
ORIGINAL PAPER

Recovering Reliable Idiographic Biological Parameters from Noisy
Behavioral Data: the Case of Basal Ganglia Indices in the Probabilistic
Selection Task

Yinan Xu1
& Andrea Stocco2

Accepted: 25 February 2021
# Society for Mathematical Psychology 2021

Abstract
Behavioral data, despite being a common index of cognitive activity, is under scrutiny for having poor reliability as a result of
noise or lacking replications of reliable effects. Here, we argue that cognitive modeling can be used to enhance the test-retest
reliability of the behavioral measures by recovering individual-level parameters from behavioral data. We tested this empirically
with the Probabilistic Stimulus Selection (PSS) task, which is used to measure a participant’s sensitivity to positive or negative
reinforcement. An analysis of 400,000 simulations from an Adaptive Control of Thought-Rational (ACT-R) model of this task
showed that the poor reliability of the task is due to the instability of the end-estimates: because of the way the task works, the
same participants might sometimes end up having apparently opposite scores. To recover the underlying interpretable parameters
and enhance reliability, we used a BayesianMaximumA Posteriori (MAP) procedure.Wewere able to obtain reliable parameters
across sessions (intraclass correlation coefficient ≈ 0.5). A follow-up study on a modified version of the task also found the same
pattern of results, with very poor test-retest reliability in behavior but moderate reliability in recovered parameters (intraclass
correlation coefficient ≈ 0.4). Collectively, these results imply that this approach can further be used to provide superior measures
in terms of reliability, and bring greater insights into individual differences.

Keywords Probabilistic StimulusSelection task; .Reliability test; .Basal ganglia; .Direct and indirect pathways; .Computational
modeling; . ACT-R

Introduction

To understand cognition, it is important that the behavioral
measures that we use to indirectly index brain function are
valid and reliable. Unfortunately, this is often not the case,
with published effects often showing low replicability or task
results having poor reliability across time (Open Science
Collaboration, 2015). As noted by Hedge et al. (2018), low
reliability might sometimes be due to the use of tasks (such as

Flanker, Stroop, stop-signal, and go/no-go) that are explicitly
designed to have robust group effects by low variability.
Idiographic (i.e., individual-level) parameters in cognitive
modeling, on the other hand, can capture individual-level
characteristics (Daw, 2011; Collins, 2018) and have high
test-retest reliability. For instance, there is substantial evidence
that drift-diffusion models fitted to data from individual par-
ticipants can disentangle the effects of the different processes
driving behavior, and enhance our understanding on how neu-
ral activity varies across individuals (White et al., 2014, 2016).
Furthermore, Sense et al. (2016, 2018) have repeatedly shown
that long-term memory rate of forgetting, estimated through a
modified exponential decay model, is stable across sessions
and across materials.

In this paper, we argue that idiographic parameters in
cognitive modeling can be used to enhance the reliability
of behavioral measures, and specifically of behavioral mea-
sures that are supposed to track underlying neurobiological
characteristics. Specifically, we show that cognitive models
can be used to reliably recover the values of underlying
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parameters (which reflect neurocognitive processes) even
when the behavioral data itself is noisy and lacks replica-
bility. As an example, we will use the Probabilistic
Stimulus Selection task (PSS), an experimental paradigm
that has been widely adopted in neuroscience research to
investigate basal ganglia function (Frank et al., 2004) but
whose effectiveness has recently come under scrutiny
(Baker et al., 2013; Grogan et al., 2017). Schutte et al.
(2017) also raised the possibility that the task suffers from
a perceptual discriminability problem. In other words, some
task stimuli (Fig. 1) appear to be more clearly discriminable
than others, leading to a perceptual preference issue which
causes participants to choose in a biased way. Thus, differ-
ences in perceptual discriminability between individual
stimuli strongly influenced behavior results, hence causing
an unstable reliability.

To this end, reliability tests on behavioral data and model
parameters were run consecutively on the original PSS task. A
modified version of the task was introduced as a follow-up
experiment with reliability tests on both behavioral data and
model recovered parameters. In both studies, we will show
that the use of cognitive modeling can (a) shed light on the
nature of discrepant findings by different laboratories and (b)
recover interpretable, idiographic parameters from otherwise
noisy behavioral data, providing superior measures of validity
and reliability and greater insight into individual differences.

The Probabilistic Stimulus Selection (PSS) Task

The task examined herein is the Probabilistic Stimulus
Selection (PSS) task. The PSS task is an iterative, forced-
choice, implicit decision-making paradigm first introduced
by Frank et al. (2004) in which participants are asked to
repeatedly choose from pairs of non-verbalizable stimuli,
each of which has a different probability of giving a reward
(varying linearly from 20 to 80%). The task consists of a
training phase and a testing phase. During the training

phase, the participants are trained to select the most reward-
ing stimulus out of three different fixed pairs (Fig. 1, left).
The highest probability stimulus is always paired with the
lowest one, then the second-highest stimulus with the
second-lowest one, and the third-highest probability stimu-
lus pairs with the third-lowest one. Feedback about the out-
come of their selection (that is, whether it resulted in being
rewarded or not) is shown on the screen immediately after
each selection. To discourage the participants from using
explicit strategies (for example by keeping a running total
of each stimulus’s history of successes), the stimuli are
intentionally designed to be difficult to verbalize and mem-
orize: they are represented as Hiragana characters from the
Japanese writing system and are presented solely to non-
Japanese speakers (for simplicity, the stimuli will be indi-
cated with the letters A, B … F, as in Fig. 1). The learning
occurring in this training phase is then assessed in the test-
ing phase, where the six stimuli are now combined into all
possible pairs (Fig. 1, right) and feedback is not given to
prevent further learning.

Note that, during the training phase, participants might
learn equally well by either learning to choose the most re-
warding stimuli (i.e., A) or by avoiding the least rewarding
ones (i.e., B). These two processes can be distinguished in
the testing phase by calculating two measures, Choose and
Avoid accuracies. Choose accuracy is calculated as the prob-
ability of choosing A while paired with C, D, E, or F; Avoid
accuracy, on the other hand, is the probability of choosing C,
D, E, and F over B. Thus, Choose and Avoid accuracies are
calculated from non-overlapping stimuli pairs (A-C, A-D, A-E,
A-F vs. B-C, B-D, B-E, B-F) that were not experienced in the
learning phase and do not include the direct contrast pair A-B.
Therefore, they are operationally independent.

