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Simple Summary: This paper proposes a hybrid generative adversarial networks model—WGAN-
GP-AC—to generate synthetic microscopic cell images. We generate the synthetic data for the cell
types containing fewer data to obtain a balanced dataset. A balanced dataset would help enhance the
classification accuracy of each cell type and help with an easy and quick diagnosis that is critical for
leukemia patients. In this work, we combine images from three datasets to form a single concrete
dataset with variations of multiple microscopic cell images. We provide experimental results that
prove the correlation between the original and our synthetically generated data. We also deliver
classification results to showcase that the generated synthetic data can be used for real-life experiments
and the advancement of the medical domain.

Abstract: Every year approximately 1.24 million people are diagnosed with blood cancer. While the
rate increases each year, the availability of data for each kind of blood cancer remains scarce. It is
essential to produce enough data for each blood cell type obtained from bone marrow aspirate smears
to diagnose rare types of cancer. Generating data would help easy and quick diagnosis, which are
the most critical factors in cancer. Generative adversarial networks (GAN) are the latest emerging
framework for generating synthetic images and time-series data. This paper takes microscopic
cell images, preprocesses them, and uses a hybrid GAN architecture to generate synthetic images
of the cell types containing fewer data. We prepared a single dataset with expert intervention by
combining images from three different sources. The final dataset consists of 12 cell types and has
33,177 microscopic cell images. We use the discriminator architecture of auxiliary classifier GAN
(AC-GAN) and combine it with the Wasserstein GAN with gradient penalty model (WGAN-GP). We
name our model as WGAN-GP-AC. The discriminator in our proposed model works to identify real
and generated images and classify every image with a cell type. We provide experimental results
demonstrating that our proposed model performs better than existing individual and hybrid GAN
models in generating microscopic cell images. We use the generated synthetic data with classification
models, and the results prove that the classification rate increases significantly. Classification models
achieved 0.95 precision and 0.96 recall value for synthetic data, which is higher than the original,
augmented, or combined datasets.

Keywords: generative adversarial networks; microscopic cell images; bone marrow aspirate smears;
synthetic images; classification

1. Introduction

Microscopic images are considered to be an essential and gold standard in the deter-
mination and diagnosis of multiple diseases [1]. Bone marrow is a spongy tissue found
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in the center of the bone containing immature cells called stem cells that produce blood
cells. The main task of bone marrow is to produce red blood cells, white blood cells, and
platelets [2]. Biopsy of bone marrow includes the collection of bone marrow samples as well
as examining the cells, their structure, and counts under the microscope [3]. Bone marrow
aspiration is a collection of fluid-containing cells that can be evaluated or examined under
a microscope. The slides of stained smears are examined microscopically by specialists,
and the cells are evaluated based on the number, appearance, type, etc. Abnormal cellular
components indicate the presence of blood diseases. For example, excess granulocytes such
as myeloblasts refer to the presence of acute myeloid leukemia [4].

The representation and classification of individual cells have been performed in
various histopathology works such as lung cancer, breast cancer, brain cancer, colon cancer,
acute leukemia, and many more. Not only classification, but also medical image analysis
include the automatic detection of tumors, localization of tumors or cancerous cells, and
the early prediction of deadly diseases. Generative adversarial network (GAN) [5] is the
emerging framework and has gathered much attention in the medical image analysis
domain. Deep learning has been proven to be a powerful tool in modern medical diagnosis
and histopathology image analysis [6,7]. GAN has the potential to transform random
noise variables into visually realistic images by learning the original data distribution.
Initially, the training of Vanilla GAN was unstable. Wasserstein GAN (WGAN) [8], and
Wasserstein GAN with gradient penalty (WGAN-GP) [9] has considerably improved the
training process of GAN. Conditional GAN (CGAN) was introduced later, where the GAN
architecture could be conditioned with special cases. Until this time, the utility of the GAN
architecture has increased enormously. Medical image analysis requires abundant data for
enhancing the accuracy of machine learning models since, in real-time, there is no room
for incorrect results in the medical domain. But on the other hand, it is important to keep
patient confidentiality intact. Therefore, there is a need to generate synthetic data that are
realistic and maintain the original data distribution.

