooled effect estimate favored

HDACi treatment over controls for infarct size (SMD

¡2.34, 95% CI ¡3.82 to ¡0.86, p < 0.001, 7 studies),

EDP (SMD ¡1.32, 95% CI ¡2.56 to ¡0.09, p = 0.03,

8 studies), RPP (SMD 1.27, 95% CI 0.58¡1.96, p <

0.0001, 7 studies), dP/dT ratio (SMD 1.50, 95% CI

0.78�2.22, p < 0.0001, 10 studies), and heart dP

(SMD 1.90, 95% CI 1.25�2.55, p < 0.0001, 6 studies).

Heterogeneity was not significant for heart dP (Q = 10,

p = 0.125). There was heterogeneity for dP/dT

(Q = 55.14, p < 0.0001), infarct size (Q = 58.46, p <

0.0001), and RPP (Q = 21.58, p < 0.05) (Table II).

https://doi.org/10.1016/j.trsl.2018.11.002


Table I. Summary of included studies characteristics and outcomes measured in this systematic review

Rodent Swine Total
paper

Total
comparison

Paper Comparison Paper Comparison

Animal Injury
Mice Ischemia 24 109 24 109

Sepsis 6 31 6 31
Trauma 4 13 4 13

Mice total 34 153 34 153
Pig Ischemia 3 10 3 10

Trauma 6 24 6 24
Pig total 9 34 9 34
Rat Ischemia 45 206 45 206

Sepsis 1 7 1 7
Trauma 12 48 12 48

Rat total 58 261 58 261
Grand total 92 414 9 34 101 448
Inhibitor class Inhibitor type
I MGCD0103 1 3 1 3

Mocetinostat 2 11 2 11
MS-275 3 4 3 4
PD-106 1 1 1 1
SB 9 33 9 33
Scriptaid 1 3 1 3

I Total 17 55 17 55
I_II 4-PBA 1 2 1 2

AN-7 1 8 1 8
ITF2357 1 6 1 6
LB-205 1 2 1 2
PBA 2 14 2 14
SAHA 10 29 10 29
TSA 19 82 19 82
VPA 41 169 9 34 50 203

I_II Total 70 312 9 34 79 346
II MC1568 1 1 1 1

TubA 6 27 6 27
II Total 7 28 7 28
III RGFP966 1 4 1 4

SAB 2 7 2 7
Sirtinol 1 6 1 6

III Total 4 17 4 17
Grand total 91 412 9 34 100 446
Category Outcomes
Brain injury BDNF 4 4 4 4

Brain infarct 19 36 19 36
GFAP 4 4 4 4
Lesion volume 7 10 4 4 11 14
Neurological score 15 22 15 22
Rotarod 7 10 7 10

Brain injury total 35 86 4 4 39 90
Cell survival signaling AKT 5 5 5 5

b-catenin 3 5 3 5
GSH 5 7 5 7
HSP70 13 14 13 14
iNOS 5 5 5 5
MMP-2 5 7 5 7
MPO 8 8 8 8
NFkB 4 5 4 5
pAkt 8 9 8 9
P-ERK 4 6 4 6
TBARS 5 6 5 6

(continued
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Table I. (Continued)

Rodent Swine Total
paper

Total
comparison

Paper Comparison Paper Comparison

Cell survival signaling total 40 77 40 77
Heart injury Cardiac output 3 3 3 3

Heart dp 6 7 6 7
Heart dp_dt 10 14 10 14
Heart edp 8 9 8 9
Heart infarct 7 11 7 11
Heart rate 10 12 5 5 15 17
MAP 7 11 7 7 14 18
RPP 7 9 7 9

Heart injury total 21 73 8 15 29 88
Inflammation COX-2 5 5 5 5

IL-10 3 7 3 7
IL-1b 9 11 9 11
IL-6 11 13 11 13
TNFa 17 23 17 23

Inflammation total 24 59 24 59
Kidney injury BUN 7 8 7 8

Creatinine 7 9 7 9
Kidney injury total 10 17 10 17
Liver injury ALT 5 6 5 6

AST 6 7 6 7
Liver injury total 6 13 6 13
Markers of PCD Apoptosis 6 6 6 6

BAX 4 4 4 4
Bcl-2 10 13 10 13
BrdU 4 5 4 5
Caspase-3 16 18 16 18
p53 5 6 5 6
TUNEL 7 8 7 8