The importance of this task lies in the fact that Choose and
Avoid accuracies provide insight into a person’s biology, and,
specifically, into the physiology of the basal ganglia. The bas-
al ganglia are a set of subcortical nuclei that modulate the

Fig. 1 Overview of the Probabilistic Stimulus Selection task. During the
training phase (left), subjects are asked to repeatedly select one stimulus
from the three possible pairs. The feedback received (“Correct!” or
“Incorrect!”) depends on the stimulus chosen and is shown immediately
after each choice. The six stimuli are presented in fixed pairings. During

the testing phase (right), subjects perform the same task as the training
phase but without the feedback. The stimuli now appear in new pairings
that include either the most rewarding stimulus (green lines) or the least
rewarding stimulus (red lines) against each of the remaining stimuli
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activity of the prefrontal cortex and are involved in many
cognitive functions, most importantly in acquiring procedural
knowledge (Knowlton et al., 1996; Yin & Knowlton, 2006).
The connections between these nuclei are organized into two
pathways, called the direct and the indirect pathway, which
have opposite effects on cortical activity (Albin et al., 1989;
DeLong, 1990). While the direct pathway exerts an excitatory
effect on the prefrontal cortex, the indirect pathway has an
inhibitory influence. The striatal neurons that originate the
two pathways also express different dopamine receptors:
while the direct pathway neurons express D1 receptors that
are excited by dopamine release, indirect pathway neurons
express D2 receptors and are inhibited by dopamine (Gerfen
et al., 1990). Because dopamine is important in reward-based
learning and decision-making, it was hypothesized that
Choose accuracy reflects the contribution of the direct path-
way and Avoid accuracy reflects the activity on the indirect
pathway. In fact, the original study by Frank et al. (2004) shows
that, when Parkinson’s Disease (PD) patients are on dopamine-
promoting medication, they are more likely to be “Choosers,”
meaning their Choose accuracy is higher than the Avoid accu-
racy. Correspondingly, patients are more likely to be
“Avoiders” when they are off-medication and their dopamine
level is low. This pattern of results is broadly consistent with a
great number of known studies suggesting dopaminergic drugs
selectively modulate learning from positive outcomes while
impairing negative learning (Rutledge et al., 2009; Mathar
et al., 2017; Pessiglione et al., 2006; Shohamy et al., 2008).
Furthermore, while boosting dopamine transmission in
Parkinson’s Disease (PD) patients improved reward learning
but worsened punishment avoidance, blocking dopamine trans-
mission in Tourette’s Syndrome (TS) patients favored punish-
ment avoidance but impaired reward seeking, extending previ-
ous findings in PD to another pathological condition, TS
(Palminteri et al., 2009). Voon et al. (2010) also stated that
dopaminergic medications again impaired learning from nega-
tive outcomes but increased learning from positive ones in PD,
and this was related to an increase of striatal prediction error
activity, hence a “better than expected” result, suggesting a
learning mechanism for the test effects. Same result was also
found for non-ICD patients (Djamshidian et al., 2010; Cools
et al., 2006; Piray et al., 2014).

Further evidence has bolstered the original claims of an
association between Choose and Avoid accuracies and basal
ganglia function. The original pattern of results in PD patients
was replicated by Frank et al. (2007a). Frank et al. (2007b), for
example, showed that higher Choose accuracy is associated
DARPP-32 gene polymorphisms that promote the expression
of D1 dopamine receptors on the direct pathway, and higher
Avoid accuracy is associated DRD2 gene polymorphisms that
promote expression of D2 dopamine receptors on the indirect
pathway. Waltz et al. (2007) and Cicero et al. (2014) showed
that that patients affected by schizophrenia, a neuropsychiatric

disorder associated with low striatal dopamine, also exhibit
lower Choose accuracies than controls, much like unmedicat-
ed PD patients. Similarly, Endrass et al. (2011) found that
patients suffering from obsessive-compulsive disorder exhibit
higher Avoid accuracies than controls, which is also consis-
tent with low tonic dopamine. Finally, and consistent with the
decrease of dopamine in ageing, younger adults exhibited a
stronger bias towards Choose than older adults (Simon et al.,
2010).

Thus, because of its ability to connect relatively inexpen-
sive behavioral measures with a meaningful biological sub-
strate, the PSS has become a prominent task in experimental
brain research. However, the PSS task’s reliability has recent-
ly been called into question. For example, an experiment by
Grogan et al. (2017) with PD patients failed to reproduce the
original effects of dopaminergic medications on PSS perfor-
mance. Also, Baker et al. (2013) found no evidence that pat-
terns of behavior are stable in this task over time. In their
study, they conducted a test-retest reliability analysis on the
PSS task performance on 90 undergraduate students. This
result showed poor reliability of the behavior measures in
indexing cognitive processes in reinforcement learning, with
virtually no correlation between an individual’s tendency to be
either an Avoider or Chooser across consecutive sessions.

Summary

In summary, although existing literature suggests that the PSS
task can successfully track the function of the basal ganglia’s
direct and indirect pathways, and the task has been therefore
vastly used for this purpose, the reliability of the task needs to
be further determined. To deal with this matter, we conducted
a new reliability test (Experiment 1) using the same versions
of the PSS task used in the original Frank et al.’s (2004) study,
and analyzed the behavioral data to measure internal and test-
retest reliability. We also proceeded to further examine the
factors affecting task reliability by using a biologically-
plausible computational model to simulate performance on
the PSS task across a range of realistic biological parameters.
Furthermore, we combined both approaches, and investigated
whether the predicted model performance could be used to
recover important individual differences information that
would be superior, in terms of reliability, to the pure behav-
ioral measure. Specifically, a Maximum A Posteriori (MAP)
procedure was done to recover the underlying biological pa-
rameters of the model from the behavioral data. Finally, to
address the limitation of generalizability of the original task,
and to ensure our model-guided approach is reliable on recov-
ering individual differences, we repeated the above proce-
dures in a second study (Experiment 2) in which the original
Japanese Hiragana characters were replaced with different,
non-verbalizable typefaces.
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Experiment 1

Methods and Materials

Participants Seventy-seven healthy participants (age 18–30,
41 females) from the University of Washington’s undergrad-
uate population took part in the experiment in exchange for
credit course. All participants completed two sessions of the
PSS exactly 1 week apart; with the second session always
occurring on the same day of week and at the same time of
day as the first session. All of the study procedures were ap-
proved by the University of Washington Institutional Review
Board (Application #00000820). Data from six participants
was discarded because they were familiar with Japanese, and
could thus verbalize the Hiragana stimuli.