HÃ¼seyin et al. proposed a framework to automatically detect and classify white
blood cells using regional convolutional neural networks [10]. The authors classified
five types of white blood cells. The dataset was manually labeled, and variations of R-
CNN [11], fast R-CNN [12], and faster R-CNN [13] were used to classify the dataset. Xie
et al. proposed a methodology that learns the representation of features and assignment
of clusters simultaneously through deep neural networks and calls it deep embedded
clustering that is applicable on images [14]. Zhang et al. proposed a probabilistic-based
hashing technique for multiple cues of cell-level analysis [15]. In recent work, Ching-Wei
Wang et al. introduced a fully automatic bone marrow whole slide image analysis based on
deep learning for cell detection and classification [16].

Li Ma et al. proposed a combination of DCGAN [17], and ResNet for blood cell image
classification [18]. The authors introduced a new loss function that has improved the
discriminative architecture of the GAN model. Shuaizhen et al. developed a weighted
feature transfer GAN to synthesize unpaired multi-model medical images accurately [19].
The adversarial loss is combined with the feature map to make meaningful local features
of the medical images. Gozes et al. generated synthetic patches of mitosis for enhancing
classification of cell images using GAN [20]. In another work, Halicek et al. implemented a
conditional GAN for the synthetic generation of hyperspectral cell im-ages of breast cancer
obtained from digital histology [21]. DermGAN incorporates the pix2pix architecture to
generate synthetic data for clinical skin images [22]. The author also tested the model with a
skin condition classifier for classifying malignant conditions. The modified generator GAN
MG-GAN was introduced by Poonam et al. to augment medical data for the improvement
of cancer classification [23].

In this paper, we propose a hybrid GAN architecture that inherits the supremacy of
both WGAN-GP and auxiliary classifier GAN (AC-GAN) [24]. The main contribution of
this paper is as follows:
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• We have prepared a new dataset that consists of microscopic cell images obtained
from bone marrow aspirate smears collected from three different data sources. The
dataset has been prepared with the help of experts from the relevant field;

• We present a GAN model WGAN-GP-AC that uses the WGAN-GP model combined
with the architecture of AC-GAN to generate synthetic microscopic cell images ob-
tained from bone marrow aspirate smears;

• We use the synthetic data for classification purposes and provide results comparing
the performance of classification models using synthetic and original data.

2. Dataset

We collected datasets from three sources and combined them to form a complete
dataset for this work. Our main source of data was EONE Laboratories [25] in South
Korea. EONE Laboratories provided microscopic images of 17 cell types collected from
bone marrow aspirate smears. The dataset contained a total of 12,756 images of individual
cells of patients with and without blood diseases. The first dataset contained the follow-
ing cell types: basophil, eosinophil, neutrophil band, neutrophil segmented,lymphocyte
atypical, lymphocyte typical, immature granulocytes, monocytes, erythroblasts, platelets,
myelocyte, myeloblast, smudge cells, metamyelocyte, promyelocyte bilobed, promyelocyte
and monoblast. Our second data source was from Mendeley data [26] which contained
microscopic peripheral blood cell images. The second dataset contained 10,122 individual
cell images, which was obtained using the CellaVision DM96 analyzer in the hospital
clinic of Barcelona, Core Laboratory. The cell types in this dataset are basophil, eosinophil,
neutrophil, lymphocytes, immature granulocytes, monocytes, erythroblasts and platelets.
Each image was of size 360 × 360 pixels in JPG format and was annotated by experts in
the field. These images were acquired from individuals without any infection or oncologic
and hematologic disease. The individuals were also free from any drug consumption for
any treatment. Our third data source was the cancer imaging archive [27]. This dataset was
prepared by Munich University Hospital and contained 10,300 single cell images labeled
by experts and procured from bone marrow aspirate smears. The data were collected
from 100 patients diagnosed with acute myeloid leukemia and from 100 patients who
had blood disease but were not malignant. The third dataset contained 15 cell types: ba-
sophil, eosinophil, erythroblast, smudge cells, lymphocyte atypical, lymphocyte typical,
metamyelocyte, monoblast, monocyte, myelocyte, myeloblast, neutrophil band, neutrophil
segmented, promyelocyte bilobed, and promyelocyte.

Figure 1 shows sample examples of how each cell types look in microscopic images.
In total, the dataset was combined to form 19 cell types.
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Figure 1. Sample example of types of microscopic cell images in the dataset.