Markers of PCD total 32 60 32 60
Measures of homeostasis Glucose 5 9 5 9

Hb 5 9 7 7 12 16
Lactate 7 11 8 8 15 19

Measures of homeostasis total 11 29 8 15 19 44
Grand total 92 414 9 34 101 448

Abbreviations: a-sma, a smooth muscles actin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BAX, apoptotic activator; Bcl-
2, B-cell lymphoma 2; BDNF, brain-derived neutrophic factor; COX-2, cycloocygenase-2; dp, diastolic pressure; edp, end diastolic pressure;
GFAP, glial fibrillary acidic protein; HSP70, heat shock protein 70; IL-6, interleukin 6; IL-1b, interleukin 1b; IL-10, interleukin 10; iNOS, inducible nitric
oxide synthase; MAP, mean arterial pressure; MMP-2, matrix mellatoproteinases 2; MPO, myeloperoxidase; NFkB, nuclear factor kappa B; PCD,
programmed cell death; pERK, phosphorylated extracellular receptor kinase; RPP, rate pressure product; TBARS, thiobarbituric acid reactive
substances; TNFa, tumor necrosis factor a; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.

Translational Research
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Kidney injury was reduced by HDACi as determined

by serial BUN (SMD ¡1.06, 95% CI ¡1.41 to ¡0.70,

p < 0.001, 12 studies) with significant heterogeneity

(Q = 25.4, p = 0.021) (Table II).

Liver injury: Liver AST and ALT were not signifi-

cantly different between treatment and control groups

Supplemental Table S3.

Inflammation: The pooled effect estimate favored

HDACi treatment over controls for IL-1b (SMD

¡2.13, 95% CI ¡3.62 to ¡1.01, p = 0.001, 9 studies),

IL-6 (SMD ¡1.68, 95% CI ¡2.80 to ¡0.56, p = 0.003,

11 studies), and TNF-a (SMD ¡1.59, 95% CI ¡2.68

to ¡0.50, p = 0.004, 17 studies) were lower and IL-10
was higher (SMD 3.84, 95% CI 0.34¡7.35, p = 0.032,

3 studies). There was significant heterogeneity for all

analyses (Table II).

Programmed cell death (PCD) BAX, Caspase 3,

and TUNEL were lower in the HDACis treatment

groups, while Bcl-2 and BrdU were higher. Heteroge-

neity was significant for all outcomes with the excep-

tion of BrdU (Q = 8.80, p = 0.066) (Table II).

Cell survival signaling The pooled effect estimate

favored HDACi treatment over controls for b-catenin
(SMD 1.83, 95% CI 0.66 to 3.00, p = 0.002, 3 studies)

and HSP70 (SMD 2.56, 95% CI 1.87�3.24, p < 0.001,

13 studies) and MPO (SMD ¡6.95, 95% CI ¡13.55 to

https://doi.org/10.1016/j.trsl.2018.11.002


Table II. Primary analysis output

Primary analysis

Variable Paper Comparisons SMD (95% CI) p value QE (df, p value)

Brain injury
BDNF 4 4 2.38 (0.88�3.88) 0.0018 QE = 8.83 (df = 3, p = 0.032)
Brain infarct 19 36 ¡1.70 (¡2.22 to ¡1.18) <0.0001 QE = 156.01 (df = 35, p < 0.0001)
GFAP 4 4 ¡1.93 (¡2.81 to ¡1.05) <0.0001 QE = 1.63 (df = 3, p = 0.653)
Lesion volume 7 10 ¡1.13 (¡1.81 to ¡0.45) 0.0011 QE = 31.19 (df = 9, p = 0.000)
Rotarod 7 10 1.15 (0.25�2.06) 0.0126 QE = 32.92 (df = 9, p = 0.000)