Task All participants completed the PSS task, using the same
software used by Frank et al. (2004). At the beginning of the
session, participants were asked to place their left index finger
on the key corresponding to the digit “1” and their right index
finger on the key corresponding to the digit “0” of a standard
computer keyboard placed in front of them. During the vari-
ous phases of the task, pairs of Hiragana characters were
shown on the screen (Fig. 1). For each trial, participants were
required to choose one of the two characters by pressing the
key (“1” or “0”) corresponding to the character’s position on
the screen (left or right). Participants were explicitly told that,
within each pair, one character was more likely to be “correct”
than the other, although probabilistically so, and invited to
follow their instinct in choosing which one. After they had
pressed a button, the two characters disappeared. During the
training phase, feedback was immediately presented on the
screen as “Correct!” in blue, or “Incorrect!” in red. If the
participant didn’t press any button within 6 seconds, “no re-
sponse detected” in red color was shown on the screen. This
was to ensure that the subject was engaging in the task and
also to discourage the subject from using explicit methods to
remember the patterns rather than learning them through trial
and error. After a 1-s crosshair, a new pair of characters was
presented.

During the training phase, trials were presented in blocks of
60 each (20 for each of the three training pairs: Fig. 1), with a
self-paced pause in-between. At the end of each block, each
participant’s performance was re-assessed and, if it passed a
predefined learning criterion, participants moved on to the
testing phase. If participants had not passed the learning crite-
rion by the end of the sixth block, they would move on to the
testing phase anyway. To satisfy the learning criterion, partic-
ipants had to select the best option within each pair with at
least the following probabilities: 50% of E in the E-F pairs,
60% of C in the C-D pairs, and 65% of A in the A-B pairs.

During the testing phase, a single block of 60 trials was
presented, with no feedback after each choice (Fig. 1). The 60

trials consisted of four presentations of each of the 15 possible
pairs of the six stimuli. Choose and Avoid accuracies were
calculated from two non-overlapping subsets of these trials.

Results

Split-Test Reliability First, we examined the split-test reliabil-
ity of these measures. This was done by separately calculating
the values of the two main variables, Choose and Avoid, for
different pairs of stimuli, depending on whether A and B were
presented on the left (e.g., “A-C”, “B-C”, etc.) or on the right
side of the screen (e.g., “C-A”, “C-B”, etc.). These measures
were called Choose Left, Avoid Left, Choose Right, and
Avoid Right, respectively. The Pearson correlation coeffi-
cient between the Left and Right version of each measure
was then calculated. As shown in Fig. 2, the split-test cor-
relation coefficients of Choose and Avoid were significant
in both sessions. Specifically, we found a positive correla-
tion of Choose Left and Choose Right in Session 1 [r(71) =
.44, p < .001] and in Session 2 [r(71) = .40, p < .001] and
between Avoid Left and Avoid Right in Session 1 [r(71) =
.46, p < .001] and in Session 2 [r(71) = .40, p < .001].

Test-Retest Reliability Then, we examined the test-retest re-
liability across sessions of the same measures. To do so, we
simply computed Choose and Avoid canonically (i.e.,
across all relevant pairs) for the two sessions. In contrast
to the split-test results, no significant correlation was found
for either Choose [r(71) < 0.10, p > 0.60] or Avoid [r(71) =
0.15, p > 0.20] across sessions (Fig. 3).

Intraclass Correlation Coefficient Finally, for each of the mea-
sures of interest, we also calculated the intraclass correlation
coefficient (ICC: Shrout & Fleiss, 1979). Conceptually, ICC
measures the proportion of variance in the measures of interest
against the total variance, and is used as an assessment of the
consistency of quantitative measurements between sessions.
In our study, the variance of interest is between different
participant measurements P of the same variables (Choose
or Avoid) across left/right presentation or sessions, and the
total variance is due to the different measurementsM, the error
E, and the individual participants P. Thus:

ICC ¼ σ2
P= σ2

M þ σ2
E þ σ2

P
� �

In practice, the variances are calculated by separating the
contribution of the Measurement and Participant factors
through an ANOVA (Shrout & Fleiss, 1979). Note that, be-
cause, in this case, the numerator requires computing a differ-
ence between mean sums of squares, the ICC measure can
take any negative or positive real values (Shrout & Fleiss,
1979) and, unlike correlation coefficients, is not constrained
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to be between 0 and 1. Higher and positive ICC values denote
greater reliability.

Because the ICC values are computed from an ANOVA, it
is important to report the type andmodel of the analysis. In this
case, we applied the ICC(2,k) model of Shrout and Fleiss
(1979), which is appropriate for variables that average over
different items (the individual choices) and for studies of test-
retest reliability, which require absolute agreement (Koo & Li,
2016). As shown in Fig. 3, although the ICC values for Choose
and Avoid between sessions were greater than zero, they were
also markedly inferior to their split-half counterparts and both
values fell below the 0.40 threshold indicated by Cicchetti
(1994) as “poor” reliability. We also calculated ICC for

Training Length (that is, numbers of blocks of training) across
sessions to serve as a comparison against Choose and Avoid,
since a longer training phase likely indicates slower learning
and, therefore, should be consistent across sessions. As it
shows on the Fig. 3, Choose and Avoid between sessions were
markedly less consistent than Length.

Summary

An analysis of the Choose and Avoid measures in the PSS
task has yielded somewhat contrasting results. Across ses-
sions, both measures show very poor reliability as indexed
by both Pearson correlations and ICC values. This finding is

Fig. 2 Split-test and test-retest
reliability of Choose and Avoid
accuracies. Red lines represent
significant, and black lines
represent non-significant,
correlations
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in line with the reports of Grogan et al. (2017) and Baker
et al. (2013), which called into question the original results
by Frank. On the other hand, the same measures had good
reliability scores within each session (r > 0.4, ICC ≥ 0.5),
suggesting that the two measures were not intrinsically
unreliable.

At least three possible explanations exist for these find-
ings. One is that Choose and Avoid do not index any under-
lying stable feature of a participant’s biology (such as the
relative strengths of their basal ganglia pathways) but some
other characteristic that is reliable only within a single ses-
sion. This could be, for example, the case of transient mental
states such as fatigue. A second possibility is that Choose
and Avoid do, indeed, index their hypothetical counterparts,
but their measure is strongly affected or mediated by other
factors that we were not capable of controlling experimen-
tally, such as caffeine or motivation. Finally, another hy-
pothesis is that Choose and Avoid might be intrinsically
noisy and poor indicators of the underlying basal ganglia
activity. Imagine, for instance, a participant with equally
strong direct and indirect pathways; in one session, the direct
pathway might be randomly selected early on, be reinforced
by positive feedback, and end up dominating throughout,
while in a different session the same could happen for the
indirect pathway. This would lead to opposite Choose and
Avoid scores simply in virtue of the interactions between the
underlying biology and the task dynamics.