3. Methodology

In this section, we describe the total implementation process followed to generate syn-
thetic microscopic cell images acquired from bone marrow aspirate smears. As explained
in the dataset section, we collected images from three data sources. The first part of the
methodology is to collect data and combine the images that belong to the same class. We
took the help of experts from EONE Laboratories first to combine the images belonging to
the same group. The total number of cell types before preprocessing was eighteen. The cell
types were basophil, eosinophil, erythroblast, immature granulocytes, lymphocyte, lym-
phocyte atypical, lymphocyte typical, metamyelocyte, monoblast, monocyte, myeloblast,
myelocyte, neutrophil, neutrophil segmented, neutrophil band, platelet, promyelocyte,
promyelocyte bilobed, and smudge cells. Counts per cell type are as mentioned in Table 1.

The overall workflow is presented in Figure 2, where we combine the dataset from
three sources and form a dataset with microscopic cell images belonging to 18 cell types.
The next phase is data preprocessing which has been done with the help of experts in the
medical field. After data preprocessing, we form the final dataset containing twelve classes
or cell types.

The dataset is processed through our proposed GAN architecture. For the GAN
architecture, we combine the loss function of WGAN-GP and discriminator architecture
of auxiliary classifier GAN to form WGAN-GP-AC. The proposed GAN models generate
synthetic microscopic individual cell images that machine learning algorithms can further
use for classification, detection, and so forth. The generated images are evaluated based on
their quality, classification accuracy, and similarity with the original images.
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Figure 2. Overview of the proposed methodology to generate synthetic microscopic cell images
obtained from bone marrow aspirate smears through generative adversarial networks.

Table 1. Number of images per cell type before preprocessing.

Cell Type Number of Images Dataset-1 Dataset-2 Dataset-3

Basophil 1224 570 420 234
Eosinophil 3538 1061 1356 1121
Erythroblast 1547 540 500 507
Immature Grannulocytes 2881 1266 1615 N/A
Lymphocyte 1213 N/A 1213 N/A
Lymphocyte Atypical 7 4 N/A 3
Lymphocyte Typical 3818 1790 N/A 2028
Metamyelocyte 13 8 N/A 5
Monoblast 26 14 N/A 12
Monocyte 2583 912 1013 658
Myeloblast 3104 1246 N/A 1858
Myelocyte 39 22 N/A 17
Neutrophil 3316 N/A 3316 N/A
Neutrophil Band 82 42 N/A 40
Neutrophil Segmented 7346 3588 N/A 3758
Platelet 2339 1650 689 N/A
Promyelocyte 69 26 N/A 43
Promyelocyte Bilobed 18 10 N/A 8
Smudge Cells 15 7 N/A 8

3.1. Data Preprocessing

In the data preprocessing section, redundant data or duplicate images were removed
and images were filtered by experts from EONE Laboratories. Firstly, images from three
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sources belonging to similar cell types were combined. Then, redundant and incorrect
data were eliminated through expert reviews. After elimination, images from cell types
belonging to the same cell family were merged to form a single group or cell type. For
example, lymphocyte, lymphocyte atypical, and lymphocyte typical were combined to
form a single cell type, that is, lymphocyte.

Cell type neutrophil was formed by combining images belonging to neutrophil, neu-
trophil band, and neutrophil segmented. Promyelocyte was formed by merging images of
promyelocyte and promyelocyte bilobed. Immature granulocyte contained images from
immature granulocyte, myelocyte, and metamyelocyte. After performing all the preprocess-
ing techniques, the total number of cell types was 12 with the following count as mentioned
in Table 2.

Table 2. Number of images per cell type after preprocessing.

Cell Type Number of Images

Basophil 1224
Eosinophil 3538
Erythroblast 1547
Immature Grannulocytes 2933
Lymphocyte 5038
Monoblast 26
Monocyte 2583
Myeloblast 3104
Neutrophil 10,743
Platelet 2339
Promyelocyte 87
Smudge Cells 15

We have used the stain normalization process so that there would be no bias during the
network training. For the classification of each cell type, we have divided the datatset into
70% training, 30% testing and from the training dataset we have used 20% for validation.