Inflammation
IL-10 3 7 3.84 (0.34�7.35) 0.0316 QE = 88.51 (df = 6, p< 0.0001)
IL-1b 9 11 ¡2.31 (¡3.62 to ¡1.01) 0.0005 QE = 67.80 (df = 10, p < 0.0001)
IL-6 11 13 ¡1.68 (¡2.80 to ¡0.56) 0.0033 QE = 173.17 (df = 12, p < 0.0001)
TNFa 17 23 ¡1.59 (¡2.68 to ¡0.50) 0.0042 QE = 246.39 (df = 22, p < 0.0001)

Heart injury
Heart dp 6 7 1.90 (1.25�2.55) <0.0001 QE = 10.00 (df = 6, p = 0.125)
Heart dp_dt 10 14 1.50 (0.78�2.22) <0.0001 QE = 55.14 (df = 13, p < 0.0001)
Heart edp 8 9 ¡1.32 (¡2.56 to ¡0.09) 0.0354 QE = 54.41 (df = 8, p< 0.0001)
Heart infarct 7 11 ¡2.34 (¡3.82 to ¡0.86) 0.0019 QE = 58.46 (df = 10, p<0.0001)

Kidney injury
RPP 7 9 1.27 (0.58�1.96) 0.0003 QE = 21.58 (df = 8, p = 0.006)
BUN 7 8 ¡0.82 (¡1.31 to ¡0.33) 0.0010 QE = 19.06 (df = 7, p = 0.008)

Markers of PCD
BAX 4 4 ¡3.46 (¡6.82 to ¡0.09) 0.0440 QE = 42.92 (df = 3, p<0.0001)
Bcl-2 10 13 4.08 (1.94�6.21) 0.0002 QE = 76.16 (df = 12, p<0.0001)
BrdU 4 5 4.10 (2.35�5.84) <0.0001 QE = 8.79 (df = 4, p = 0.066)
Caspase-3 16 18 ¡1.74 (¡3.42 to ¡0.06) 0.0424 QE = 318.71 (df = 17, p<0.0001)
TUNEL 7 8 ¡4.46 (¡6.78 to ¡2.14) 0.0002 QE = 44.10 (df = 7, p<0.0001)

Cell survival signaling
b-catenin 3 5 1.83 (0.66�3.00) 0.0022 QE = 8.65 (df = 4, p = 0.071)
HSP70 13 14 2.56 (1.87�3.24) <0.0001 QE = 42.00 (df = 13, p<0.0001)
MPO 8 8 ¡6.95 (¡13.55 to ¡0.34) 0.0392 QE = 96.59 (df = 7, p<0.0001)

Brain injury
Lesion volume 4 4 ¡1.52 (¡2.39 to ¡0.66) 0.0006 QE = 5.04 (df = 3, p = 0.169)

Measures of homeostasis
Lactate 8 8 0.80 (0.09�1.51) 0.0270 QE = 19.35 (df = 7, p = 0.007)

Variable Paper Comparisons RR (95% CI) p value QE (df, p value)
Survival 15 16 0.53 (0.39�0.71) <0.0001 QE = 24.40 (df = 15, p = 0.059)
Survival 3 3 0.48 (0.25�0.91) 0.0242 QE = 2.16 (df = 2, p = 0.340)

Moderator analysis

Variable Animal Drug class Inhibitor Insult Admin Time

Brain injury
BDNF
Brain infarct 0.0461
Lesion volume 0.0050 0.0000 0.0001
Rotarod

Inflammation
IL-10
IL-1b 0.0456 0.0205
IL-6 0.0300
TNFa

Heart injury
Heart dp_dt 0.0079
Heart edp
RPP 0.0006
Heart infarct 0.0088

Kidney injury
BUN 0.0196

(continued)
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Table II. (Continued)

