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Aucubin, a natural compound isolated from herbal medicine, has been reported to possess multiple beneficial properties. In this
study, we aimed to verify the anticancer effect of aucubin on breast cancer and investigate the effect of cancer on the intestinal flora
and whether aucubin has a therapeutic effect on intestinal problems caused by cancer.We established the breast cancer model with
mouse 4T1 cell line and BALB/c mice. Aucubin was given once a day by gavage for 14 days. ,e results showed that aucubin
suppress the growth of tumor in vivo by inducing tumor cell apoptosis. ,e tumor suppression rate of aucubin could reach
51.31± 4.07%. Organ histopathology was evaluated by tissue staining, which demonstrated that aucubin could alleviate the organ
inflammatory damage caused by breast cancer without visible side effects. Moreover, aucubin could increase the expression of
colonic tight junction protein occluding and adjust the gut microbiome to normal level according to 16S rDNA high-throughput
sequencing. Herein, our results provide evidence for developing aucubin as an alternative and safe therapeutic for breast
cancer treatment.

1. Introduction

Breast cancer is the most common cancer diagnosed among
women, and ranks among the most three common cancers
worldwide, along with colon and lung cancers [1]. Due to the
advancement of tumor surgery technology and neoadjuvant
tumor reduction drug treatments [2], breast cancer without
detectable distant metastases is considered curable in the
early stages. ,e current mainstream treatment strategies
include surgical resection, adjuvant chemotherapy, radio-
therapy and hormone therapy, which are accompanied by
severe adverse effects and respective limitations. Breast
cancer can damage the intestinal barrier of patients [3],
which may put the body into a dysregulated state and lead to
disease initiation and progression. Adjuvant chemotherapy
is often accompanied by serious gastrointestinal syndrome,
such as intestinal inflammation and diarrhea, which can
seriously limit the dosage and efficacy of drugs [4]. ,ere-
fore, the selection of ideal drugs in the process of tumor
treatment is still being explored.

A research of gut microbiota difference between
postmenopausal breast cancer case patients and control
patients showed that statistically significantly differences
exist in composition (β-diversity, p � 0.006) [3]. Microbial
metabolism of the gastrointestinal tract can regulate the
development and function of the host immune system [5].
,e microbial metabolism of drugs can affect the thera-
peutic effect, which may improve the treatment efficacy.
Studies have shown that healthy gut flora may modulate
responses to anti-programmed cell death ligand 1 immu-
notherapy in melanoma patients to help fight cancer [6, 7].
Moreover, microbial metabolism is found to be able to
reverse the Warburg effect by increasing the levels of
histone-acetylation and butyrate, which is helpful for
suppressing tumors [8]. In some cases, gut microbiome
metabolism can activate the mutation of the drug’s toxicity
to cause serious drug adverse effects, including severe
diarrhea and life-threatening [9]. ,erefore, making good
use of the double-edged sword of gut flora is of great
significance for cancer treatment.
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Aucubin is an iridoid glycoside compound (Figure 1(a))
that is widely present in many plants, especially high in
Plantago asiatica, Eucommia ulmoides, and Aucuba japon-
ica. A series of studies have demonstrated that aucubin
possess multiple beneficial effects including antioxidation
[10, 11], anti-inflammation [12], anti-fibrosis [13], hep-
atoprotection [14], neuroprotection [15], osteoprotection
[16], antitumor [17], antiendothelial dysfunction [18], and
antiphotoaging [19]. Aucubin is a low toxic compound.
Normal Wistar rats can still survive by a single intraperi-
toneal injection with 100mg/kg dose of aucubin [20]. It has
wide range of functions, low toxicity, and is not easy to cause
secondary harm to cancer patients, making aucubin a very
promising anticancer drug.

2. Materials and Methods

2.1. Chemicals and Reagents. Aucubin with purity over 95%
was supplied by Chengdu Must Bio-Technology Co. Ltd.
(Sichuan, China). Roswell Park Memorial Institute (RPMI)
1640, fetal bovine serum (FBS), antibiotic-antimycotic so-
lution, penicillin/streptomycin, phosphate-buffered saline
(PBS), and 0.25% (w/v) trypsin/1mM EDTA were procured
by Gibco (,ermo Fisher Scientific, USA). Annexin V-FITC
Apoptosis Detection Kit was purchased from Elabscience
Biotechnology Co. Ltd. (Hubei, China).