To distinguish between these three hypotheses, we decided
to take a computational approach. First, we examined the per-
formance of an existing, biologically-plausible model of the
PSS task. Then, we applied Bayesian methods to estimate the
most likely underlying model parameters for each participant,
and examined whether such idiographic parameters (whose
value is informed, in a Bayesian fashion, by the models
known dynamics) would exhibit greater reliability than the
raw behavioral measures.

Computational Model and Maximum
Likelihood Parameter Estimation

The model used in this study was originally published in
Stocco (2018) and its code made available online.1 Although
other formal models exists that incorporate the dynamics of
the two basal ganglia pathways (Collins & Frank, 2014; Rice
& Stocco, 2017), this model has the advantage of having been
developed using the Adaptive Control of Thought - Rational
(ACT-R) architecture, which is currently the most common
cognitive architecture in use (Kotseruba & Tsotsos, 2018).
Because ACT-R is an integrated cognitive architecture, this
model assumptions and its parameters can be easily
interpreted in relation to other cognitive mechanisms and their
underlying neural circuits (Anderson, 2007; Anderson et al.,
2008).

Similar to other architectures, ACT-R contains dictionary-
like structures called “chunks”, which are used to represent
static information like semantic memory (“a dog is walking”),
perceptual inputs (“red rectangle on the left”), or motor com-
mands (“press the green button”). These chunks are then
placed into specialized modules (such as “vision”) where they
become accessible to procedural knowledge (represented as
“production rules” or “productions”) to carry out cognitive
and motor operations. Only one production is selected at any
given time and only one production is allowed to fire; this
production is selected amongst all of the possibly competing
rules on the basis of its relative utility, a scalar value that
represents the estimated future rewards generated by their ap-
plications and is learned through a reinforcement learning
algorithm.

The model by Stocco (2018) assumes that PSS task perfor-
mance relies entirely on procedural knowledge. This assump-
tion is justified by a number of considerations, the first of
which concerns the reinforcement learning nature of the task
and its reliance, at the biological level, on the basal ganglia. In

Fig. 3 Intraclass correlation
coefficients of Choose (green)
and Avoid (orange) measures
within (left and center panel) and
between sessions (right panel).
Choose and Avoid showed poor
reliability across sessions,
compared with Length (blue).
Error bars represent 95%
confidence intervals; colors
represent the basal ganglia
pathway the variable is supposed
to measure
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ACT-R, the basal ganglia are associated with the procedural
module, which manages and controls procedural rules
(Anderson, 2005; Anderson et al., 2008; Stocco &
Anderson, 2008) and learns the best action selection policy
through reinforcement learning. In addition, and as previously
noted, the PSS task was explicitly designed to exclude the
possibility that participants were relying on declarative knowl-
edge. In fact, experimental results show that task performance
is consistently affected by factors that influence basal ganglia
function (such as dopamine:,Frank et al., 2004; or the expres-
sion of striatal dopamine receptors: Frank et al., 2007b) and
not affected by manipulation on the formation of declarative
memories (Frank et al., 2006). Therefore, Stocco’s (2018)
ACT-R model implemented a procedural-only approach for
the PSS task.

In the model, different procedural actions compete for
execution, reflecting the role of the basal ganglia in action
selection (Gurney et al., 2001; Houk et al., 2007). Once
the stimuli on the screen are encoded as a visual chunk,
all the productions that match the current stimuli compete
for execution. To capture the competition between the
basal ganglia’s direct and indirect pathways, each of the
productions is divided into a pair of productions, one
reflecting the contribution of the direct pathway and one
reflecting the indirect pathway. Specifically, the model
uses opposing and competing “Choose” and “Avoid” pro-
ductions for each stimulus (Fig. 4). Therefore, for each
production “Choose A”, a paired production “Avoid A”
is also created to perform an opposite action (B in Fig.
4). Note that while a Choose production is created for a
certain stimulus, its corresponding Avoid production will
select any other option available except that stimulus. For
example, “Avoid A” will result in selecting any other
stimulus that was paired with A on the screen. The two
sets of production have complementary effects on the de-
cision process.

Thus, for every pair of stimuli, four possible productions
can be performed, corresponding to a pair of “Choose” and
“Avoid” actions for each stimulus. The competition between
these productions is resolved by comparing each production
rule's respective utility, a scalar quantity that approximates
each production’s intrinsic value. At each cycle, the produc-
tion rule with the highest utility is chosen. To implement
softmax action selection, random noise is added to the utility
values of the competing production rules. The amount of noise
is normally distributed around zero, with a variance σ2 con-
trolled by a free parameter s according to the equation:

σ2 ¼ π s2
� �

=3 ð1Þ

A production’s utility reflects its historic record in leading
to rewards. Specifically, after each reward R, the utility Ut

p of

a production p at time t is adjusted through the following
reinforcement learning equations:

Ut
p ¼ Ut−1

p þ α D1Rt−Ut−1
p

� �
for“Choose”productions

Ut
p ¼ Ut−1

p þ α D2Rt−Ut−1
p

� �
for“Avoid”productions

ð2Þ

The model parameter α represents the learning rate in re-
inforcement learning, that is, how much each production’s
utility U is adjusted for after each feedback. The effect of the
magnitude of a reward R at time t is further modulated by D1

and D2, which model the density of dopamine D1 and D2
receptors in the basal ganglia’s direct and indirect pathways,
respectively. Thus, D1 and D2 represent the unobserved quan-
tities that the Choose and Avoid measures are purported to
operationalize. The idea of having D1 and D2modulating the
size of the reward (as opposed to the learning rate, as in
O’Reilly & Frank’s 2006 model) comes from the notion that,
as the number of receptors on each pathway increases, the
magnitude of dopamine’s effect on the corresponding path-
way is magnified. It implies that the size of prediction error
(which dopamine conveys: Schultz et al., 1997) would be
considered as larger, indicating a greater distance between
the previous utility U of a production p and the actual reward
R at time t. The easiest way to convey this greater distance is to
increase the value of Rt.