3.2. WGAN-GP-AC

Generative adversarial networks (GAN) were introduced by Ian Goodfellow et al. [5]
in the year 2014. GAN was proposed as a framework of unsupervised generative models
comprising a generator and a discriminator network. GAN is widely used in various fields
for different applications.

The generator network G in the GAN architecture is trained to generate synthetic
samples, whereas the task of the discriminator D is to discriminate between original and
generated samples. This is known as the minmax game where the generator tries to fool
the discriminator by producing realistic samples and the discriminator tries to correctly
identify real from fake. The generator takes in a random noise variable that retains the data
distribution Pd over original data distribution x. The generated samples are then passed
to the discriminator along with the original samples. The generator tries to minimize
log(1− D(G(z))) with the minmax function defined as in (1):

min
G

max
D

f (D, G) = Ex∼Pd(x)[logD(x)] +Ez∼Pd(z)[log(1− D(G(z))).] (1)

Generally, the loss function of Vanilla GAN is used to train GAN, which makes the
training process harder and the convergence rate slower. The main problem of training
with the loss function of Vanilla GAN is that it leads to mode collapse problems. It
becomes difficult to assess whether the generator is still in training, has collapsed, or is
still converging. Therefore, in this work, we follow the work of Wasserstein GAN with
gradient penalty (WGAN-GP) [3]. The Wasserstein GAN [2] solves the problems faced by
Vanilla GAN by optimizing the Earth Mover distance, also known as the Wasserstein-1
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distance, instead of the Jensen-Shanon divergence (JSD) that is used in the Vanilla GAN.
WGAN builds a powerful discriminator that would generate a significant gradient even if
the generator performs poorly. The Wasserstein-1 distance can be defined as in (2) with D
being the k-Lipschitz function.

min
G

max
D

Ex∼Pd(x)[D(x)] +Ez∼Pz [D(G(z)).] (2)

WGAN requires critic weight-clipping in a compact space [−c, c] where the critic
is considered the optimal discriminator. WGAN-GP is an improved version of WGAN
proposed by Gulrajani et al. that replaces the weight clipping mechanism required in
WGAN and complies with the condition of 1-Lipschitz by introducing the gradient penalty.
The objective of WGAN-GP is a combination of the original critic loss and the gradient
penalty as shown in (3) and (4):

OriginalCriticLoss = Ex̃∼Pd [D(x̃)]−Ex∼Pr [D(G(x))] (3)

GradientPenalty = σEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2], (4)

where x̂ ∼ Px̂ defines random samples and Pd and Pr are data distribution and generator
distribution. σ has been selected as 10 according to our data and experiments In our
proposed work, the generator receives input noise vector and category or class labels as
inputs, which are passed through the dense and activation layers. The images and the
labels are then reshaped. After reshaping, it is concatenated and passed through residual
upsampling blocks. After which, we perform batch normalization. The synthetic data are
generated through Conv2D and tanh activation as shown in Figure 3.

Figure 3. Generator architecture for the proposed GAN model.
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For the discriminator, we use the concept of the auxiliary classifier GAN, which is
different from the conditional GAN in the sense that the discriminator in the ACGAN does
not receive class information. The task of the discriminator is to output the probability dis-
tribution of the image source (real or generated) and to output the probability distribution
over the class labels for the particular image that is done by the auxiliary classifier in the
discriminator architecture. Therefore, the objective function for the auxiliary classifier GAN
is the combination of SL and CL, where SL is the correct source log-likelihood and CL is the
log-likelihood of the correct cell type. SL and CL are defined as in (5) and (6):

SL = E[log P(S = real|xreal)] +E[logP(S = synthetic|xsynthetic)] (5)

CL = E[log P(C = c|xreal)] +E[logP(C = c|xsynthetic)]. (6)

Figure 4 describes the architecture of the discriminator of WGAN-GP-AC. As we can
see from Figure 4, the discriminator is provided only with the generated images, but not
with the class labels. The images pass through the 2D convolutional layer and residual
downsampling blocks. The discriminator tries to maximize the probability of correctly
classifying real and synthetic images and correctly predicting the cell types or class labels.

Figure 4. Discriminator architecture for the proposed GAN model.

This way, the GAN model generates more realistic images that can be used for real-
time classification models or any other machine learning algorithms. Figures 5 and 6
present the residual block architecture for upsampling and downsampling.
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Figure 5. Illustration of residual block (upsampling) in the proposed architecture.