2.2. Cell Culture. Murine metastatic breast cancer 4T1 cell
line was obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA). Cells were cultured in RPMI
1640 medium supplemented with 1% penicillin/strepto-
mycin and 10% FBS, and maintained in incubators at 37°C
under an atmosphere of 5% CO2.

2.3.AnimalModels. ,e specific pathogen-free (SPF) female
BALB/c mice (6 weeks old, 18–20 g) were purchased from
the Guangdong Medical Laboratory Animal Center (China).
Mice were housed in pathogen-free conditions (22± 2°C,
50± 5% humidity, 12 h light/dark cycle) with food and water
freely to acclimatize for 7 days. All experiments involving
animals were approved by Institutional Animal Care and
Use Committee, Zunyi Medical University. To obtain the
xenograft animal model, 4T1 cells (6×106) were suspended
in 60 μL PBS and inoculated into the left flank of mice.When
the palpable tumor volume increased to 50–100mm3, mice
were randomly divided into four groups and received dif-
ferent treatments. ,e schematic depicting of the animal
model is shown in Figure 1(b). To evaluate therapeutic ef-
ficacy, tumor volume and body weight were measured every
day. Tumor volume (V) was calculated based on equation
(1), and tumor suppression rate (TSR) were calculated based
on equation (2).

V � a ×
b
2

2
, (1)

TSR �
Wc-Wx( 􏼁

Wc

× 100%. (2)

,e largest diameter (a) and smallest diameter (b) of the
tumors were measured with vernier caliper. Wc and Wx
represent tumor weight of the model group and treatment
group, respectively. ,e mice were sacrificed by cervical
dislocation. ,e tumors and organs were excised and
weighed, and quickly fixed in 4% paraformaldehyde for
hematoxylin and eosin stains (H&E).

2.4. Tumor Cell Apoptosis. ,e tumor tissue was digested
into a single cell suspension, and the cells were rinsed with
PBS twice. 5×105 cells were resuspended in 500 μL 1×

annexin V binding buffer, then 2.5 μL of annexin V-FITC,
and 2.5 μL of PI staining solution were added and incubated
at room temperature for 20 minutes in the dark. At last,
400 μL diluted 1× annexin V binding buffer was added in the
mixture. Cell apoptosis was detected by flow cytometry
(Beckman Coulter, America).

2.5. Immunohistochemistry. ,e tumor was embedded in
paraffin. ,e sample was sliced and then deparaffinized. ,e
sample was immersed in citric acid antigen retrieval buffer
for antigen retrieval. ,e slices were put in 3% hydrogen
peroxide solution and incubated at room temperature
without light for 25min to block endogenous peroxidase.
After washing with PBS, BSA was added dropwise on
chamber slides and incubated for 30min, and the primary
antibody was added to incubate overnight at 4°C. ,en, it
was washed three times with PBS, and the secondary an-
tibody was added and incubated for 50min at room tem-
perature. After washing with PBS, enhanced DAB solution
was added dropwise. After staining the nucleus with Harris
hematoxylin, samples were observed under microscope and
images were collected.

2.6. Immunofluorescence Staining. ,e intestinal tissue was
embedded in paraffin. ,e sample was sliced and then
deparaffinized. ,en, the sample was immersed in EDTA
antigen retrieval buffer for antigen retrieval. BSA was added
dropwise on chamber slides and incubated for 30min, and
the primary antibody was added to incubate overnight at
4°C. After washing three times with PBS, the secondary
antibody was added and incubated for 50min at room
temperature without light. After washing with PBS, anti-
fluorescence quenching solution was added dropwise.
Samples were observed under a fluorescence microscope,
and images were collected.