Moderator analysis

Variable Animal Drug class Inhibitor Insult Admin Time

Markers of PCD
BAX 0.0015
Bcl-2 0.0011
Caspase-3 0.0010
TUNEL

Cell survival signaling
HSP70 0.0283 0.0076
MPO

Measures of homeostasis
Lactate

Abbreviations: BAX, apoptotic activator; Bcl-2, B-cell lymphoma 2; BDNF, brain-derived neutrophic factor; COX-2, cycloocygenase-2; dp, dia-
stolic pressure; edp, end diastolic pressure; GFAP, glial fibrillary acidic protein; HSP70, heat shock protein 70; IL-6, interleukin 6; IL-1b, interleukin
1b; IL-10, interleukin 10; MPO, myeloperoxidase; PCD, programmed cell death; RPP, rate pressure product; TNFa, tumor necrosis factor a;
TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.
Data presented as treatment effect as risk ratios (RR) for survival and standardized mean difference (SMD) for dichotomous outcomes and its

p-value. Secondary analysis of moderator effect with Q-statistics and its p value.

Fig 2. Forest plots for primary outcome (mortality) and secondary outcomes of heart injuries. (a) Mortality for

rodent and swine. (b) Rodent heart infarct by first administration time. (c) Rodent heart dP/dT by inhibitor class,

(d) Rodent heart RPP by types of inhibitor. Effect size was presented as SMD (95% CI) and heterogeneity test

was presented as (Q statistics, df, p value). N, number of animals; SMD, standardized mean difference; SD, stan-

dard deviation; CI, confidence interval; df, degree of freedom; RPP, rate pressure product.
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Fig 3. Forest plots for brain injury outcomes. (a) Rodent brain infarct by animal types. (b�d) Rodent brain

lesion volume by injury type, first administration time and HDACi class. Effect size was presented as SMD

(95% CI) and heterogeneity test was presented as Q statistics, df, and p value. N, number of animals; SMD, stan-

dardized mean difference; SD, standard deviation; CI, confidence interval; df, degree of freedom; HDACi, his-

tone deacetylase inhibitor.
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¡0.34, p = 0.039, 8 studies). There was heterogeneity

for all analyses except b-catenin (Q = 8.65, p = 0.070)

(Table II).

Publication bias Funnel plots for all primary and

secondary outcomes are shown in Supplemental

Figure S1.Where results on more than 10 studies were

reported there was evidence of significant reporting

bias (Egger’s test, p < 0.05) for brain infarct size, heart

dP/dT, kidney BUN, kidney Creatinine, IL-1B, IL-6,

TNFa, Bcl-2, Caspase-3 and HSP-70.

Subgroup analyses. To investigate sources of hetero-

geneity (rodents 19 primary analyses, swine 0 primary

analyses) we conducted moderator analyses to examine

characteristics of the HDACi treatment and/or type of

injuries associated with the overall effect estimate. If

moderators were identified heterogeneity was further

explored using subgroup analyses (Table II).

Rodent studies. In myocardial protection the effect of

the moderator timing of HDACi administration relative
to the time of injury was significant for Heart Infarct

size (p = 0.009). The effect in heart protection was

greater when HDACi were administered before

versus after the injury. HDACi administration

6�24 hours before the injury (SMD ¡3.54, 95% CI

¡5.19 to ¡1.88) had a greater effect than administra-

tion within 6 hours of the injury (SMD ¡2.22, 95% CI

¡3.85 to ¡0.60). (Fig 2, b). For heart dP/dT ratio and

RPP in rodents effect sizes were moderated by the

inhibitor class or type of inhibitors (Fig 2, c and d).

For Heart dP/dT, the effect size for class I HDACis on

dP/dT (SMD 1.88, 95% CI 1.20�2.57, p = 0.424) was

significantly higher than that for class I/II (SMD 1.49,

95% CI 0.58�2.41) with the moderator test for sub-

group differences p = 0.008. The administration of

TSA-induced higher heart RPP than the controls (SMD

1.62, 95% CI 1.12�2.12) with little heterogeneity

(Q = 4.2, p = 0.652) with moderator test for subgroup

differences p = 0.006.