Figure 6. Illustration of residual block (downsampling) in the proposed architecture.

4. Experiments and Results

This section defines the evaluation metrics we used to evaluate our model’s perfor-
mance in generating synthetic microscopic cell images. The evaluation is done in three
stages. We first measure how combining the auxiliary classifier’s concept with WGAN-GP
performs compared to other existing GAN models. We also compute the training accuracy
and loss of the proposed model and see the quality of the generated images. We used
a learning rate of 0.001, batch size 64 and patch size as 128 × 128. We provide sample
examples of generated images through the proposed WGAN-GP-AC model. We present
the error rates of different architectures of GAN on our prepared dataset. Lastly, we use
original and synthetic data separately to measure how classification models work. We
compare the performance of pre-trained models on original and synthetic data.

The GAN architectures that we use to compare our modelâs performance are auxil-
iary classifier GAN (AC-GAN) [24], Wasserstein GAN (WGAN) [8], WGAN with gradi-
ent penalty (WGAN-GP) [9], information maximizing GAN (InfoGAN) [28], WGAN-GP-
Info [29], deep convolutional GAN (DCGAN) [17] and conditional GAN (CGAN) [30].

In Table 3, we present a quantitative comparison of various models on our dataset.
The evaluation metrics which we chose are inception score (IS), learned perceptual image
patch similarity (LPIPS), recall, precision, F1 score, and FrÃ©chet inception distance (FID).
Through the inception score, we compute how realistic the generated images are. The
formulation for the inception score is shown as in (7).

e(Ex[KLD(p(y|x) ‖ p(y))]), (7)
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where KLD is the Kullback–Leibler divergence measuring the difference between the
marginal distribution p(y) and probability distribution of image × denoted by p(y|x).
The LPIPS metric is used to measure the variance in the synthetic samples generated by
WGAN-GP-AC. Whereas FID computed the distance of the feature vector between real
and synthetic images. It compares the distribution of the synthetic images along with the
distribution of the real images used during training the generator. The lower the FID value,
the higher the quality of the generated image. The following Equation (8) can be used to
compute the FID between real images R and synthetic images S:

FID = ‖µR − µS‖2 + TR(ΣR + ΣS − 2(ΣRΣS)
1/2. (8)

Given the real and synthetic distribution, precision measures the quality of generated
samples and indicates how accurately the auxiliary classifier is predicting the classes,
whereas recall measures the quantity. The higher the value for precision and recall, the
better the model’s performance. F1, on the other hand, is the harmonic mean between the
precision and the recall and contributes to the measurement of the model’s accuracy on a
particular dataset. The experiment result shows that our proposed model WGAN-GP-AC
performs better than the other mentioned existing models and improves the quality of
multiclass image generation as compared to WGAN-GP and AC-GAN individually.

Table 3. Quantitative comparison on our dataset.

Models IS FID LPIPS Precision Recall F1

AC-GAN 8.34 ± 0.89 76.3 0.34 94.37 94.01 94.13
WGAN 9.67 ± 0.25 72.3 0.31 94.58 94.57 93.06
WGAN-GP 10.06 ± 0.03 71.1 0.29 96.72 95.38 95.11
InfoGAN 9.12 ± 0.37 73.9 0.32 94.01 94.83 94.92
WGAN-GP-Info 9.94 ± 0.71 73.1 0.33 94.49 95.03 94.02
DCGAN 9.89 ± 0.28 73.4 0.31 95.66 94.91 95.50
CGAN 9.01 ± 0.77 75.2 0.34 93.01 93.48 92.99
WGAN-GP-AC 12.36 ± 0.41 67.2 0.25 96.83 96.09 96.32

Figures 7 and 8 show the training and validation accuracy and loss. As can be seen
from the figures, our proposed WGAN-GP-AC model produces a consistent performance
after 25 epochs. Our model is trained for 50 epochs with 265 iterations per epoch. As can
be seen, the model requires less computational overhead to perform significantly better. It
achieves a training accuracy of 97.54% and a validation accuracy of 97.32%. Training loss
for our model was 0.0692, with a validation loss of 0.0917.

Figure 7. Training and validation accuracy of WGAN-GP-AC.
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Figure 8. Training and validation loss of WGAN-GP-AC.