2.7. SerumBiochemical Test. ,emice blood was collected in
a sterile clean, enzyme-free EP tube by orbital blood col-
lection, left it at room temperature for 20 minutes, and then
centrifuged at 3000 r/min for 5 minutes. ,e upper serum
was collected in a new sterile clean, enzyme-free EP tube and
BCA method was used for protein quantification. ,e
content of aspartate aminotransferase (AST) and alanine
transaminase (ALT) in the serum was detected by using the
automatic biochemical analyzer (Mindray, China).
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2.8. 16S rDNA High-6roughput Sequencing Bioinformatics
Analysis. About 100mg of intestinal contents were taken
from each mouse, and microbial community genomic DNA
was extracted with the E.Z.N.A.® soil DNA Kit (Omega Bio-
tek, Norcross, GA, USA). After PCR amplification, the pure
DNA product is harvested by using the AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, USA).
Purified amplicons were pooled in equimolar and paired-
end sequenced on an Illumina NovaSeq PE250 platform
(Illumina, San Diego, USA) according to the standard
protocols by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China). Raw 16S rRNA gene sequencing reads
were demultiplexed, quality-filtered by fastp version 0.20.0
[21] andmerged by FLASH version 1.2.7 [22].,e sequences
were grouped into provisional clusters as amplicon se-
quencing variants (ASVs). ,e taxonomy of each ASV
representative sequence was analyzed by RDP Classifier
version 2.2 [23].

2.9. Statistical Analysis. ,e GraphPad Prism 6.0 statistical
software (San Diego, CA) was used for statistical analysis.
,e results were shown as mean± standard deviation (SD).
Statistical significance was assessed by one-way ANOVA

followed by Tukey’s multiple comparison, and p< 0.05 was
considered as a statistical difference.

3. Results and Conclusion

3.1. Aucubin Suppressed the Growth of Tumor In Vivo.
,e mouse 4T1 cell line and BALB/c mice were used to
establish the breast cancer model. When the palpable tumor
volume increased to 50–100mm3, mice were randomly
divided into four groups (n� 6): (1) water, (2) 50mg/kg of
aucubin, (3) 100mg/kg of aucubin, and (4) 200mg/kg of
aucubin. Drugs were given once a day by gavage.

,e BALB/c mice without receiving inoculation of 4T1
cells were set as the control group treat with water. Tumor
volume and body weight were measured every day to
evaluate the therapeutic efficacy. ,ere was no significant
difference in the body weight of the mice in all groups after
14 days of continuous monitoring (Figure 1(c)).

As model group, the tumor of water increased faster
from the 8th day and reached to 877mm3 at day 14
(Figure 2(b)). In terms of tumor weight (Figure 2(c)), the
group with drug treatment significantly inhibited the growth
of tumors. ,e TSR of 50mg/kg of aucubin, 100mg/kg of
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Figure 1: Experimental design and the body weight of mice. (a) Chemical structure of aucubin. (b) ,e process of animal experiment. (c)
,e daily body weight changes of mice in different groups. Each value was expressed as the mean± SD (n� 6 per group).
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Figure 2: Continued.
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aucubin, and 200mg/kg of aucubin were 37.44± 8.71%,
51.31± 4.07%, and 50.34± 6.37%, respectively. We have also
noticed that when the dose of aucubin is less than 100mg/kg,
the inhibitory effect on tumors increases with the gain of the
dose. When the dose is greater than 100mg/kg, there was no
better or worse effect. ,e effect on the induction of apo-
ptosis by aucubin on the tumor was presented in Figure 2(d).
Compared with the model group, the percentage of the early
and late apoptotic cells all significantly increased in the
administration group. When the concentration increased to
100mg/kg, the percentage of the total apoptotic cells in-
creased to 58.67± 5.83%.

We performed H&E histological staining of the tumor
tissue to observe cytopathological features (Figure 2(e)). In
the model group, tumor cells are tightly arranged and mi-
tosis is very common.,e administration group, a large area
of pink cytoplasm and prominent nuclear chromatin con-
densation could be clearly seen, demonstrating that cell
proliferation is inhibited. ,e results of Ki67 and TUNEL
assay also supported this conclusion (Figure 2(f)). Ki67 was
expressed in large amounts in tumor tissues of the model
group, which indicating that the cells proliferated vigor-
ously. On the contrary, TUNEL was highly expressed in
tumor tissues of the administration group. All these data
might indicate that aucubin can inhibit tumor growth by
inducing cell apoptosis.