https://doi.org/10.1016/j.trsl.2018.11.002


Fig 4. Forest plots for programmed cell death (PCD) markers and inflammation markers. (a) Rodent Caspase-3

by inhibitor class. (b) Rodent Bcl-2 by type of inhibitor. (c, d) Rodent interleukin 1b (IL-1b) by injury type and

animal type. (e) Rodent interleukin 6 (IL-6) by animal type. Effect size was presented as SMD (95% CI) and het-

erogeneity test was presented as Q statistics, df, and p value. N, number of animals; SMD, standardized mean

difference; SD, standard deviation; CI, confidence interval; df, degree of freedom; DU, densitometry unit; FC,

fold change; CT, cycle threshold.
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In brain protection, effect sizes were moderated by

animal type (p = 0.046). The reduction in brain infarct

size was larger in rats (SMD ¡2.31, 95% CI ¡3.19 to

¡1.43) compared to mice (SMD ¡1.14, 95% CI ¡1.59

to ¡0.69), although heterogeneity within the rat and

mouse subgroups remained high (p < 0.001) (Fig 3, a).

For brain lesion volume post trauma potential modera-

tors included injury type (p < 0.001), administration

time (p < 0.001), and inhibitor class (p = 0.005). Treat-

ment by HDACi showed a significant reduction in

brain lesion volume for induced trauma (SMD ¡1.43,

95%CI ¡1.91 to ¡0.96) with little heterogeneity

(Q = 6.8, p = 0.453) (Fig 3, b). There was also
significant reduction in brain lesion volume for admin-

istering inhibitors within 6 hours postinjury (SMD

¡1.55, 95% CI ¡2.16 to ¡0.94) with little heterogene-

ity Q = 6.4, p = 0.379) (Fig 3, c). Treatment with

HDACi class I showed larger effect size in lesion

reduction (SMD ¡1.58, 95% CI ¡2.61 to ¡0.54) com-

pared to HDACi class I/II (SMD ¡1.11, 95% CI ¡1.73

to ¡0.50) (Fig 3, d).

For markers of programmed cell death, inhibitor

class (p = 0.001) and type (p = 0.0011) were modera-

tors for Caspase-3 and BCL-2, respectively. Compared

with the controls, the administration of class I/II inhibi-

tors showed significant reduction in Caspase-3 (SMD

https://doi.org/10.1016/j.trsl.2018.11.002
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¡2.41, 95% CI¡3.70 to¡1.13), but the administration

of either class I or class II specific inhibitors increased

Caspase-3, although these sub-group analyses included

<3 published studies (Fig 4, a). Bcl-2 was significantly
increased by VPA (SMD 4.65, 95% CI 1.75�7.56), but

not by other inhibitors (SMD 2.57, 95% CI 0.46, 4.69).

Heterogeneity remained high within individual inhibi-

tor groups (p < 0.001) (Fig 4, b).

Levels of IL-1b were moderated by the type of

injury (p = 0.021), animal (p = 0.046), and IL-6 were

moderated by animal (p = 0.030) (Table II). There was

significant reduction by HDACi of IL-1b following

ischemia (SMD ¡2.27, 95% CI ¡3.63 to ¡0.91) and

trauma (SMD ¡8.44, 95% CI ¡12.35 to ¡4.54) but

not with other injury types (Fig 4, c and d). Reduction

in IL-6 was significant in rats (SMD ¡3.51, 95% CI

¡5.2 to ¡1.83) but not in mice (Fig 4, e). None of the

prespecified moderating variables were found to signif-

icantly interact with brain outcomes BDNF and

Rotarod, heart injury assessed by EDP, kidney injury

outcomes BUN, and creatinine or for COX-2, IL-10 or

TUNEL (Table II).

Sensitivity analyses. No sensitivity analysis stratified

by methodological quality was performed as all of the

studies were considered at high risk of bias.
DISCUSSION

Main findings. HDACi reduce mortality as well as

myocardial, brain and kidney injury in experimental

models of organ injury. This effect was observed

across multiple species and against diverse modes of

injury. In models of myocardial injury HDACi reduced

myocardial infarct volume whilst increasing measures

of myocardial contractility. In models of brain injury

HDACi reduced traumatic brain injury and increased

functional performance. Organ protection was attribut-

able to increases in pro-survival cell signaling, and

reductions in inflammation and programmed cell death.

These findings highlight a potential novel application

for this class of drugs in clinical settings characterized

by acute organ injury.