Thus, the functioning of the model is governed by four
parameters only: α, s, D1, and D2 (Fig. 4, Eqs. 1 and 2). The
original paper (Stocco, 2018) provides values for the learning
rateα and noise parameter s for the general population, as well
as the distribution of values of D1 and D2 that capture the
observed variability in healthy individuals. In this study, we
used the values of α = 0.018 and s = 0.1 (which were fit to the
healthy control data in Stocco, 2018), and parametrically var-
ied the values of D1 and D2 from 0 to 2 in increments of 0.05
(the same range was used in Stocco, 2018, to capture
individual differences in the PSS task). For each combination
of D1and D2 parameter values, the model was then run 250
times, and the probability distributions of each combination of
Choose and Avoid measures were recorded. A total of 41 ✕

41 ✕ 250 = 420,250 simulations were run.

Likelihood Distributions

An inspection of the likelihood distributions of the model’s
performance provided a first insight into the reasons for the
poor test-retest reliability of the PSS task measures. Under
certain combinations of parameters, the model tends to con-
verge on the same estimates of Choose and Avoid; this result
is represented by a likelihood distribution with a unique global
maximum (Fig 5, left). However, under most combinations,
the likelihood distribution did not have a single maximum,
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and the model would move towards different values for
Choose and Avoid in different runs. (Note that, since there is
a finite number of pairs in the testing phase, the values of
Choose and Avoid are discrete, and the multiple peaks in
Fig. 5 do not represent an approximation due to the
discretization of continuous variables). This suggests that the
poor reliability of Choose and Avoid accuracies might be due
to the nature of the task and the ways the measures are
calculated.

Maximum a Posteriori (MAP) Parameter Estimation

The simulations described in the previous section provide an
estimate of the likelihood of observing a particular behavioral

outcome Y (that is, a combination of Choose and Avoid
values) given θ (that is, a combination of values for the D1

and D2 parameters). In addition to these likelihood estimates,
we were interested to explore whether the model’s simulations
could be used to estimate reliable values for D1 and D2 (the
unobservable parameters that govern learning rates in the two
pathways) from the observable behavioral measures (Choose
and Avoid). To do so, we fitted the model to each individual
participant using a Bayesian Maximum A Posteriori (MAP)
procedure. In Bayesian statistics, a MAP is the estimate of the
maximum likelihood of an unobservable quantity on the basis
of both the empirically observed data and a prior hypothesis
about the distribution of that quantity. In our case, the proce-
dure was used to recover the most likely values of θ (D1 and

Fig. 4 Overview of the ACT-R model of the PSS task (as described in
Stocco, 2018) performing the PSS task. The figure depicts the passage of
time (dotted grey arrows) in a sample trial of the task. Rounded boxes
represent the activity of three modules (visual, producedural, and motor)
over time; squares represent example data structures used by each module
(chunks for the visual and motor modules, production rules for the pro-
cedural module); circles represent the points at which the model param-
eters (α, D1, D2, s, and R: Eq. 1 and 2) affect computation. In this exam-
ple, the model is presented with aA-B pair; the corresponding productions

for stimuli A and B match the visual stimuli (visually depicted as being
colored vs. grey) and compete for selection; the winning production
“Choose B” is selected (shown as a thick contour), triggering the motor
response “Press 0” in the Motor module. The task’s visual feedback is
then translated into a reward value and processed by the procedural mod-
ule, causing an update in the utility of “ChooseB” through themodulation
of the reward quantity R by D1 and α (Eq. 2). If one of the “Avoid”
productions were chosen, the effect of reward would have been modulat-
ed by D2 (orange dotted line) instead of D1
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D2) given the observed Choose and Avoid values of a given
participants (Y), that is, argmaxP(θ | Y). Using Bayes theorem,
this quantity can be rewritten as:

P θjYð Þ ¼ argmax P Y jθð Þ � P θð Þ=P Yð Þ½ �:

The likelihood value P(Y | θ), that is, the distributions of
Choose and Avoid accuracies given pairs of D1 and D2 pa-
rameters, can be directly computed from the model simula-
tions (Fig. 5). To estimate the parameter priors P(θ), we
followed the following logic. First, we modeled the probabil-
ity distribution of each parameter value as a normal distribu-
tion N(μ, σ) with mean μ = 1 and σ = 0.5. This captures the
finding that the values for D1 and D2 that best represent var-
iability among healthy participants vary between 0.5 and 1.5,
with 1 being the population mean (Stocco, 2018). As a final
step to define the priors, we need to define joint probability
distribution of D1 and D2. In turn, this requires providing an
estimate of the degree of the correlation of these two param-
eters in the general population. The existence of a correlation
between the two parameters is suggested by three layers of
evidence. First, in the basal ganglia, studies (Sian et al., 1999)
showing synergic biochemical and behavioral effects associ-
ated with combined administration of D1 and D2 agonists
suggest that the distribution of D1 and D2 receptors is not
independent. Second, the activity in both receptors is driven
by a common force (the release of dopamine). Finally, the
recorded activity of the two pathways is anticorrelated, sug-
gesting that a greaterD1 means more excitation on the indirect
pathways, and greater D2 means more inhibition on the direct
pathway. Although this evidence does point to the existence
of a correlation, it does not precisely define its magnitude.

Here, we decided to set the correlation between the two dis-
tributions to the agnostic value of r = 0.5, which is exactly in
the middle of the range between 0 (complete independence)
and 1 (complete dependence). This estimate is undoubtedly
imprecise, and could be improved upon in the future.

Taken together, the use of likelihoods and joints priors
might overcome the problem of parameter identifiability
(Fig. 5). While it remains true that, given the same initial
conditions and values for D1 and D2, the model can still pro-
duce different outcomes, the MAP procedure greatly reduces
the possible range of plausible initial values. Thus, we expect
that the MAP estimates of D1 and D2 for each participant
would have a higher reliability than the simple Choose and
Avoid accuracies. With both the likelihood and the joint prob-
ability distribution in place, we proceeded to test this
prediction.