3.2. Aucubin Showed No Harm to the Vital Organs of Mice.
In order to analyze whether aucubin would have some side
effects on mice, we detected the body weight, serum bio-
chemical indexes, weight, and cytopathological features of
vital organs. As present in Figure 3(a), compared with the
control group, breast cancer tumors have no significant
effect on the heart and kidneys weight of mice. However, it
can cause significant inflammatory enlargement of the lung
and spleen. Aucubin can improve this symptom, and low-
dose of aucubin shows better effect. Although the protective

effect of aucubin on the liver is not clearly reflected in the
liver weight, it reduces the concentration of AST in the
serum of mice (Figure 3(b)), indicating that it has a pro-
tective effect on the liver.

According to the H&E histological staining result
(Figure 3(c)), we found that breast cancer can cause in-
flammation and tissue damage in vital organs. Aucubin has
not been found to cause additional discernible damage to the
organs. To a certain extent, aucubin helps the organs to
recover to a normal state, which helps reduce inflammation
and bleeding problems. Maintaining the integrity of the
intestinal tract is the prerequisite for achieving the intestinal
barrier function. Comprehensive detection of H&E and
immunofluorescence staining (Figure 3(d)) on colon, we
found that breast cancer can decrease the depth of colonic
crypts and reduce the expression of tight junction protein
occludin. In aucubin-treated mice with high doses, there was
obvious increase of colonic occludin expression as can be
seen by increase in occludin staining (green).

3.3. Effect ofAucubin onBreastCancer-InducedGutDysbiosis.
18 samples of fecal from three groups (control, model, and
100mg/kg of aucubin) were collected, and we compared the
gut microbiota of mice in different groups using 16S ri-
bosomal RNA (rRNA) gene amplicon sequencing. ,e se-
quences were grouped into provisional clusters as ASV and
analyzed on the Illumina NovaSeq PE250 platform. ,e
β-diversity was reflected through principal co-ordinates
analysis (PCoA). Figure 4(a) shows that there was a sig-
nificant distance between the intestinal flora of the groups,
especially between groups control and model, which means
that the occurrence of breast cancer can induce significant
changes in the intestinal flora of mice. ,e taxon abundance
of each sample was finally classified into 14 phyla and 217
genera (Figure 4(b)). Firmicutes, Bacteroidetes, and
Deferribacteres were three major phyla in the gastrointes-
tinal microbiota. ,e proportion of them in the gut has a
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Figure 2: ,e antitumor activity of aucubin in vivo. (a) Excised tumors from tumor-bearing BALB/c female mice on the day after the last
gavage. (b),e daily tumor volume changes of mice measured with vernier caliper in different groups. (c) Tumor weight of mice in different
groups. (d) Cell apoptosis assay distribution of tumors. (e) H&E histological staining of tumor tissue from different groups. (f ) Im-
munohistochemical staining of the Ki67 and TUNEL assay of tumor tissue from different groups. Each value was expressed as mean± SD
(n� 6 per group. ∗∗∗p< 0.001). Scale bars� 100 μm.
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Figure 3: Continued.
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significant difference between the groups. However, the
proportions in the aucubin group are between group control
and model, which indicating that aucubin can alleviate the
changes in the intestinal microbiota caused by breast cancer.
Linear discriminant analysis effect size (LEfSe) also proves
that aucubin would not cause great unnormal effects on the
intestinal flora. LEfSe can help us to find the species char-
acteristics that best explain the differences between the three
groups of samples, as well as the degree of influence of these
characteristics, and obtain significantly different species.,e
blue node in cladogram (Figure 4(c)) indicates that the
microbial group is enriched in the aucubin group, and there
are only six of them.

According to the one-way ANOVA bar plot at the family
level (Figure 4(d)), Lactobacillaceae and Bacillaceae in the