Table 4 presents the comparison of error rates (l1 and l2), peak signal-to-noise ratio
(PSNR), and structural similarity index metric (SSIM). The loss functions l1 and l2 are
important evaluation metrics for measuring the error rates.

Table 4. l1 error, l2 error, PSNR and SSIM comparison of different GAN models on our dataset.

Models l1 Error l2 Error PSNR SSIM

AC-GAN 13.9% 6.3% 30.73 0.8762
WGAN 12.8% 5.1% 32.61 0.9135
WGAN-GP 12.6% 5.4% 31.42 0.9172
InfoGAN 11.9% 5.7% 31.67 0.9288
WGAN-GP-Info 12.3% 5.2% 31.89 0.9061
DCGAN 12.7% 6.1% 32.77 0.9258
CGAN 14.3% 6.7% 32.33 0.9378
WGAN-GP-AC 9.8% 4.2% 36.71 0.9616

The least absolute deviation is measured by l1 and can be computed to minimize error,
which is defined as the sum of all the absolute differences between original and synthetic
data as shown in (9):

l1 = Σn
i=1|yreal − ysynthetic| (9)

l2 = Σn
i=1(yreal − ysynthetic)

2 (10)

l2, as defined in (10), is another loss function used in GAN to measure error, that is,
the squared differences between real and synthetic data. We measure both l1 and l2 errors
to test our model with outliers, if any. l1 and l2 are the measure for reconstruction error
between the synthetic and the real images. PSNR and SSIM are image quality measures.
PSNR computes the peak signal-to-noise ratio between the real and synthetic images. The
higher the PSNR, the better is the quality of the synthetic image. Mean squared error (MSE)
is the cumulative squared error between the generated and the real image, whereas PSNR
computes the peak error. PSNR can be calculated from Equations (11) and (12) where M
and N are total rows and columns in the images and R is the maximum possible pixel value
of the image.Results show that our proposed model generates less error as compared to
other models. WGAN-GP-AC also produces a higher PSNR value and a high structural
similarity index, which indicates that the synthetic image generated by our proposed model
is of greater quality than other existing models. A crucial aspect of generating synthetic
data is to evaluate whether machine learning models can use it for real-life experiments
such as classification.

MSE =
∑M,N [real(m, n)− synthetic(m, n)]2

M ∗ N
(11)
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PSNR = 10 log10

(
R2

MSE

)
(12)

SSIM uses three quantities, that is, luminance (L), contrast (C), and structure (S) to
measure the corresponding pixels and their neighbors in real and synthetic images. L, C
and S can be defined as in Equations (13)–(15), where µ and σ denotes mean and standard
deviation and C1, C2 and C3 are constants included for numerical stability. SSIM can be
defined as in (16).

L(real, synthetic) =
2µrealµsynthetic + C1

µ2
real + µ2

synthetic + C1
(13)

C(real, synthetic) =
2σrealσsynthetic + C2

σ2
real + σ2

synthetic + C2
(14)

S(real, synthetic) =
σrealsynthetic + C3

σrealσsynthetic + C3
(15)

SSIM(real, synthetic) = L(real, synthetic) ∗ C(real, synthetic) ∗ S(real, synthetic). (16)

In Tables 5 and 6, we have presented the performance of transfer learning models such
as InceptionV3 [31], ResNet [32], VGG16 [33], CNN [34], Xception [35] and VGG19 [36]
to measure how accurately the classifiers can classify the cell types after training it with
original and synthetic data separately. We have used precision and recall as evaluation
metrics. For precision, recall and F1, we have used the computational method as mentioned
in [37,38]. The results show that the accuracy of the models is enhanced when synthetic
data generated by WGAN-GP-AC are used to train the model.

Table 5. Precision and recall value for different classification models using original and syn-
thetic datasets.

Classification
Models

Original Data Synthetic Data
Precision Recall Precision Recall

InceptionV3 0.93 0.92 0.95 0.96
ResNet 0.87 0.89 0.9 0.91
VGG16 0.93 0.9 0.94 0.93
CNN 0.86 0.88 0.89 0.91
Xception 0.88 0.89 0.92 0.92
VGG19 0.91 0.91 0.94 0.96

Table 6. Precision and recall value for different classification models using augmentation methods
and combination of original and synthetic data.