Test-Retest Reliability

After calculating the MAP parameter estimates for each
participant, we applied the same test-retest reliability anal-
yses that were used for the behavioral measures to the
individual parameter values. In contrast to our behavioral
findings (Fig. 2), we found statistically significant
Pearson correlations across sessions for both D1 [r(71) =
0.33, p < 0.005] and D2 [r(71) = 0.35, p < 0.003: Fig. 6].
Furthermore, the correlation values for the model parameters
were either significantly higher or marginally significantly
higher than the correlation values for the corresponding behav-
ioral measure, as shown by the difference of their correlation
coefficients, converted into Z values using Fisher’s transforma-
tion (D1 vs. Choose: Z = -1.71, p = .04;D2 vs. Avoid: Z = -1.31,

Fig. 5 Variability in the likelihood of possible results as a function of
different parameter values θ. When D1= D2 = 0.5 (Left), the model
converges on a single global maximum (Choose = 0.6125, Avoid =

0.6125). However, when D1= D2 = 2.0 (Right), multiple possible
results (i.e., maxima) are equally likely. Colors represent probability
densities for each Choose/Avoid accuracy combination
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p = .09, one-sided). Similar results were found for the corre-
sponding ICC values, with the values for D1 (ICC = 0.49) and
D2 (ICC = 0.51) being more than twice as large as the corre-
sponding values for Choose and Avoid, and within Cicchetti’s
(1994) range of “fair” reliability (Fig. 7). As a comparison,
Fig. 7 also includes Training Length, with its value being 0.44.
Thus, the ICC values for D1 and D2 are even larger than the
corresponding value for Length, implying a remarkably im-
proved consistency between sessions.

Discussion

An analysis of the behavior of a biologically plausible com-
putational model of the PSS task (Stocco, 2018) suggests
that the lack of test-retest reliability for the Choose and
Avoid measures is due to the one-to-many relationship be-
tween the underlying neural parameters and the observed
behavior. Specifically, certain combinations of D1 and D2

parameters result in equal probability densities for different
values of Choose or Avoid, making the correlations be-
tween different runs intrinsically noisy.

However, the intrinsic noise in the Choose and Avoid mea-
sures does not rule out the possibility of recovering important
information from behavior. The key to this insight is that,
while multiple outcomes might be equally likely, given an
initial set of biological parameters, not all possible behavioral
outcomes are. Using an exhaustive set of simulations from the
model, we were able to apply a Maximum A Posterior param-
eter estimation procedure to map each behavioral outcome to
the most likely set of model parameters that could lead to the
observed combination of Choose and Avoid accuracies. These
idiographic parameters are more clearly interpretable and rep-
resent a more direct operationalization of their hypothetical
biological substrate; perhaps because of this they proved to
be superior to the pure behavioral measures in terms of
reliability.

Fig. 6 Correlation between MAP
estimates of the underlying D1

and D2 model parameters across
sessions for all participants. Red
lines indicate significant
correlations

Fig. 7 A comparison of the
intraclass correlation coefficient
values of the behavioral measures
(solid) and the MAP estimates of
the underlying model parameters
(transparent) that index the
function of the two pathways,
with Length (blue) as a
comparison. Error bars represent
95% confidence intervals; colors
represent the basal ganglia
pathway the variable is supposed
to measure
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Experiment 2

The results of our computational model analysis suggest
that it is possible to overcome some of the limitations of
the behavioral measures of the PSS tasks. To further en-
sure our model-guided way is more reliable in recovering
individual differences, a follow-up experiment was done
using a modified version of the PSS task. In this version,
the original Hiragana characters were replaced with a new
set of characters from an unfamiliar, extinct language—
Suyat. We modified the stimuli also under the concern
that, as the original PSS task can be only presented to
non-Japanese speakers, it might jeopardize the generaliz-
ability of the task. Unlike the original Hiragana stimuli,
these particular Suyat characters were extremely unlikely
to have been previously seen by any participants. They
also consisted of different arrangements of identical per-
ceptual features (cuneiform strokes), making them more
perceptually similar to one another, therefore limiting the
preference issue on perceptual discriminability raised by
Schutte et al. (2017).

Methods and Materials

Participants Forty-two undergraduate students from the
University of Washington (age 18–22, 21 females) were re-
cruited following the same process as Experiment 1, taking
part in this experiment in exchange for credit course.
Although it was originally planned that the same number of
participants as Experiment 1, data collection had to be
suspended early due to the end of the academic quarter, and
could not be resumed due to the COVID-19 pandemic. All
participants completed two sessions of the modified PSS task
exactly 1 week apart. As in Experiment 1, the second session
always occurred on the same day of week and at the same time
of day as the first session. All of the study procedures were
approved by the University of Washington Institutional
Review Board (Application #00000820). Data from six par-
ticipants (3 females) was lost to attrition (that is, they did not
return to complete the second session), leaving a total of 39
participants in the sample.

Task The modified PSS task used the same code as
Experiment 1, but, instead of a Hiragana typeface, it presented
the stimuli in a typeface designed to imitate the Suyat script.
Suyat, now extinct, is the modern collective name of the in-
digenous scripts of various ethnolinguistic groups in the
Philippines.

All of the remaining task components, such as the duration
of each stimulus, the chances of being correct or incorrect for
each stimulus, the learning criterion, and the way Choose and
Avoid accuracies are measured, were all kept the same.
Participants were asked to place their left index finger on

button “1” and right index finger on button “0” of a standard
computer keyboard placed in front of them. Pairs of Suyat
characters were then shown on the screen with a fixation cross
in between each trial. They then pressed the button corre-
sponding with the characters they intuitively think would be
correct. Feedbacks were shown on the screen after each selec-
tion during the training phase as “Correct!” in blue color or
“Incorrect!” in red color. If the participant did not press any
button within 6 seconds, “no response detected” in red color
was shown on the screen. Again, this was to ensure that the
subject was engaging in the task and also to discourage the
subject from using explicit methods to remember the patterns
rather than learning them through trial and error. Still, a max-
imum of six repetitions of the training phase was followed by
a testing phase where Choose and Avoid accuracies were
measured.

Results

Split-Test Reliability First, we examined the split-test reliabil-
ity of these new measures in the same way we did in
Experiment 1. We calculated separately the values of the
two main variables, Choose and Avoid, for different pairs of
stimuli, depending on whether A and B, were presented on the
left (e.g., “A-C”, “B-C”, etc.) or on the right (e.g., “C-A”,
“C-B”, etc.). Again, these measures were called Choose
Left, Avoid Left, Choose Right, and Avoid Right, respec-
tively. The Pearson correlation between the Left and
Right version of each measure was calculated. As shown
in Fig. 8, the split-test correlation coefficients of Choose
and Avoid were significant in both sessions. Specifically, we
found a positive correlation of Choose Left and Choose Right
in Session 1 [r(39) = .60, p < .001] and Session 2 [r(39) = .60, p
< .001], and between Avoid Left and Avoid Right in Session 1
[r(39) = .70, p < .001] and in Session 2 [r(39) = .65, p < .001].

Test-Retest Reliability Then, we examined the test-retest
reliability across sessions of the same measures. In con-
trast to the split-test correlations, and in line with the
results of Experiment 1 no significant correlation was
found for either Choose [r(39) = -.02, p > .44] or Avoid
[r(39) = -.13, 0, p > .92] across sessions (Fig. 8).