model group are significantly decreased. On the contrary,
Staphylococcaceae, Bacteroidaceae, and Muribaculaceae
exhibited higher abundance. ,e aucubin group shows the
ability to adjust the gut microbiome to normal level.
Aucubin could increase the reduction in the proportion of
microflora due to tumors, such as Lachnospiraceae, Lacto-
bacillaceae, Bacillaceae, and Ruminococcaceae. It could also
reduce the increase in the proportion of microflora, such as
Muribaculaceae, Staphylococcaceae, Oscillospiraceae, Bac-
teroidaceae, Marinifilaceae, Precotellaceae, and Tanner-
ellaceae. ,e KEGG ortholog functional profile level of the
microbial community is predicted by PICRUSt based on 16S
rRNA sequencing data, which is shown in Figure 4(e). ,e
abundance of the KEGG-related pathway in themodel group
is generally lower than control and aucubin group, such as
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Figure 3:,e effect of aucubin on the vital organs of mice. (a),eweight of heart, liver, spleen, lungs, and kidneys from different groups. (b)
,e level of ASTand ALT in serum from different groups. (c) Representative H&E staining of heart, liver, spleen, lungs, kidneys, and colon
from different groups. (d) Immunofluorescence staining of colon ZO-1 (red) and occludin (green). Each value was expressed as mean± SD
(n� 6 per group. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001). Scale bars� 100 μm.
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(e)

Figure 4: ,e effect of aucubin on gut dysbiosis. (a) PCoA of the gut microbiome composition of mice on the ASV level at different groups.
(b) Relative abundance at the phylum and genus level. (c) LEfSe multilevel species cladogram. (d) One-way ANOVA bar plot of family
difference. (e) Comparison of PICRUSt-predicted relative abundance of KEGG pathway in different groups. Each value was expressed as
mean± SD (n� 6 per group). (∗p< 0.05 and ∗∗p< 0.01).
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microbial metabolism in diverse environment, biosynthesis
of amino acids and ribosome. ,e aucubin group shows the
ability to adjust most of this pathway to normal level.

4. Discussion

Breast cancer without detectable distant metastases is
considered curable in the early stages. ,e selection of ideal
drugs in the process of tumor treatment is still being ex-
plored. Aucubin is a safe natural compound which is isolated
from herbal medicine. A long-term toxicity study shown that
oral administration of 200–800mg/kg of aucubin had no
significant effect in normal rats [24]. According to the breast
cancer model with mouse 4T1 cell line and BALB/c mice,
aucubin was shown to inhibit the growth of tumor in vivo by
inducing tumor cell apoptosis. ,e tumor suppression rate
of aucubin could reach 51.31± 4.07%.

Hepatotoxicity is one of the main side effects of cancer
chemotherapy, including steatosis, pseudocirrhosis, long-
term hepatic damage, cirrhosis, and even hepatic necrosis. It
is previously reported that aucubin wasmainly distributed to
the kidney and liver [25]. It could reduce the generation of
reactive oxygen species stimulated by TGF-β1 through
suppressing the activity of NOX4. ,e antioxidative activity
of aucubin contributed much to its hepatoprotection [14]. In
the present work, we found that aucubin could decrease the
concentration of AST in the serum of mice, which further
indicated the hepatoprotective effect of aucubin. Aucubin
was shown to alleviate the organ inflammatory damage
during breast cancer progression. Combined with serum
biochemical indicators and H&E histological staining result,
it was found that these indicators tended to be close to the
normal group.

A complication of cancer is that the intestinal flora
disorder causes body weight loss and decreased immunity.
Breast cancer has been widely reported to disrupt intestinal
flora, which promotes tumor cell dissemination, metastatic
seeding, and significant early inflammation through sig-
naling in the gut [26, 27]. According to 16S ribosomal RNA
(rRNA) gene amplicon sequencing and immunofluores-
cence staining on colon, aucubin has shown the ability to
modulate the gut microbiome to normal level without chaos
of other flora and increase the expression of colonic tight
junction protein. A health intestinal barrier can help the
drug to be absorbed and regulate the development and
function of the host immune system. As dysregulated gut
microbiota and intestinal barrier functions are highly as-
sociated with systemic diseases, aucubin may be a good
choice for the treatment of other inflammatory diseases.
Overall, understanding the ligand or mechanism of aucu-
bin’s effects on the human breast cancer cells is suggested for
the future studies. ,e optimal mode of administration and
dosage also warrants further study.

5. Conclusion

In conclusion, our study clearly verified the anticancer effect
of aucubin on breast cancer in mouse model. We also found
that aucubin has a therapeutic effect on intestinal problems

by regulating intestinal microbiota. ,is research suggests
that aucubin could be a promising anticancer compound in
the breast cancer treatment and other diseases related to
intestinal dysbacteriosis.
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