Classification
Models

Augmention-1 Augmentation-2 Augmentation-3 Original + Synthetic
Precision Recall Precision Recall Precision Recall Precision Recall

InceptionV3 0.94 0.93 0.93 0.92 0.94 0.94 0.93 0.94
ResNet 0.88 0.87 0.89 0.88 0.86 0.85 0.89 0.90
VGG16 0.91 0.92 0.90 0.89 0.90 0.90 0.92 0.90
CNN 0.87 0.88 0.86 0.85 0.85 0.84 0.87 0.89
Xception 0.89 0.87 0.87 0.86 0.90 0.89 0.89 0.90
VGG19 0.90 0.88 0.89 0.88 0.90 0.91 0.92 0.93

We have also compared the performance of classification models using original, syn-
thetic, augmented data and a combination of original and synthetic data. For augmentation,
we have used three different combinations of augmentation techniques. Augmentation-1
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uses scaling, rotation, and color augmentation techniques; Augmentation-2 uses trans-
lation, contrast, and scaling methods; and Augmentation-3 uses saturation, scaling, and
rotation. We have kept the total number of images for each cases same so that there is a
fair comparison.

We have first trained the classification models with original data and also tested
the models with original data. The training and testing ratios were 70% and 30%. For
validation, we used 20% of the training data. We then followed the same process to get the
performance of the classification models with synthetic data, augmented data and mix of
original and synthetic data. As can be seen from all the results, the images generated by our
proposed WGAN-GP-AC model are of better quality and it performs better, quantitatively,
than other GAN models.

In Figures 9 and 10, we have shown each cell type’s accuracy, specificity, and sensitivity
for the InceptionV3 classification model using the original and synthetic datasets separately.
We present examples of the generated synthetic microscopic images for each cell type in
Figure 11.

Figure 9. Accuracy, Specificity and Sensitivity of Individual Cell Types for Original Dataset.

Figure 10. Accuracy, Specificity and Sensitivity of Individual Cell Types for Synthetic Dataset.
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Figure 11. Sample images generated for each cell type by WGAN-GP-AC.

5. Conclusions and Discussion

In this work, we propose a hybrid GAN architecture that implements the concept of
auxiliary classifier GAN in Wasserstein GAN with gradient penalty. We use the loss function
of WGAN-GP but implement the discriminator as in the AC-GAN. The discriminators’ task
in this work is not only to identify real or fake but also to assign or classify classes, that
is, cell types of each image. This architecture helps generate synthetic microscopic bone
marrow aspirate smears cell images that can be used for multiclass classification in real life.
It enhances the classification results by oversampling the minority classes (i.e., cell types
with fewer images) and balancing the dataset.

We first take microscopic images of 19 cell types obtained from bone marrow aspirate
smears, which are then preprocessed. In our work, we collaborated with experts to filter
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data, rearrange images to proper classes if they were marked with wrong cell types, we
merged cell types belonging to the same cell family. After preprocessing, the cell types
were reduced to 12. Every image of each cell type is processed through our proposed
WGAN-GP-AC model. The generator produces synthetic data, and the discriminator
evaluates the images as real or fake and tries to classify the cell type for every image. The
generated images are evaluated through various evaluation metrics. Our GAN model
obtains training and validation accuracy of 97.54% and 97.32%. The quantitative result
shows that our model generates less error, has more structural similarity with the original
data, and produces better quality images for every cell type as compared to other GAN
models. We have included the results for different augmentation techniques and the dataset
prepared through a combination of original and synthetic data. We used the same number
of images for synthetic, augmented, and a combination of the original and synthetic
datasets to evaluate the classification models. The result shows that the classification
models perform better for the synthetic dataset generated by our proposed model. We
provide accuracy, specificity, and sensitivity scores for each cell type in this work. We
provide the results for the classification of each cell type using the original and synthetic
datasets separately. We also experiment our data with different classifiers, which indicates
that the accuracy of classification models increases while using synthetic data generated
from WGAN-GP-AC. In the future, we would like to implement a balancing mechanism
that would oversample minority classes or cell types with less images through GAN and
undersample majority classes through image similarity measures so that the classification
accuracy could enhance their performance. We also plan to generate images with multiple
cell types in a single image so that they can be used for disease diagnosis, early detection,
and other medical reasons.
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