Intraclass Correlation Coefficient Finally, for each of the mea-
sures of interest, we also calculated the ICC scores. This time,
the ICCs for the modified version are remarkably worse than
those of the original version. As it shows in Fig. 9, the ICC
values for Choose and Avoid between sessions are negative.
As noted above, while negative ICCs are possible, they are
interpreted as implying that true intraclass correlation is effec-
tively zero, meaning that two members chosen randomly from
any class vary almost as much as any two randomly chosen
members of the whole population (Taylor, 2010). As in
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Experiment 1, the Length of the training session was also
included to serve as a comparison against Choose and Avoid.

Maximum A Posteriori (MAP) Parameter Estimation

An analysis of the Choose and Avoid measures in the modi-
fied PSS task yielded the same pattern of results of
Experiment 1. While both measures showed reasonable
split-test reliability, they exhibited very poor test-retest reli-
ability as indexed by both Pearson correlations and ICC
values. Thus, the results show poor reliability for Choose
and Avoid regardless of the perceptual saliency or

discriminability of the stimuli associated with more and less
rewarding outcomes, respectively. To examine the perfor-
mance of cognitive modeling and the reliability of idiographic
parameters in the context of the new visual stimuli, we applied
the same Bayesian methods of Experiment 1 to estimate the
most likely underlying model parameters for each participant.

After estimating the idiographic parameters of the modified
PSS task for each participant, we applied the same test-retest
reliability analyses that were used for both Experiment 1 and
the behavioral measures to the individual parameter values. In
contrast to our current behavioral findings (Fig. 8), and in line
with our previous parameter findings (Fig. 6), we found

Fig. 8 Split-test and test-retest
reliability of Choose and Avoid
accuracies. Red lines represent
significant, and black lines
represent non-significant,
correlations
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Pearson positive correlation across sessions for both D1

[r(39) = 0.29, p = .073] and D2 [r(39) = 0.29, p = .072;
Fig. 9]. Because of the reduced sample size of Experiment
2, our Pearson correlation coefficients were only marginal-
ly significant; however, they are entirely comparable, in
magnitude, to those found in Experiment 1, and, like in
Experiment 1, they remain superior to the corresponding
behavioral measures (Choose vs. D1: Z = -1.4, p = .08);
Avoid vs. D2: Z = -1.83, p = .03) . Similar results were
found for the corresponding ICC values, with the values
for D1 (ICC = 0.43) and D2 (ICC = 0.42) being exceedingly
larger than the corresponding values for Choose and Avoid
(Fig. 10). We also included Length as a comparison, with
its value being 0.52. Although for this modified PSS task,
ICC values for D1and D2 did not exceed that of Length,
they still fall within Cicchetto’s (1994) range of “Fair” re-
liability and indicate an improved consistency between ses-
sions (Fig. 11).

Discussion

In this paper, we have presented evidence that computational
cognitive models can be used to recover interpretable and
reliable parameters from noisy behavioral data, making up
for discrepant findings. More specifically, the study examined
the reliability of two commonly usedmeasures in the PSS task
and suggested that recovering the underlying parameters by
fitting cognitive models could be used as an alternative to
simple metrics derived from behavioral choice data.

The study consisted of two experiments, each of which
with two parts. During the first experiment, we tested the
reliability of the original PSS task’s most important measures,
Choose and Avoid accuracies, and showed that their test-retest
reliability is poor. Across two sessions 1 week apart, both
Choose and Avoid values were uncorrelated within partici-
pants. An existing ACT-R model, capable of simulating the
competitive dynamics of the two basal ganglia pathways that

Fig. 9 Intraclass correlation
coefficients (ICC) results.
Reliability of Choose (green) and
Avoid (orange) measures within
(left and center panel) and
between sessions(right panel).
Choose and Avoid showed poor
consistency across sessions,
compared with Length (blue).
Error bars represent 95%
confidence intervals; colors
represent the basal ganglia
pathway the variable is supposed
to measure

Fig. 10 Correlation between
MAP estimates of the underlying
D1 and D2 model parameters
across sessions for all
participants. Orange lines indicate
marginally significant
correlations

330 Comput Brain Behav  (2021) 4:318–334



jointly drive the reinforcement learning process, was then
used to generate probability distributions of Choose and
Avoid value for a broad range of underlying model parame-
ters. Using a Maximum A Posteriori procedure, the most
likely values for two of critical model parameters, D1 and
D2, were then obtained for each of our participants. As a
result, both D1 and D2 show significant Pearson correla-
tions and greater intraclass correlation coefficients across
sessions than the original Choose and Avoid measures.
Next, to address a limitation on generalizability, a modified
version of the PSS task using Suyat instead of Hiragana
characters was introduced. The same model-fitting proce-
dures and reliability tests for behavioral measure and pa-
rameter measure were conducted, and the results replicated
the findings of the first experiment, with D1 and D2 param-
eters showing greater reliability across sessions than
Choose and Avoid measures.

It should be noted that, though the reliability and the repli-
cability of the behavior results of the PSS task has been under
debate, it is no doubt the task itself has been widely used on
indexing cognitive processes. Despite studies (mentioned
above) showing poor replicability or poor reliability across
sessions, people also found the PSS greatly useful and
dependable on indexing the correlation between DA level
and the sensitivity to reward learning and punishment
avoidance. McCoy et al. (2019) suggests that dopamine med-
ication reduced negative (but not positive) outcome learning
rates. Similar findings have been reported by Maril et al.
(2013) that there are opposite medication effects on positive
and negative outcome learning rates, but only in patients with
left hemisphere dopamine depletion. This idea is also
supported by Kobza et al. (2012) and Weismueller et al.
(2018), both of which showed a strong negative learning bias
for PD patients while off medication. Thus, on a more opera-
tional level, our results imply that one needs to exert caution in

interpreting data from individual subjects in the PSS task, and
recovering idiographic parameters is a new analysis tool, here
shown to be reliable, when conducting individual subject anal-
ysis with behavioral results.

Limitations

While our results are encouraging, a number of limitations
need to be acknowledged. First, our two experiments did not
have the same sample size. Our data collection had to end
earlier than planned due to the COVID-19 pandemic, resulting
in a much smaller sample for the second experiment. As a
result, while the size of the Pearson and intraclass correlation
coefficients were similar across both experiments, some of the
correlations in the second experiment did not reach the canon-
ical statistical significance threshold of p < .05. However, this
limitation could be easily overcome in future, if and when data
collection can resume safely, or in further replication
experiments.