Strengths and limitations. This is the first study to our

knowledge that has systematically reviewed the experi-

mental evidence for HDACi mediated organ protec-

tion. The review used comprehensive search strategies

in a wide range of registries and data sources, had

access to the full texts of all identified trials, used a

contemporary risk of bias assessment, and assessed a

wide range of experimental outcomes. The study also

had important limitations. First, the quality assessment

against the ARRIVE guidelines indicated that all of the

101 included studies had significant methodological

limitations and were at risk of bias. Importantly, most
studies were lacking data on adverse events which is

essential when determining the balance of risks and

benefits for any clinical trial. Second, assessment of

funnel plots indicated likely publication bias for most

outcomes, suggesting that selective reporting may have

contributed to our results. This is supported by the

observations that no negative published study was

identified, and no pre-analysis protocols were reported.

Third, heterogeneity was observed for many of the sec-

ondary outcomes measures, although analysis of the

effects of pre-specified modifiers on heterogeneity

indicated that much of the variation was attributable to

differences in species, type of injury, and type of drug.

In rodent models of myocardial protection the effects

of HDACi on infarct size were greatest if the interven-

tion was administered 6�24 hours prior to the inter-

vention, and on myocardial contractility if the

intervention was Class I versus Class I/II HDACi, or

TSA versus other compounds. These moderators were

also significant sources of heterogeneity in models of

traumatic brain injury where effects were greater when

HDACi were administered within 6 hours of injury.

Fourth, we included 4 studies that evaluated class III

HDACi (sirtuin inhibitors) that act via mechanisms dis-

tinct from Class I, II, and IV HDACi. These studies

were identified by our prespecified eligibility criteria

and were therefore included in our analyses. A post-

�hoc analysis has demonstrated that their inclusion

did not materially alter our results (data not shown).

Clinical importance. The limitations of the data not-

withstanding the results demonstrate that HDACi

reduce mortality in experimental models by conferring

multi-organ protection often following a single treat-

ment administered in some cases post injury. We spec-

ulate that these findings are consistent with a genome

wide activation of stress response genes via an epige-

netic process or mitochondrial protection signalling.112

This was not proven by the current analysis however as

the evaluation of the mechanisms of action of HDACi

in these studies was limited. Additionally, uncertainty

as to the mechanism of action was also evident in an

early phase I trial in healthy humans. Here sodium val-

proate administered as a single dose (120 mg/kg over 1

hour) resulted in changes in leucocyte signaling homol-

ogous to those reported in the current analysis, how-

ever these changes were not attributed to alterations in

histone acetylation.113

Other areas of uncertainty relate to the most effec-

tive HDACi and the timing of administration. In the

current analysis TSA had greater efficacy than VPA

however as yet this drug has not been evaluated in clin-

ical trials.114 TSA has greater specificity for HDACi

relative to VPA, supporting our primary hypothesis,

and further evaluation of pan-HDACi is clearly

https://doi.org/10.1016/j.trsl.2018.11.002
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warranted. Of the many HDACi currently undergoing

clinical evaluation in cancer, HIV infection and neuro-

logical diseases Vorinostat (SAHA) has been shown to

be the most promising and with acceptable toxicity.115

In this review Vorinostat was evaluated in 11 studies

(31 comparisons) where it was shown to be effective.

VPA the Class I/II HDACi evaluated most often in pre-

clinical studies is inexpensive and already widely used

in neurological disease. However, even short courses

of VPA have significant toxicity, particularly in elderly

patients.116,117 This may not be clinically important in

acute settings such as trauma or infarction where a sin-

gle large dose will be given postinjury but may have

possible sequelae if used for planned procedures such

as surgery.
CONCLUSIONS

In experimental studies HDACi administration results

in organ protection against diverse injurious stimuli

including ischemia, sepsis, and trauma. Major methodo-

logical limitations were identified in all of the studies

identified, and importantly, adverse effects, and toxicity

were not reported in most studies. HDACi are now

undergoing clinical evaluation in multiple clinical set-

tings. The evidence presented here supports their early

phase evaluation as organ protection interventions.
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