A second limitation is that our analysis was restricted to
young, healthy adults. In contrast, a sizable amount of PSS
studies focused on patient populations (e.g., Cicero et al.,
2014; Frank et al., 2007a; Waltz et al., 2007). Thus, a stronger
demonstration of the reliability of this approach would be if
(a) reliable parameters could be recovered from patients pop-
ulations, and (b) the value of the recovered parameter were
consistent with what would be expected from the etiology of
the disorder. In fact, since the original model (Stocco, 2018)
had already been fit the group data from PD patients) origi-
nally published in Frank et al., 2004), a unique opportunity
exists to test both the reliability as well as their expected
values of D1 and D2 parameters in this population.

A third limitation concerns the number of model parame-
ters that were manipulated for the estimation procedure. Here,
we have focused exclusively on D1 and D2, while keeping α

Fig. 11 A comparison of the
intraclass correlation coefficient
(ICC) values of the behavioral
measures (solid) and the MAP
estimates of the underlying model
parameters (transparent) that
index the function of the two
pathways, with Length (blue) as a
comparison. Error bars represent
95% confidence intervals; colors
represent the basal ganglia
pathway the variable is supposed
to measure
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and s at the values recommended in Stocco (2018). However,
a complete analysis of individual-level performance would
also require fitting α and s to each participant. Being this a
preliminary study, we considered that expanding the number
of parameters would pose a significant burden the time needed
to run simulations and calculate the likelihood distributions.
To further complicate the matter, the parameters are interde-
pendent. For example, both learning rate and D1/D2 jointly
determine the magnitude of the utility update (Eq. 2).
Additionally, because the only behavioral outcome is a deci-
sion, it is difficult to separate the effects of noise (which alters
the decision process) from the effects of learning (which pre-
cedes decision, and must be inferred). On the other hand, we
do recognize that increasing the number of parameters will
expand the range of behaviors that could be modeled, and
their inter-dependency could be mitigated by the possibility
of using additional behavioral measures to inform the MAP
procedure. For example, the length of the training phase
would likely be related to individual differences in the learn-
ing rate a, and could be used to constrain it.

A fourth limitation concerns the parameter recovery pro-
cess. Here, we implemented a Bayesian Maximum A
Posteriori procedure to identify the most likely parameters,
given the participant's data and the thousands of simulations
we had run with the model. However, there are other possible
ways to proceed. For example, parameters could be identified
using a gradient descent algorithm (such as the Nelder-Mead
method) instead of a Bayesian approach. It should be noted,
however, that gradient descent methods are sensitive to the
presence of local or multiple minima, which do occur in the
distribution of Choose and Avoid values (see Fig. 5), while
our method, while computationally intensive, has the advan-
tage of exploring the full range of parameter values.

A fifth limitation concerns the degree to test-retest reliabil-
ity that is afforded by the model-based parameter-recovery
procedure. While a considerable improvement over raw be-
havioral data, it might be argued that the values of Pearson and
intra-class correlation scores were not as high as one could
hope. Ultimately, because the same initial conditions could
lead to different outcomes (Fig. 5, right panel), the function
mapping between parameter values and Choose and Avoid
accuracies is not invertible, and this provides an upper limit
to the degree to which “true” parameter values can be mea-
sured. Still, we believe that the results reported here can be
further improved upon. As noted above, it is possible that the
precision of our estimate could be increased by fitting the
learning rate in addition to D1 and D2. The estimates could
also be made more precise by taking into account trial-by-trial
choices, thus increasing the resolution of the observations the
model is fit to (Daw, 2011).

Finally, the Suyat stimuli in our modified PSS task in the
second experiment could suffer from the same concerns that
Schutte et al. (2017) pointed out for the Hiragana characters—

namely, that performance in the PSS task is affected by par-
ticipant’s perceptual preferences for certain stimuli. Because
of their reduced familiarity, we suspect that this problem is
reduced in Suyat characters. Furthermore, this limitation does
not invalidate our finding that cognitive modeling can be used
to recover reliable individual differences, but solely points to a
future direction when increasing the generalizability of the
PSS task. As shown in our inspection of the likelihood distri-
butions of the model’s performance (Fig. 5 right), the poor
reliability is largely due tomultiple equally likely results under
certain sets of parameters.

Implications for Future Studies

These limitations notwithstanding, with the PSS task as a
starting point, our results do have significant implications for
future research. First and foremost, these results suggest that
using cognitive models might be a more reliable way of deal-
ing with behavioral data, as idiographic parameters better cap-
ture stable individual traits that possess higher test-retest reli-
ability. Idiographic model parameters had been previously
proposed to generalize or predict behaviors across tasks; for
instance, Lovett and colleagues were able to estimate atten-
tional spreading activation from a working memory task, and
use it to predict performance in a second task (Daily et al.,
2001; Lovett et al., 2000). This study, however, goes one step
further, estimating model parameters that are directly related
to biological properties, such as procedural learning rate and
the density of dopamine receptors (Stocco, 2018; Stocco et al.,
2017). These underlying biological properties have important
consequences not only for the Probabilistic Stimulus task, but
in many other domains, including response inhibition (Stocco
et al., 2017), fluid reasoning (Stocco et al., in press) and work-
ing memory (Zhang et al., 2007). Therefore, we see a great
potential in the application of such model-based approach in
the field of computational psychiatry, where it could possibly
be used to better quantify and diagnose, for example, the com-
plex symptomatology and downstream effects of basal gan-
glia dysfunction in Parkinson’s Disease. This could be accom-
plished by estimating idiographic parameters and comparing
them against their priors for healthy participants.

Because the model that was used in this study was devel-
oped within a general-purpose cognitive architecture, the ap-
proach outlined here could be used to incrementally build
more comprehensive and detailed computational models of a
single person. This is because, in ACT-R, the learning param-
eters associated with the PSS task (α, s, D1, and D2) maintain
the same meaning and interpretation even if they are used in
the context of a different task (Stocco et al., 2017). Knowing
their values within a simple task (such as the PSS paradigm),
therefore, permits us to better estimate parameters that can
only be understood using more complex paradigms, such as
those measuring working memory capacity.
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Of course, for these implications to be realistic, the proce-
dures we have outlined here would need to be expanded upon
and tested on other task paradigms, possibly using additional
well-established models and recovering other parameters. For
this reason, we look forward to seeing future studies in this
direction.
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Code Availability TheACT-R code for the model of Fig. 6 as well as the
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